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We present a theoretical discussion of the optical reflectivity and transmissivity of a dielectric slab
of arbitrary thickness, with index of refraction that contains a term proportional to the intensity of
the optical wave in the slab. An exact solution is found for the problem, in terms of a single param-
eter whose value is determined through a straightforward numerical search procedure. We present
numerical studies of the power dependence of the transmissivity, with emphasis on bistability, and
the multivalued behavior of the transmissivity considered as a function of incident power.

I. INTRODUCTION

For many years, there has been very great interest in the
theoretical and experimental study of the propagation of
electromagnetic radiation in materials whose index of re-
fraction varies with the amplitude or intensity of the radi-
ation field. Of particular interest is the regime of strong
nonlinearity, where a cavity filled with a nonlinear medi-
um may exhibit bistability, or other dramatic manifesta-
tions of the nonlinear response characteristic.

The description of the interface between a linear medi-
um and a nonlinear medium has also been the focus of a
number of studies. In the recent literature, these have
been descriptions of surface polaritons which propagate
along the interface between a linear medium, and a non-
linear dielectric.! The properties of these waves may be
modified substantially by the nonlinear response of the
one partner to the interface; one may also “bind” waves to
the interface by the nonlinearity itself, though it is not
clear if the conditions required can be met by real materi-
als.?

In the mathematical models of nonlinear surface polari-
tons that admit analytic solutions, the basic equation

reduces to that which describes a one-dimensional field
with ¢* nonlinearity; simple well-known closed-form
“kink” solutions exist, provided the field amplitude van-
ishes at infinity, a condition realized in the description of
a surface polariton localized at the interface between a
semi-infinite nonlinear medium, and a structure with
linear response.

If we consider electromagnetic propagation in a non-
linear film of finite thickness, the condition just described
cannot be invoked, and no closed-form analytic solutions
of the relevant wave equation exist. This paper is devoted
to the analysis of the simplest problem involving the non-
linear optical response of a nonlinear film: The calcula-
tion of the reflectivity or transmissivity of a thin film
with index of refraction dependent on field intensity, with
the incident beam normally incident on the sample. This
problem is of interest because of its close relationship to
the Fabry-Perot interferometer, which exhibits bistability

35

when a nonlinear medium is incorporated into the cavity.
We are unaware of any simple exact solution of the opti-
cal reflectivity of the nonlinear thin film, for the case
where the film thickness is comparable to the optical
wavelength. The slowly varying envelope approximation
has been applied to the limit where the thickness of the
nonlinear medium is large compared to the wavelength,® a
limit appropriate to the Fabry-Perot device. Marburger
and Felber* address the problem considered here, but sim-
plified the analysis very considerably by imposing bound-
ary conditions which suppose the nonlinear medium is
bounded by perfect mirrors. Band has presented a brief
discussion of an exact solution to the problem by a rather
complicated method.® In the end our analysis can be im-
plemented very simply, as the reader will appreciate.

We examine the case where the thin film is surrounded
by vacuum (or linear dielectric media). The index of re-
fraction of the film is supposed to vary with field
strength, according to the law n%(I)=n?(1+AI), where
I=|E |?is the field intensity, a behavior appropriate to
a liquid, or solid material with an inversion center. In
essence, we assume it is the dielectric constant which con-
tains a term proportional to the intensity. The solution of
the relevant wave equation can be expressed in terms of
certain elliptic integrals,’ which cannot be expressed in
terms of elementary functions when, as is the case here,
we have a finite rate of transport of energy normal to the
film surface.

In general, as we shall see, the solution of the nonlinear
wave equation may be written in terms of four parameters
(the same number required in the general solution of the
linear problem), which are to be deduced from the elec-
tromagnetic boundary conditions applied to each surface.
Since some of these constants are imbedded within the el-
liptic integral in a nontrivial manner, the problem of solv-
ing for the reflectivity is formidable. We show here how
three of the four parameters may be eliminated. The
analysis then reduces to the search for a single real num-
ber consistent with the boundary conditions and, in fact,
there are bounds on this number. Once the appropriate el-
liptic function is evaluated, a numerical solution of the
problem is then readily achieved.
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II. GENERAL DISCUSSION

