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Optical response of a nonlinear dielectric film
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We present a theoretical discussion of the optical reflectivity and transmissivity of a dielectric slab
of arbitrary thickness, with index of refraction that contains a term proportional to the intensity of
the optical wave in the slab. An exact solution is found for the problem, in terms of a single param-
eter whose value is determined through a straightforward numerical search procedure. We present
numerical studies of the power dependence of the transmissivity, with emphasis on bistability, and
the multivalued behavior of the transmissivity considered as a function of incident power.

I. INTRODUCTION

For many years, there has been very great interest in the
theoretical and experimental study of the propagation of
electromagnetic radiation in materials whose index of re-
fraction varies with the amplitude or intensity of the radi-
ation field. Of particular interest is the regime of strong
nonlinearity, where a cavity filled with a nonlinear rnedi-
um may exhibit bistability, or other dramatic manifesta-
tions of the nonlinear response characteristic.

The description of the interface between a linear medi-
urn and a nonlinear medium has also been the focus of a
number of studies. In the recent literature, these have
been descriptions of surface polaritons which propagate
along the interface between a linear medium, and a non-
linear dielectric. ' The properties of these waves may be
modified substantially by the nonlinear response of the
one partner to the interface; one may also "bind" waves to
the interface by the nonlinearity itself, though it is not
clear if the conditions required can be met by real materi-
als.

In the mathematical models of nonlinear surface polari-
tons that admit analytic solutions, the basic equation
reduces to that which describes a one-dimensional field
with P nonlinearity; simple well-known closed-form
"kink" solutions exist, provided the field amplitude van-
ishes at infinity, a condition realized in the description of
a surface polariton localized at the interface between a
semi-infinite nonlinear medium, and a structure with
linear response.

If we consider electromagnetic propagation in a non-
linear film of finite thickness, the condition just described
cannot be invoked, and no closed-form analytic solutions
of the relevant wave equation exist. This paper is devoted
to the analysis of the simplest problem involving the non-
linear optical response of a nonlinear film: The calcula-
tion of the reflectivity or transmissivity of a thin film
with index of refraction dependent on field intensity, with
the incident beam normally incident on the sample. This
problem is of interest because of its close relationship to
the Fabry-Perot interferometer, which exhibits bistability

when a nonlinear medium is incorporated into the cavity.
We are unaware of any simple exact solution of the opti-
cal reflectivity of the nonlinear thin film, for the case
where the film thickness is comparable to the optical
wavelength. The slowly varying envelope approximation
has been applied to the limit where the thickness of the
nonlinear medium is large compared to the wavelength, a
limit appropriate to the Fabry-Perot device. Marburger
and Felber address the problem considered here, but sim-
plified the analysis very considerably by imposing bound-
ary conditions which suppose the nonlinear medium is
bounded by perfect mirrors. Band has presented a brief
discussion of an exact solution to the problem by a rather
complicated method. In the end our analysis can be im-
plemented very simply, as the reader will appreciate.

We examine the case where the thin film is surrounded
by vacuum (or linear dielectric media). The index of re-
fraction of the film is supposed to vary with field
strength, according to the law n (I)=n (1+XI), where
I =

~

E is the field intensity, a behavior appropriate to
a liquid, or solid material with an inversion center. In
essence, we assume it is the dielectric constant which con-
tains a term proportional to the intensity. The solution of
the relevant wave equation can be expressed in terms of
certain elliptic integrals, which cannot be expressed in
terms of elementary functions when, as is the case here,
we have a finite rate of transport of energy normal to the
film surface.

In general, as we shall see, the solution of the nonlinear
wave equation may be written in terms of four parameters
(the same number required in the general solution of the
linear problem), which are to be deduced from the elec-
tromagnetic boundary conditions applied to each surface.
Since some of these constants are imbedded within the el-
liptic integral in a nontrivial manner, the problem of solv-
ing for the reflectivity is formidable. We show here how
three of the four parameters may be eliminated. The
analysis then reduces to the search for a single real num-
ber consistent with the boundary conditions and, in fact,
there are bounds on this number. Once the appropriate el-
liptic function is evaluated, a numerical solution of the
problem is then readily achieved.
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II. GENERAL DISCUSSION

A. Basic wave equation

d 2dp
dz dz

(2.4)

