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Theory of zero-field muon-spin relaxation in simple magnetic systems
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A theory is developed for the calculation of the distribution function of random fields for classical
simple magnets (Ising, XY, and Heisenberg) in D( =1,2, 3) dimensions. The zero-field, muon-spin-
relaxation functions for these simple magnetic systems are calculated with the distribution function
of random field. The relaxation functions G(t) are different from the prediction of the Kubo-
Toyabe theory, except for three-dimensional Heisenberg system. The long-time limit
G(oo)=G(taboo) is 0 for the Ising magnet in 1, 2, and 3 dimensions. For the XY magnet,
G( ao ) =0.5 for D =1 and 2, but G( m ) =0.356 for D =3. For the Heisenberg magnet,
G( 00 ) =0.1168, 0.4608, and 3 for D =1, 2, and 3. For Ising magnets, there are oscillations in G(t)
when the magnetization is nonzero. The effects of vortices as extra magnetic sources in the two-
dimensional XY model are addressed and the possibility of detecting the Kosterlitz-Thouless transi-
tion by use of the zero-field, muon-spin-relaxation technique is suggested. The theoretical predic-
tions are calculated numerically. The limitations, extensions of the formalism, as well as the appli-
cations of the theory to real magnetic systems, are discussed.

I. INTRODUCTION

Muon spin relaxation' (@SR) has become a widely used
experimental technique to study the local magnetic envi-
ronment experienced by muons, as well as the diffusion
and localization process of muons. In zero external field,
the @SR technique (ZF-pSR) is particularly important in
the study of systems where external field perturbations are
highly relevant, such as in spin-glass and two-dimensional
XY systems. This is especially true for systems near a
phase-transition point. The muon spin dynamics is
governed by, among other things, the local random field
of the system. Since muons (with a lifetime r„=2.2 psec)
decay into neutrinos and positrons, with the positrons
emitted preferentially along the muon's spin direction, one
can obtain the muon-spin-relaxation function 6 (t) from a
histogram of the decay particles. Furthermore, since a
muon produced from pion decay has its polarization col-
linear with the muon momentum, pSR is very useful for
the study of magnetism. For example, we can study one-
dimensional magnets with the muon initial polarization
along the chain direction by having the muon beam
directed along the chain. Similarly, by having the beam
parallel to the XY plane, one can study the relaxation of
the muon spin in a two-dimensional magnet. In this pa-
per, we address the problem of ZF-@SR in simple magnets
in one, two, and three dimensions.

Almost all ZF-pSR works are based on the Kubo-
Toyabe theory. Since the spirit of our calculations follow
the Kubo-Toyabe theory, we first list the basic assump-
tions made in this theory.

(i) The muon depolarization field is static. (The
dynamical effects are taken care of by the strong-collision
model of Kubo and its generalizations ' including muon
trapping and escaping processes. The dipolar coupling of
the muon spin and the nuclear spin can actually change

the direction of both. )
(ii) The probability distribution of the depolarization

field is isotropic. The actual calculations in the Kubo-
Toyabe theory assumes further that this distribution is
Gaussian. It is found that as long as the isotropy criterion
and the next assumption are met, the ZF-pSR relaxation
function at long time recovers to the value of —,'. The
Gaussian distribution is only a simplification.

(iii) The environment of the muon can be described by a
classical three-dimensional Heisenberg system. This is a
crucial assumption as it implies a random field with three
components, which is responsible for G(t)~ ,

' as t~ao. —
We find different results for other simple magnetic envi-
ronments.

Our work is an attempt to provide a general framework
for various simple magnetic models much in the same
way as the Kubo- Toyabe theory does for three-
dimensional Heisenberg magnetic systems. We have for-
mulated the calculation so that modifications due to the
special magnetic lattice structure and anisotropy in the
spin Hamiltonian can be incorporated. The formalism is
applied for model Ising, XI; and Heisenberg magnets in
one, two, and three dimensions. We retain assumption (i)
above, as well as the classical nature of the interaction be-
tween moments. The isotropy and Gaussian nature of the
random-field distribution are not assumed.

We find that there are general formulas relating the
ZF-@SR relaxation function for Ising, XF, and Heisen-
burg magnets to the fourier transform A(p) of the distri-
bution function W'(B) of the random field. We also find
that there is a general form for A(p) for a given magnetic
interaction decreasing with separation r like r ~ in a D-

c 2

dimensional system Namely. , at small p, A(p)-e
and for large p, A(p) —e ' with ci and c2 positive
constants. The details of the calculations of G(t) for vari-
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ous model magnets in D dimension are carried out numer-
ically. We also present an analysis of the effects of mag-
netic vortices on G(t) for the two-dimensional XY model.