A. Basic wave equation

Our interest is in the geometry illustrated in Fig. 1. A
plane electromagnetic wave of frequency w, with electric
vector parallel to the x axis is incident on a film of thick-
ness d. The wave vector in vacuum is ko=w/c, and R is
the amplitude of the reflected wave, measured with
respect to E,. Similarly T is the amplitude of the
transmitted wave, expressed as a fraction of that of the in-
cident wave. Throughout the discussion, we only need
consider the one Cartesian component of the electric field
‘parallel to the x axis. We ignore harmonic generation,
since higher harmonics will have small amplitude in the
absence of phase matching, and confine our attention to
the propagation of the component of the wave frequency
. In the film, the electric field obeys

2 2
dE | o 214 E|DE =0, @.1)
dz c
where the nonlinear coefficient A may be either positive or
negative.

In this paper, both the linear index of refraction and A
are assumed real. Thus, we ignore absorption, an assump-
tion appropriate to the thin films explored in our numeri-
cal calculations, in appropriate spectral regimes. Explicit
inclusion of absorption is a nontrivial complication to the
present analysis, and those of other authors.

We measure the field in the film in units of the incident
field by writing

E=E,e(z)e®? | 2.2)
where both e(z) and ¢(z) are real. Let k’=w?n?/c?,

A=A|Ey|? and separate Eq. (2.1) into real and imagi-
nary parts, using Eq. (2.2). This gives

2
2 -
de _|d¢ +k2(14+Ae2)e=0, (2.3a)
dz2 dz
and
de d¢ dZQ
2— =0. 2.3b
dz dz te dz? ( :

At this point, the incident field may be assumed to have
unit amplitude always, and the intensity dependence of
the reflectivity may be explored by calculating the varia-
tion of the amplitude R with A, noting that A=A | E, | 2.

Note that Eq. (2.3b) may be written

FIG. 1. Geometry considered in this paper. Plane wave of
amplitude E, strikes a nonlinear film of thickness d, to be re-
flected and transmitted.

d | 249 | _

e € 7 =0, (2.4)
which means that

daé _Ww 2.5)

dz 62 ’

where W is a constant.

If we were examining the case where the film is semi-
infinite, to consider fields localized near the interface as in
the theory of surface polaritons,' the fact that e—0 as
z— o requires W =0. We have no reason to make this
choice, and in fact we require W=£0. The time-averaged
energy flow S normal to the film surface is, within the
film,

2 2 2
c 1 dE c|Ey | d¢
S= Re |-E*— |=———¢°
87w ¢ i dz 87w € dz
02|Eo|2
=—W. (2.6)
87w

Conservation of energy then requires, with kg=w/c,
W=ko|T|?, 2.7)

where | T |? is the transmission coefficient of the film, as
illustrated in Fig. 1. Quite clearly, we are required to
choose W=0.
We may use Eq. (2.5) to eliminate ¢ from Eq. (2.3a),
d’ w?

dz? &

This last equation may be integrated once to give

+kA14+Aeb)e=0. (2.8)

2
2 o~
de | W ke y tket=a 2.9)
€

dz

with A4 a constant of integration. If we let

I(z)=€%2), (2.10)
then integration of Eq. (2.9) yields
1(2) 1 4
f1(0) (AT —k P — LKA —w?) 2 dl =22(z —2) ,
(2.11)
and we also have
$(2)=¢(0)+ f()}_(lz'_)d’ (2.12)

These expressions provide us with an implicit expres-
sion for the most general solution for the electromagnetic
field within the film. We shall see that the integral of Eq.
(2.11) may be evaluated in terms of certain Jacobi elliptic
functions.

The solution contains four parameters which must be
deduced from the boundary conditions at the film sur-
faces. These are A and W, along with ¢(0) and 7(0). In
the linear theory, of course, four parameters exists also.
One considers two propagating waves in the film, one
from left to right and the second from right to left. Each
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is described by a complex amplitude.