Our interest is in the geometry illustrated in Fig. 1. A
plane electromagnetic wave of frequency co, with electric
vector parallel to the x axis is incident on a film of thick-
ness d. The wave vector in vacuum is ko ——co/c, and R is
the amplitude of the reflected wave, measured with
respect to Eo. Similarly T is the amplitude of the
transmitted wave, expressed as a fraction of that of the in-
cident wave. Throughout the discussion, we only need
consider the one Cartesian component of the electric field
parallel to the x axis. We ignore harmonic generation,
since higher harmonics will have small amplitude in the
absence of phase matching, and confine our attention to
the propagation of the component of the wave frequency
co. In the film, the electric field obeys

which means that

dP
dz 2 (2.5)

S= Re —E*
8 STD 1 dz

2iiE i2

877' dz

where 8'is a constant.
If we were examining the case where the film is semi-

infinite, to consider fields localized near the interface as in
the theory of surface polaritons, ' the fact that E~O as
z~ ~ requires 8'=0. We have no reason to make this
choice, and in fact we require 8'&0. The time-averaged
energy flow S normal to the film surface is, within the
film,

E
n (1+A, (E

(
)E=O,

dz2 c2
(2.1)

(2.6)

(2.2)

where the nonlinear coefficient A, may be either positive or
negative.

In this paper, both the linear index of refraction and A,

are assumed real. Thus, we ignore absorption, an assump-
tion appropriate to the thin films explored in our numeri-
cal calculations, in appropriate spectral regimes. Explicit
inclusion of absorption is a nontrivial complication to the
present analysis, and those of other authors.

We measure the field in the film in units of the incident
field by writing

E =E e(z)e'~",

Conservation of energy then requires, with ko ——co/c,

W'=kp
[
T

f

(2.7)

d E

dz2

8'
+k (1+Le )e=O.

E
(2.8)

where
~

T
~

is the transmission coefficient of the film, as
illustrated in Fig. 1. Quite clearly, we are required to
choose 8'&0.

We may use Eq. (2.5) to eliminate P from Eq. (2.3a),

where both e(z) and P(z) are real. Let k =co n /c,
X=X

~
Ep ~, and separate Eq. (2.1) into real and imagi-

nary parts, using Eq. (2.2). This gives

e+k (I+—A, )ee=O,
dz2 dz

and

This last equation may be integrated once to give

+ +k2E2+ 1 k2gE4
dZ

with A a constant of integration. If we let

I(z)=e (z),

(2.9)

(2.10)

de dP d P+E
dz dz dz2

(2.3b)

At this point, the incident field may be assumed to have
unit amplitude always, and the intensity dependence of
the reflectivity may be explored by calculating the varia-
tion of the amplitude R with A, , noting that X=A.

~
Ep

~

Note that Eq. (2.3b) may be written

then integration of Eq. (2.9) yields

I(z) 1 dI =+2(z —zp),
(AI —O'I' ——'O'XI' —W')' '

2

(2.1 1)

and we also have

y(z)=y(0)+W f' ', dz'.
o I(z') (2.12)

ikoz
E e

i koZ
oe x

RE e

FIG. 1. Geometry considered in this paper. Plane wave of
amplitude Eo strikes a nonlinear film of thickness d, to be re-
flected and transmitted.

These expressions provide us with an implicit expres-
sion for the most general solution for the electromagnetic
field within the film. We shall see that the integral of Eq.
(2.11) may be evaluated in terms of certain Jacobi elliptic
functions.

The solution contains four parameters which must be
deduced from the boundary conditions at the film sur-
faces. These are A and W, along with P(0) and I(0). In
the linear theory, of course, four parameters exists also.
One considers two propagating waves in the film, one
from left to right and the second from right to left. Each
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is described by a complex amplitude.

1+Z =~(0)e'~(0), (2.13a)

B. Boundary conditions: general problem

We now turn to examination of the boundary condi-
tions at the film surfaces. These are continuity of the
electric field and its normal derivative at z =0 and z =d.
At z =0, we have

If Eqs. (2.18) and (2.19) are squared and added, we have
2 2

4ko = dE
dz z=o

+e (0) k()+
dz z=o

(2.20)

Similar procedures may be applied to Eqs. (2.14), to ob-
tain relations between the various amplitudes and deriva-
tives at z =d. We have, upon equating the right-hand
side of Eq. (2.14a) to that of Eq. (2.14b),