B. Boundary conditions: General problem

We now turn to examination of the boundary condi-
tions at the film surfaces. These are continuity of the
electric field and its normal derivative at z =0 and z =d.
At z =0, we have

14+ R =¢€(0)e’?9 | (2.13a)
1—R=—L |4 | i
iko dZ 2=0
4L eisogy |4 | (2.13b)
ko dZ 2=0
and at z =d
Te™ % — e(d)edd | (2.14a)
Tekod_ 1 |de igtd)
iko dZ 2=d
4L pisargg) |92 . (2.14b)
ko dZ i

Constraints on the four constants in the general solu-
tion follow from Egs. (2.13) and (2.14). For example,
upon adding Eq. (2.13a) to Eq. (2.13b), we find

2= €(0)eid0 4 L de 0 i8(0)
0 dZ 2=0
4Ly |42 2.15)
k() dZ 2=0
which when separated into real and imaginary parts gives
de .
2ko= ko€e(0)cosd(0)+ |— sing(0)
dz |,_,
+e0) |42 cospl0) (2.16)
dz |,_,
and
de .
— cosd(0) = koe(0)sing(0)
dz | _
z=0
e |28 | sing0).  2.17)
dz |,_,

If Eq. (2.16) is multiplied by sin¢(0), Eq. (2.17) by cos¢(0)
and subtracted from Eq. (2.16), we find

de

2kosing(0) = iz

(2.18)

z=0

while multiplying Eq. (2.16) by cosé(0), Eq. (2.17) by
sing(0), then adding gives

2kocosd(0) =ke(0) +€(0) (2.19)

a¢
dz

z=0

If Egs. (2.18) and (2.19) are squared and added, we have

2 2
4k = i;f +€40) | ko+ id‘zﬁ (2.20)

z=0 z=0

Similar procedures may be applied to Egs. (2.14), to ob-
tain relations between the various amplitudes and deriva-
tives at z=d. We have, upon equating the right-hand
side of Eq. (2.14a) to that of Eq. (2.14b),

da¢
dz

de

I oe(d) dz

+ie(d)
z=d

, (2.21)
z=d

which upon separating real and imaginary parts requires
simply

de | _ (2.22a)
dz s=d
and
L L (2.22b)
ko dZ 2—d

We assume e(d)=40.

The constraints just outlined will prove most useful in
our numerical solution of the nonlinear problem. We
shall see how this is done shortly. For instance, consider
Eq. (2.18). If we know the three parameters 4, W, and
1(0)=¢€%0), then from Eq. (2.9) we may evaluate
(de/dz),_o. Equation (2.18) then allows us to choose the
fourth parameter ¢(0).

C. Case A=0

When the nonlinearity is ignored by setting A=0, of
course the reflectivity of the film is given by a well-known
elementary solution. It will be informative to see how this
result emerges from the analysis just presented, which has
an unfamiliar appearance when applied to the linear prob-
lem.

With A=0 and I =¢?, Eq. (2.9) becomes
2

1 + W2 k2[?=AI .

4

dI

22
iz (2.23)

The boundary condition at z=d, Eq. (2.14a) combined
with Eq. (2.7) gives

I(d)=—"W, (2.24)
ko
while Eq. (2.22a) requires
ar -0. (2.25)
dz |,_g4

Thus, when all quantities in Eq. (2.23) are evaluated at
z =d, we are led to require

A:k0W(1+n2) . (2.26)
We may integrate Eq. (2.23),
1(z) k
fW/kO (AI_WZ_k212)1/2dI:i2k(Z —d) y 2.27)



35 OPTICAL RESPONSE OF A NONLINEAR DIELECTRIC FILM 527

which gives
. 1| 2k (z)—4
sin IERYTETZI
. 2k%1(d)—
—sin~! ([4—2;41(2—“/2)1/2— =12k(z—d).
(2.28)

The argument of the second term on the left-hand side of
Eq. (2.28) may be reduced to unity by using the relations
between the various quantities, so the solution reduces to

|2k (2)—4 ™
sin~! | S S [~y =tk —d) 229
or
2
cos—! (_1422_"‘1.”1_22)_”—/2_)1_/7 =+2k(z —d) . (2.30)

The solution is independent of which sign is chosen on the
right-hand side of Eq. (2.30). After some algebra, we find

%[1+(n2—l)coszk(z—d)] , (2.31)
where W is still undetermined.

We shall determine W through use of Eq. (2.20). Be-
fore we do this, we simplify Eq. (2.20) through use of Eq.
(2.5), Eq. (2.8) with A=0, and Eq. (2.26). One finds the
condition

W(n2+3)—ko(n?— 1)I(0) =4k, (2.32)

from which, using Eq. (2.31), one finds W. Then the final
expression for I(z) becomes

4[14+(n?—1)cos’k (z —d)]
n*4+2n4+1—(n2—1)*cos*(kd)
One may verify that this result agrees with that derived by
matching the appropriate plane waves to the reflected and

transmitted wave at the boundary. The reflection ampli-
tude R is

I(z)= (2.33)

.2 .
R— . 2z(n.—1)sm(ka7)2 : . (2.34)
(n +1)°exp( —ikd)—(n —1)“explikd)

We now turn to the nonlinear problem.

D. Nonlinear film

We now consider the case where A-£0. We begin by
writing Eq. (2.9) in terms of the intensity I(z)=€%(z).
One has

2
lﬂ’ +W2+k212+%k2113=141

2.35
2 dz ( )

Note that we still have, from Egs. (2.14a) and (2.7),

fl(z) dI
W7ko {[I(d)—I1[15(d)

—NUsd) —11}72

=+Q2M)V% (z —d) .

(d)“;;W

while the relationship between 4 and W now becomes,
noting that we still have (dI /dz); =0 from Eq. (2.22a),

(2.36)

A=kon?+DW++nAw? . (2.37)
For a given value of W, one thus can determine A4 from
this relation.

To proceed, it will prove useful to separate the
case where A > 0 from that for which A <O0.

1. Case A>0

It will prove helpful in what follows to examine the
roots of Eq. (2.35) at z =d, where dI /dz vanishes. These
values of I(d), which we will denote by I,(d), I,(d), and
I3(d) satisfy

Tk AI3d)+ Kk THd)— AL (d)+ W?=0 . (2.38)

We know that W /k, is a root of this equation, so Eq.
(2.38) is replaced by

I(d)—kiOW [aIX(d) +bI (d)+c]=0 (2.39)
where
a =%k27» , (2.40a)
b=kon(ko++AW), (2.40b)
and
c=—koW . (2.40c)
The three roots are then
mm:{% : (2.41a)
1 AW 23w | AW
IZ(d)=7lHl+—27‘_0— m] ~'1+m }
(2.41b)
and
1 AW 2w |
13(d)=—:i| Hl%—?]:o‘ nkq J
+ 'H—% } (2.41c)

Notice that 1,(d) > I,(d) > I5(d).

Now we may integrate Eq. (2.35), expressing the result
in terms of the three roots just obtained. We integrate
from z =d, into an arbitrary point within the film,

(2.42)
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The integral on the left-hand side can be expressed in terms of the inverse of a Jacobi elliptic function.® We have

1 | U@ =1 d)]'?

1,(d)—1,(d)

(-T2 | U@ -]

Hence we have

T1/2
I(Z)——_Iz(d)+[Il(d)'——lz(d)]an

The result in Eq. (2.44) is an analogue of Eq. (2.31).
The only unknown parameter in the expression is W, as in
Eq. (2.31). Indeed, one may verify explicitly that as A—0,
Eq. (2.44) reduces to Eq. (2.31).

The one parameter W may be determined by requiring
that Eq. (2.20), derived at the boundary z =0, be satisfied.
With the various relations outlined above, this may be
rearranged to read

$r2AI%0)+(n2—1)I(0)+4

(2.45)

We may now proceed as follows. Given a guess for the

one parameter W which enters Eq. (2.44), we may use the
expression to calculate I (0), then check to see if Eq. (2.45)
is satisfied. Notice that W is positive definite, and since
| T |2<1 always, we must have W <k,. Hence W is
bounded. Thus, once one has a program which calculates
the Jacobi elliptic function which appears in Eq. (2.44),
the search for values of W consistent with Eq. (2.45) is
straightforward. In our numerical work, under the condi-
tions outlined in Sec. III, we find regimes where several
values of W emerge as the solution. This occurs in re-
gimes where the film may switch between states of differ-
ing transmissivity. We shall elaborate on this in Sec. III.