1
1 —R=

iko
&P(0)e

dz

i kpe(d) = dE

dz
+i E(d)

d)t)

z=d dz z=d
(2.21)

+ e if(o)&(0)1 d~
ko' dz

(2.13b)

which upon separating real and imaginary parts requires
simply

and at z =d
Te' ' =e(d)e'&"),

Ikpd 1 d 6' jP(d)Te
iko dz

J

(2.14a) and

dz

ko dz

=0 (2.22a)

(2.22b)

+ 1$(d)E(d)1 . de
ko' dz

(2.14b)

+ e'~' )E(0)
1 drh

ko dz
(2.15)

which when separated into real and imaginary parts gives

2ko = koe(0)cosf(0) + dE
sin))) (0)

dz

+e(0) cosg(0)
dz z=0

(2.16)

Constraints on the four constants in the general solu-
tion follow from Eqs. (2.13) and (2.14). For example,
upon adding Eq. (2.13a) to Eq. (2.13b), we find

2= e(0)e'~' '+ 1 de ig(0)

ko dz z=0

We assume e(d)&0.
The constraints just outlined will prove most useful in

our numerical solution of the nonlinear problem. We
shall see how this is done shortly. For instance, consider
Eq. (2.18). If we know the three parameters A, W, and
I (0)=e (0), then from Eq. (2.9) we may evaluate
(de/dz), 0. Equation (2.18) then allows us to choose the
fourth parameter P(0).

C. Case A, =O

When the nonlinearity is ignored by setting A, =O, of
course the reflectivity of the film is given by a well-known
elementary solution. It will be informative to see how this
result emerges from the analysis just presented, which has
an unfamiliar appearance when applied to the linear prob-
lem.

With A, =O and I =e, Eq. (2.9) becomes
2

~2+ k 2I2 (2.23)
4 dz

and

dE
cosg(0) = koe(0)sing(0)

dz

+e(0) d
dz z=0

sin)t)(0) . (2.17)

I(d)= W,1

ko

while Eq. (2.22a) requires

(2.24)

The boundary condition at z =d, Eq. (2.14a) combined
with Eq. (2.7) gives

If Eq. (2.16) is multiplied by sing(0), Eq. (2.17) by cos(t (0)
and subtracted from Eq. (2.16), we find

dI
dz

=0. (2.25)

2kosing(0) = dE
dz

(2.18)
Thus, when all quantities in Eq. (2.23) are evaluated at

z =d, we are led to require

while multiplying Eq. (2.16) by cos())(0), Eq. (2.17) by
sin)t (0), then adding gives

A =k()W(1+n ) .

We may integrate Eq. (2.23),

(2.26)

2kocosg(0) =koE(0) +e(0) d
dz

(2.19)
I(z) k dI =+2k (z —d), (2.27)~'" (~I W' k'I')'"— —
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which gives

sin
2k I(z) —A

(A —4k W )'

I(d)= W,1

kp
(2.36)

while the relationship between A and W now becomes,
noting that we still have (dI/dz)d ——0 from Eq. (2.22a),

—j—ssn
2k I(d) —A

(A2 4k2W2)1/2 A =ko(n +1)W+ , n A—,W (2.37)

(2.28)

The argument of the second term on the left-hand side of
Eq. (2.28) may be reduced to unity by using the relations
between the various quantities, so the solution reduces to

For a given value of W, one thus can determine 3 from
this relation.

To proceed, it will prove useful to separate the
case where X)0 from that for which A, (0.

or

sin

cos

2k I(z) —A

(A2 4k2W2)1/2

2k I(z) —A

(A —4k W )'
=+2k(z —d) . (2.30)

——= +2k (z —d) (2.29)
2

, k A,I (d—)+kI (d) AI(d)+—W~=O . (2.38)

Case A, )0

It will prove helpful in what follows to examine the
roots of Eq. (2.35) at z =d, where dI/dz vanishes. These
values of I(d), which we will denote by I, (d), I2(d), and
I3(d) satisfy

I(z)= [1+(n —1)cos k(z —d)],
kpn

(2.31)

The solution is independent of which sign is chosen on the
right-hand side of Eq. (2.30). After some algebra, we find We know that W/kp is a root of this equation, so Eq.

(2.38) is replaced by

W(n +3)—ko(n —l)I(0)=4ko (2.32)

from which, using Eq. (2.31), one finds W. Then the final
expression for I(z) becomes

I(z) = 4[1+(n —1)cos k(z —d)]
n +2n +1—(n —1) cos (kd)

where W is still undetermined.
We shall determine W through use of Eq. (2.20). Be-

fore we do this, we simplify Eq. (2.20) through use of Eq.
(2.5), Eq. (2.8) with A, =O, and Eq. (2.26). One finds the
condition

I(d) — W [aI (d)+bI(d)+c]=0,
kp

where

a= —k A.
1

2

b=kon (ko+ —,A, W),

and

c= —kpW.

The three roots are then

(2.39)

(2.40a)

(2.40b)

(2.40c)

One may verify that this result agrees with that derived by
matching the appropriate plane waves to the reflected and
transmitted wave at the boundary. The reflection ampli-
tude R is

I1(d)= W

kp

1Ip(d)== .
2

XW 21W
2kp n kp

1/2
A, W
2kp

(2.41a)

2i(n —1)sin(kd)
(n +1) exp( ikd) (—n —1)—exp(ikd)

We now turn to the nonlinear problem.

D. Nonlinear film

(2.34)

and

1
I3(d) = —=

2 1/2
2A, W

2k

(2.41b)

We now consider the case where X&0. We begin by
writing Eq. (2.9) in terms of the intensity I(z)=e (z).
One has

A, 8'
+ &+ (2.41c)

'2

+ W2+ k 2I2+ ' k 2gl 3 —gl
2 dz

Note that we still have, from Eqs. (2.14a) and (2.7),

(2.35)
Notice that I1(d) &Iq(d) &I3(d).

Now we may integrate Eq. (2.35), expressing the result
in terms of the three roots just obtained. We integrate
from z =d, into an arbitrary point within the film,

I(z) = +(2A, ) '/2k z —d~/"0
I [I1(d)—I][I2(d)—I][I3(d)—I] J

' ~ (2.42)
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The integral on the left-hand side can be expressed in terms of the inverse of a Jacobi elliptic function. We have

1 [I(z)—Iq(d)]' I~(d) —Iz(d)
cn =+ — k(z —d) .

[I,(d) —I3(d)]'~ [I,(d) —I~(d)]'~ I)(d) —I3(d) 2
(2.43)

Hence we have

Ii(d) —Ip(d)
I(z) =I&(d)+ [I&(d)—Iz(d)]cn [I~(d) I3(d—)]'~ k(d —z) (2.44)

The result in Eq. (2.44) is an analogue of Eq. (2.31).
The only unknown parameter in the expression is W, as in
Eq. (2.31). Indeed, one may verify explicitly that as A, ~O,
Eq. (2.44) reduces to Eq. (2.31).

The one parameter 8' may be determined by requiring
that Eq. (2.20), derived at the boundary z =0, be satisfied.
With the various relations outlined above, this may be
rearranged to read

and then the relation between 3 and 8 is

A=k, (n'+1) W ——,'n'~ ~
~

W' (2.47)

, k
~

A.
~

I—(d) k I (d—)+AI(d) W' =0—, (2.48)

At z =d, where the boundary condition (dI/dz)d ——0 ap-
plies, Eq. (2.46) becomes a cubic for the three possible
values I (d),

,'n X—I (0)+(n —1)I(0)+4

—(n +3)
ko

2——n A, =0.
k 0

(2.45)

We may now proceed as follows. Given a guess for the
one parameter W which enters Eq. (2.44), we may use the
expression to calculate I (0), then check to see if Eq. (2.45)
is satisfied. Notice that 8' is positive definite, and since

~

T
~

&1 always, we must have W&kp. Hence W is
bounded. Thus, once one has a program which calculates
the Jacobi elliptic function which appears in Eq. (2.44),
the search for values of W consistent with Eq. (2.45) is
straightforward. In our numerical work, under the condi-
tions outlined in Sec. III, we find regimes where several
values of 8 emerge as the solution. This occurs in re-
gimes where the film may switch between states of differ-
ing transmissivity. We shall elaborate on this in Sec. III.

Note that the Jacobi elliptic function cn(x ~y) which
appears in Eq. (2.44) is bounded between —1 and + 1.
This means that the intensity I(z) at any point in the film
is bounded above by I~ (d), and below by Iz(d).