Note that the Jacobi elliptic function cn(x |y) which
appears in Eq. (2.44) is bounded between —1 and + 1.
This means that the intensity /(z) at any point in the film
is bounded above by I,(d), and below by I,(d).

2. Case k<0

While the analysis for the case A <0 proceeds along the
lines just described, nonetheless in the end the functional
dependence of the intensity I with position z in the film
differs from that displayed in Eq. (2.44). We begin by
noting that Eq. (2.35) is replaced by
2
Ldll ke e T P—ar

> ds (2.46)

1(z) 1
fW/ko (I —I,(d)][I —I,(d)][I —1:(d)]} 172

I1,(d)—15(d)

}:/—E[Il(d)—h(d)]“zk(d _2)

dl=+2| x| )%k (z—d) .

~ 122
= % k(z—d) (2.43)
1,(d)—1I,(d)
Il(d)—Ij(d) (2.44)
-
and then the relation between A4 and W is
A=kon*+DOW—3n?|X|W?2. (2.47)

At z =d, where the boundary condition (dI /dz); =0 ap-
plies, Eq. (2.46) becomes a cubic for the three possible
values I(d),

Tk | A | I13(d)— kX d)+ Al (d)—W?=0, (2.48)
and we arrange the roots as follows:

AW
2k,

2 ~
AW 172

n?k,

[1_ P9Il

(2.49a)

(2.49b)

~ 2
L 1xw
2k,
2 A w
nzko '

(2.49¢)

We have labeled the roots so that once again
I,(d) > 1,(d) > 15(d),

a condition we shall assume holds.
Now Eq. (2.46) can be integrated,

(2.50)

The integral once more can be expressed in terms of Jacobi elliptic functions,
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1 N @ —n@r@—13@1 72| Uad) —I4d)) 1% 17
cn =+ k(d—z) . (2.51)
[1,(d)—I4(d)]'? [Lo(d)— L), (d)—I3(d)] I,(d)—1(d)] 2
This may be inverted to give
_ N2
I(Z)—D(z) , (2.52a)
where
~tn@- Cratent | L )k | @11
N@)=[I(d)—I,(d){I:(d)+1I,(d)[I,(d)—I5(d)]cn 3 [1,(d)—I5(d)]' "k (d —2) 0@ 1] (2.52b)
and
=11 (d)— - 2L ) @] 7k (d | T
D (z2)=[I,(d)—I,(d)]+[I,(d)—1I;(d)]cn e [I(d)—1I3(d)]""“k(d —z) [ d)—L@] (2.52¢)

Notice that [I(z) satisfies the inequality I3(d)<I(z)
<I,(d). To complete the solution, and find the one pa-
rameter W which enters Eq. (2.52), we proceed precisely
as in the case A > 0. We now turn our attention to numer-
ical studies of the reflectivity, as a function of A.

III. RESULTS AND DISCUSSION

We have carried out calculations of the transmissivity
of films of various thicknesses, as a function of incident
laser power, using the approach developed in Sec. II. It
should be noted that the computer program required for
this purpose is remarkably elementary, once a subroutine
for calculating the Jacobi elliptic function is available.

The parameter A is proportional to the incident laser
power and, once the fields are scaled as described in Sec.
II, a plot of the transmissivity as a function of A is
equivalent to a plot of this quantity as a function of laser
power, as we have seen.

In the thin-film limit, where the film thickness d is
small compared to the wavelength Ay=2mc/nw of (low-
power) radiation in the film, we find no bistability, though
the reflectivity and transmissivity indeed is power depen-
dent. This conclusion contradicts that reached by Band,’
whose calculations indicate the presence of bistability for
very thin InSb films. Unfortunately, we have no idea of
the source of the discrepancy, since the two calculations
proceed along very different lines. For the case
d =0.1Af, our results are displayed in Fig. 2. When
A >0, for the range of values of A explored, the transmis-
sivity decreases monotonically with laser power, as
displayed in Fig. 2(a). As the power increases, the average
index of refraction increases, to produce greater im-
pedance mismatch between the film and the surrounding
vacuum, so the reflectivity increases, while |7 |? falls.
We find the opposite behavior in Fig. 2(b), where calcula-
tions for A <0 are displayed.

When the film thickness increases, so that one is close
to the point where an integral number of half wavelengths

may fit into the film, we find bistability, or as we shall see
a progressive increase in laser power allows an ever in-
creasing number of possible states for the film to lock
into. Figure 3(a) shows | T |? as a function of A, for
d =0.4A; and several choices of the linear index of re-
fraction n. We see a region of bistable behavior for n > 6.

One may understand these results on physical grounds,
as follows. First note that for all the curves, there is a
power for which | T |? rises to exactly unity. In the
graph, for all choices of the linear index of refraction n, it
appears as if | T |? equals unity for the same laser power.
If one recalls that | T |2=1 for a half wave plate for
which d =%Af, one may understand that increasing the
laser power increases the average index of refraction in

08~
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0.0 " ) n " "
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A
FIG. 2. For the cases (a) A>0 and (b) A <0, and various
choices of linear index of refraction, we show the transmissivity
of the film as a function of laser power, for d =0.1A;.
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FIG. 3. For the cases (a) A>0 and (b) A <0, and various
choices of linear index of refraction, we show the transmissivity
of the film as a function of laser power, for d =0.4A;.

the medium, with the result that the wavelength is shor-
tened. There is then a point where precisely one-half
wavelength fits into the film for which d =0.4A,, and
also A > 0. _

We may estimate the value of A for which | T |?>=1 as
follows. The average index of the medium is
Ai=n(1+(A)), and | T|2—1 when A;=Asn/n=2d.
This gives the estimate (A)=+. From Eq (2 33), when
kd=m and n%>>1, the average intensity in the film is
T=+1I,, so (A)=+A. This gives the estimate A=+ in-
dependent of the linear index n for the point where
| T |2=1, a result approximately correct but wrong in de-
tail because this simple argument overlooks the role of
spatial variation in the intensity.

For powers equal to that where | T |2=1, we have a
solution for which exactly one-half wavelength fits into
our film, as just described. For greater powers, the aver-
age index increases further, the wavelength in the medium
shortens to move one off the half wave condition, and
| T |2 associated with this solution decreases as we in-
crease the power further.

When the linear index n is small, a large fraction of the
laser power is transmitted into the film, and at low power,
| T |?is large. An increase in laser power shortens Kf, to
the pomt where the condition kf—Zd is realized, and
| T |?%is a single-valued function of A, rising smoothly to
unity then falling off.

We have seen that, on the basis of the crude argument
presented above, the value of A for which | T'|2=1 is in-
sensitive to the linear index n. This point is reinforced by
the exact results of Fig. 3(a). Now if the linear index n is
large, | T |?* is small at low powers, and rather little of
the incident radiation enters the film at low powers.

Thus, at low powers, ¢ A)is very small, and an increase in
power has rather little effect on the average index 7.
Indeed, for n =10, we see | T |2 varies little with A in
Fig. 3(a), in the low-power regime.

We now understand why larger linear indices of refrac-
tion favor bistability. For n large, by the time A increases
to the critical value required to make | T |2=1, the low-
power solution does not allow 7 to increase to the point
where the condition A r=2d is realized. The film does not
admit sufficient power for this to happen. But we also
have seen that there is a second solution which just allows
a half wavelength in the film; the second solution has
high-field intensity within the film, and a large value of
| T |? or small reflectivity as a consequence. For small 7,
the low-power solution evolves continuously and mono-
tonically into that for which | T | 2=1, but this does not
occur for large values of n, and we find bistability.

If d =0.4A;, and A <O, the physical arguments just
presented suggest no bistability should occur, since an in-
crease in laser power increases rather than decreases the
average wavelength. Our calculations show this is indeed
the case, as we see from Fig. 3(b). Also, if we start with
d =0.6A;, the argument suggests no bistability is present
for X >0, while for A <0 we again should realize a laser
power where precisely a half wavelength will fit into the
film, and bistability will occur. In Figs. 4(a) and 4(b), for
the two signs of A, we show calculations of | 7' |2, and
the results are in accord with our expectations.