A,
j

W
2kp

2ko n'ko

I~(d) =
ko

and

I3(d) = /A,
/

W
2ko

/A,
/

W
2ko

2iA,
[

W

n ko

and we arrange the roots as follows:
r

(2.49a)

(2.49b)

2. Case k &0

While the analysis for the case A, &0 proceeds along the
lines just described, nonetheless in the end the functional
dependence of the intensity I with position z in the film
differs from that displayed in Eq. (2.44). %'e begin by
noting that Eq. (2.35) is replaced by

2

+ W~+k~I~ , k'
~

A.
~

I3=AI—, —(2.46)
2 dz

(2.49c)

We have labeled the roots so that once again

I)(d) )Iq(d) )I3(d),
1/2

for n ) —,
'

/k/ + 2[X/
0 0

a condition we shall assume holds.
Now Eq. (2.46) can be integrated,

[ [I I)(d)][I—Iq(d)][I——I3(d)] j
'~~

The integra1 once more can be expressed in terms of Jacobi e11iptic functions,

(2.50)
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1 —1

[I,(d) —I3(d)]'
[Ii(d) —Ii(d)][I(z)—I3(d)] [Iz(d) —I3(d)]
[I~(d) —I3(d)][Ii(d)—I3(d)] [Ii(d) —I3(d)]

=+
2

1/2

k(d —z) . (2.51)

This may be inverted to give

N(z)I(z) =
D z

where

(2.52a)

[I~(d) —I3(d)]
z = [Ii(d) —Iq(d)]I3(d)+I, (d)[I~(d) —I3(d)]cn

V2 [ i 3 [I,(d) —I (d)]
I (d) —I3(d)]' k(d —z) (2.52b)

and

[I~(d) —I3(d)]
D(z) =[Ii(d) —Ip(d)]+[Ip(d) —I3(d)]cn V [ i

—
[I, (d) —I (d)]

I (d) I (d)—]' k (d —z) (2.52c)

Notice that I(z) satisfies the inequality I3(d) (I z
(Iz(d). To complete the solution, and find the one pa-
rameter W which enters Eq. (2.52), we proceed precise y
as in t e caseh A, 0. We now turn our attention to numer-
ical studies of the reflectivity, as a function of A. .

III. RESULTS AND DISCUSSION

~ ~

We have carried out calculations of the transmissivity
of films of various thicknesses, as a function of incident
laser power, using the approach developed in Sec. II. It
should be noted that the computer program required for
this purpose is remarkably elementary, once a subroutine
for calculating the Jacobi elliptic function is available.

The parameter A, is proportional to the incident laser
power and, once the fields are scaled as described in Sec.
II, a plot of the transmissivity as a function of A, is
equivalent to a plot of this quantity as a function of laser

In the thin-film limit, where the film thickness d is
small compared to the wavelength /(.I 27rc /neo of (low-——
power) radiation in the film, we find no bistability, though
the reflectivity and transmissivity indeed is power depen-
d t. This conclusion contradicts that reached yh db Band,en. i
whose calculations indicate the presence of bistabilityi for
very thin InSb films. Unfortunately, we have no idea o
the source of the discrepancy, since the two calculations

roceed along very different lines. For the caseprocee
d =0.1X, our results are displayed in Fig. 2. W
A, ~0, for the range of values of A, explored, the transmis-
sivity decreases monotonically with laser power, as
displayed in Fig. 2(a). As the power increases, the average
index of refraction increases, to produce greater im-

d
'

t h between the film and the surrounding
vacuum, so the reflectivity increases, while

~

T
~

a s.
We find the opposite behavior in Fig. 2(b), where calcula-
tions for k &0 are displayed.

When the film thickness increases, so that one is close
to the point where an integral number of half wavelengths

I .0 (g)

0.8

0.6-
IT(

04-

0.2-

0.0
0.0 0.2 0.4 0.6

X
I 0. (b)

0.8-

08 I 0 I 2

d=0. I Xg

IO

0.6-

0.4-
2

0.2-

0.0
0.0 -0.2 -0.4 -0.6 -0.8 -I .0

FICx. 2. For the cases (a) A. &0 and (bj A, &0, and various
choices o linear in ex or j d f refraction we show the transmissivity
of the film as a function of laser power, orr =0. 1A, .

ma fit into the film, we find bistability, or as we shall see
a ro ressive increase in laser power allows an ever in-

0

r the film to lockasing number of possible states o
2 forinto. Figure 3(a) shows

~

T
~

as a function of k, fo
d =0.4A.g and several choices of the linear index o re-
fraction n. We see a region of bistable behavior for n ~ 6.

One may understand these results on physical groun s,
as follows. First note that for all the curves, there is a
power for which

~

T
~

rises to exactly unity. In the
graph, for all choices of the linear index of refraction n, it

'f
~

T
~

quals unity for the same laser power.
If one recalls that

~

T
~

=1 for a half wave plate for
w ich h d = —,'/(I, one may understand that increasing the
laser power increases the average index of refraction in
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1.0-
( )

/
/0.8- /

/
/

/

0.4-

0.2-

0.0
0.0 0.2 0.4 0.6

I 0 (b)

08

0.6-

I I I

0.8 1.0 1.2 1.4 1.6 1.8
X

d =0.4 Xf

10

04 i 2

0.2-

0.0
0.0 -0.2 -0.4 -0.6 -0.8 -1.0

FICx. 3. For the cases (a) k &0 and (b) A, &0, and various
choices of linear in ex o ref l d f efraction we show the transmissivity
of the film as a function of laser power, forr d =0.4X .

the medium, with the result that the wavelength is shor-
tened. There is then a point where precisely one-hal
wavelength fits into the film for which d =0.4', and

We may estimate the value of k for w ic
follows. The average index of the medium is
n =n (1+(A, ) ), and

~

T
~

=1 when Af ——kfn/n =2d.
This gives the estimate !A, ) =-

4 . From Eq. ! .I . !2.33) when
kd=~ and n &&1, the average intensity in the film is
I= I so !A. ) = —,A, .—This gives the estimate A, = —, in-

wheredependent of the linear index n for the point whe

~

T
~

= 1 result approximately correct but wrong in e-
le oftail because this simple argument overlooks the role o

spatial variation in the intensity.
For powers equal to that where

~

T
~

=1 we have a
solution for which exactly one-half wavelength fits into
our film, as just described. For greater powers, the aver-
age index increases further, the wavelength in the medium

~

T
~

associated with this solution decreases as we in-
crease the power further.

When the linear index n is small, a large fraction of the

~

T
~

is large. An increase in laser power shortens kf, to
t epoin weh t h re the condition Af ——2d is rea ized, an

~

T
~

is a single-valued function of A, , rising smoot y o
unity then falling off.

We have seen that, on the basis of the crude argument
presented above, the value of X, for which

~

T
~

=1 is in-
sensitive ot the linear index n. This point is rein orced by
t e exac resuh t results of Fig. 3(a). Now if the linear in ex n is

er little oflar e,
~

T
~

is small at low powers, and rather i

the incident radiation enters the film at low powers.
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FIG. 4. For the cases (a) A, &0 and (b) A, &0, and vanous
choices of the linear index of refraction, we show the transmis-
sivity of the film as a function of laser power, oor d =0.6X .

0.4—

0.2—

Thus, at low powers, (A, ) is very small, and an increase tn
power has rather little effect on the average index n.
Indeed for n = 10, we see

~

T
~

varies little with X in
Fig. 3(a), in the low-power regime.

We now understand why larger linear indices of refrac-
tion favor bistability. For n large, by the time k increases
to the critical value required to make

~

T
~

=1, the low-
ower solution does not allow n to increase to the point

where the condition Af ——2d is realized. The film does not
admit sufficient power for this to happen. But we also
have seen that there is a second solution which just allows
a half wavelength in the film; the second solution has
high-field intensity within the film, and a large value o

~

T
~

or small refiectivity as a consequence. For small n,
the low-power solution evolves continuously and mono-
tonically into that for which

~

T
~

=1, but this does not
occur for large values of n, and we find bistability.

If d =0.4A. , and k&0, the physical arguments just
presente suggest d st no bistability should occur, since an in-

s thecrease in aser pow1 ower increases rather than decreases t e
average wave eng1 th Our calculations show this is indeed

~ ~

the case, as we see from Fig. 3(b). Also, if we start wtt
d =0.6', the argument suggests no bistability is present
for k &0, while for k &0 we again should realize a laser

ill fit into thepower where precisely a half wavelength wi i in
film, and bistability will occur. In Figs. 4(a) and 4(b), for

the results are in accord with our expectations.
We see we are able to understand the origin of the bista-

bility, on the basis of rather simple physical arguments.
These arguments, admittedly very simp le do not allow for
bistable behavior in the thin-film limit d «Af, as the ex-
act calculations in Fig. 2 confirm. This raises further
question in our min ond on the correctness of the conclusions
in Ref. 5.
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. 5. For the cases (a) k ~ 0 and (b) 0, and for twoFIG
f the linear index of refraction an w

linear index of refraction, we show t e rans
as a function of laser power, forr d =4.4k .