We see we are able to understand the origin of the bista-
bility, on the basis of rather simple physical arguments.
These arguments, admittedly very simple, do not allow for
bistable behavior in the thin-film limit d <<A £ as the ex-
act calculations in Fig. 2 confirm. This raises further
question in our mind on the correctness of the conclusions
in Ref. 5.
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FIG. 4. For the cases (a) A>0 and (b) A <0, and various
choices of the linear index of refraction, we show the transmis-
sivity of the film as a function of laser power, for d =0.6A.
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FIG. 5. For the cases (a) A>0 and (b) A <0, and for two
values of the linear index of refraction and two choices of the
linear index of refraction, we show the transmissivity of the film
as a function of laser power, for d =4.4A;.

Very complex behavior is realized for thicker films,
where many half wavelengths nearly fit. As the laser
power increases, we find a progressively greater number of
possible states, reminiscent of the cascading sequence of
bifurcations encountered often in nonlinear problems.
This is illustrated in Figs. 5(a) and 5(b), where for both
signs of A and d =4.4A;, we plot | T | * as a function of
A. For A=3, we find 13 possible states of the film. Re-
sults qualitatively similar to this may be found in Ref. 4.
For n =4 and A=0.9, where we have five possible states,
we show in Fig. 6 the intensity distribution 7(z) within
the film. On general grounds, from properties of the
Jacobi elliptic functions, one sees that I(z) should be
periodic in z. For A=0.9, we are in the regime of strong

2
ITl

FIG. 6. For n =4, A=0.9, and d =4.4\;, we show the spa-
tial variation of the field within the film, for each of the five
solutions compatible with the boundary conditions.

nonlinearity, but the spatial variation of I(z) is remark-
ably sinusoidal.

The multivalued nature of | T |2, considered as a func-
tion of A, is intimately related to the geometrical reso-
nances in the thin film, as our discussion of the cases
d =0.4A; and d =0.6A; suggest. The case of a semi-
infinite film may be solved analytically, as we show in the
Appendix. For both signs of A, | T | 2 is a single-valued
function of A, as one sees from this discussion. The thin
film thus acts very much as a Fabry-Perot cavity.

It is then intriguing to inquire how the single-valued re-
flectivity appropriate to d = « is recovered by beginning
with finite d, then letting d be increased progressively. In
fact, by this limiting process, in our model, there is no
unique limit as d— o since, at any finite d we shall en-
counter the multivalued character of | T | %

In any physically realizable film, absorption is present,
and when d is much greater than the absorption length,
quite clearly the semi-infinite limit will be realized. It
would be most intriguing to extend our study to include
absorption, but this represents a nontrivial extension of
the analysis. The discussion here is applicable only to
films whose thickness d is small compared to the absorp-
tion length in the material.
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APPENDIX: REFLECTIVITY
OF THE SEMI-INFINITE
NONLINEAR DIELECTRIC

Here we have only the boundary conditions at z =0,
which are stated in Eqgs. (2.13) of the text. We may solve
for the reflectivity R

B ikoe(0)—(de/dz)g—ie(0)ded/dz),
" iko€e(0)+(de/dz)g+ie0)Ndd/dz)y

(A1)

In the semi-infinite medium, we have a solution where
the amplitude of the field €(z) is a constant €. Thus, we
have (de/dz) =0 everywhere, and d%e/dz?>=0 also. Then
d¢/dz is a constant, with value given in Eq. (2.3a),
da¢

dz

2
=kX14Ae?) . (A2)
0

The solution is then a pure sinusoid, with the wavelength
controlled by the effective power-dependent dielectric con-
stant n2(1+A€%); in the end we must obtain € in a self-
consistent manner.

With the above remarks in mind, Eq. (A1) reduces to

_ ko—(d¢/dz) (A3)
T ko+(d¢/dz)
or
_ T 2y172
R—l n(l1+Ae) (A4)

Cl4n(14Ae)V?

We may determine € as follows. We know
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ﬂ=%=k52(1+162)1/2, (AS)
dz €
and energy conservation also requires

W=kyol—|R|?. (A6)

Upon combining Egs. (AS) and (A6) one finds, assuming
1+4A€*> 0, the condition

2 2
[1+n(1+'X€2)1/2]2 ’

€ (A7)

an equation that has one unique solution for each choice
of A. Thus, for the semi-infinite medium, there is no bi-
stability in our model, when 1+ A€?>0, and the dielectric
constant is a positive number.
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