I z is remark-nonlinearity , b t the spatial vanation of I( )

e thin film, as our discussion o enances in t e t in i
t. The case of a semi-0.4X) . J-and d =0.6A. suggest.

ma be solved ana ytica y, as
ndix. For both signs of k, is aAppendix.

es from this discussion. The thinfunction of A, , as one sees rom is
ts ver much as a Fabry-Perot cavity.

h th
'

1 1 d'n to in uire ow e sin
d b be inningit a ro riate to d= op is recovere y egi

d b ed progressively Ingn lettin d be increase p
gpitin rocess, in our mo e, e

unique im'limit as d~ao since, at any inite we
"e multivalued character ocounter t e mu

1 absorption is present,h sically realizable i m, a so
h h b 1 hmuch reater t an e a

11 b 1' d Iclearl the semi-infinite limit wi e
i uin to extend our study to includewould be most intriguing to exten ou

is re resents a nontrivia ex enabsorption, but this rep
licable only toanal sis. The discussion here is app ica e o

i ms w cj
'

all compared to the absorp-films whose thickness d is sma corn
tion length in the materia .

'
l.
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APPENDIX: REFLECTIVITY
OF THE SEMI-INFINITE

NONLINEAR DIELECTRIC

=k (1+Re )
cjz 0

(A2)

is then a pure sinusoid, with the wavelength
controlled by the effective power-depen en
stant n (1+;inA,e )

'
the end we must obtain e in a se

consistent manner.
E . (A1) reduces toWith the above remarks in min, q.

ko —(dgldz)
k o+ (d P/dz)

(A3)

Here we have on y e1 th boundary conditions at z =0,
which are stated in Eqs. . os. (2.13) of the text. We may solve
for the reflectivity R

ikon(0) —(d E/dz)o i e(0)(dgldz—)o

ikon(0)+ (de/dz)o+ie(0)(dgldz)o

m we have a solution whereIn the semi-infinite medium, we
Thus, weof the field e(z) is a constant e. T us, we

d 'd =. 1 .hhave ( d e/dz) =0 eve yr where, and e z =
dgldz is a constant, with value g'e iven in Eq. . a,

- 2

0.0 I.O 2.0
z/X, g

3.0 or

=0.9 and d =4.4A,I, we show the spa-
f h field within the film, for each o t e ivetial variation o t e ie

~ ~'bl with the boundary conditions.solutions cornpati e wi

1 n(1+is )'—
1+n (1+Re )'~

We may determine e as follows. We know

(A4)
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=k '(1+% ')'",
dz

and energy conservation also requires

(A5) 2= 2

[1+n (1+he )' ]
(A7)

W=ko(1 —~R
~

) . (A6)

Upon combining Eqs. (A5) and (A6) one finds, assuming
]+A.e &0, the condition

an equation that has one unique solution for each choice
of k. Thus, for the semi-infinite medium, there is no bi-
stability in our model, when 1+A,e &0, and the dielectric
constant is a positive number.

'For a rather general discussion, which contains a number of
special models explored in earlier papers, see K. M. Leung,
Phys. Rev. B 32, 5093 (1985). A review of the field has been
presented by A. A. Maradudin, in Proceedings of the Second
International School on Condensed Matter Physics, Varna,

Bulgaria (World Scientific, New York, 1982).
2For example, one model has dielectric tensor with

e =e„„'(1+k
~
E„~ ) and e =e ' independent of field, with

z normal to the interface and x the propagation direction of a
p-polarized surface polariton. For A. &0, e' ' and e positive,
it is argued that the interface may bind a surface polariton
when the dielectric constant of the adjacent material is also

positive. One may show that for these waves to exist, there
must be a spatial regime where 1+A.

~
E„~ &0, so the non-

linearity must be sufficiently strong to actually change the
sign of the dielectric tensor element e, in the nonlinear
medium, while e retains the positive value e' '. lt will prove
difficult to realize such a material in practice.
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