In Sec. II, the probability distribution of the random
fields is calculated. The details are given in Appendixes
A and B. In Sec. III, the sources of the random fields are
discussed. Fairly general results on the fourier transform
of the field distribution are obtained. In Sec. IV, the for-
malism of Secs. II and III is applied to calculate G(t) for
Ising, XY, and Heisenberg models for D dimensions
(D=1,2, 3). Finally, in Sec. V, applications to model
magnets, limitations, and possible extensions of the theory
are discussed.

G "(r)=
(

"
) ~ ( r cce(Br))

1 5/2
xz ~+(I—x ) z3~-fSa~b 2

~ e
—(2/4)z (6)

where B=B~~z+B~(xcosgz+ysinP~). Such an anisotro-
pic random-field distribution arises from the Gaussian ap-
proximation for the Heisenberg spin model in one, two,
and three dimensions and for the three-dimensional XY
spin model. The relaxation is given by (Appendix B)

II. PROBABILITY DISTRIBUTION
OF THE RANDOM FIELDS

For a muon precessing in a given magnetic field B, the
spin vector s( = —,

' o. ) evolves as

Gt ( t) =o, (0)+ [ I —cr, (0)]& cos(Br) & .

(ii) XYrandom field, B=B„x+B~y,
Grr(t) = &o~~(0) &+ &oi(0) cos(Br) &

= —,
' + —,

'
& cos(Br) & .

(2)

(3)

(iii) Heisenberg random field, B=B„x+B~y+B,z,

Gtl(t) = —,
' + —,

'
& cos(Br) & . (4)

Here the superscript zero reminds us that W(B) is isotro-
pic and r=y„t As r~oo, w. e have & cos(Br) &~0 and
Gt((x) )=o', (0), Gxr(co)= —, , and Glt( oo )= —, . Note that
the classical theory of Kubo and Toyabe deals with
Heisenberg spin with a Gaussian random-field distribu-
tion, which is a special case considered here. The average
& cos(Br) & can be calculated conveniently by means of the
fourier transform A(p) of W(B). The calculations of
& cos(Br) & are presented in Appendix A.

For anisotropic random-field distribution, we consider
A(p) = exp( —ap) —

bpl~ ' " p=pllz+p) x. Then, the
random-field distribution is

tJ(t) =cr~~(0)+o) (0) cos(y„Bt),
where y„(=2'�)&13.554X 10 Oe ' sec ') is the
gyromagnetic ratio of the muon. o~~(0) and crz(0) denote
the parallel and perpendicular component with respect to
the magnetic field at time 0. In the case of a distribution
W'(B) of magnetic field, the muon-spin-time correlation
function o(t) o(0) is averaged over W(B) to give the
muon-spin-relaxation function G(t) =

& o (t) o (0) &. In
this section, we discuss some general features of the rela-
tion of W(B) with G(t) and leave the details of the calcu-
lation on W(B) to the following sections.

We first discuss the simple case of isotropic random-
field distribution, W(B)= W(

~

B
~

). ' There are three
possibilities.

(i) Ising random field, B=Bz,

with

1 1

4a 4a
+ 1

4b

The long-time limit of G "(t) is no longer the same as the
isotropic case. G ( 0() ) is a function of a and b.

III. SOURCES OF THE RANDOM FIELDS

In this section a model calculation of W(B) is present-
ed for a given magnetic interaction between the muon and
the magnetic sources. We assume that the small distance
behavior of the magnetic field b of the source is hob r
and for far field (r & ro), b is given by hohpr P, where h
and hp are function of the r and p with r being the posi-
tion of the source of magnetic moment p. Here ro is a
short distance cutoff parameter. Following Chan-
drasekhar, we write W(B) as the average of
6(B—gb(r, p)) over all possible position r and orienta-
tion p of the sources. Here the sum in the 5 functional is
over all the sources. By introducing the Fourier represen-
tation of 5, we have

&(p)= Y(p)

Here, Y(p) is the single-particle average,

(9)

=( —— dcr(( —e 'e' "e')),1

V
(10)

where D is the dimensionality of space. Since V is large,
we can exponentiate equation (9) to obtain

e

W(B)= &5(B—g b(r, p)) &

d3
e &P'8 e

—&P'b

(2m. )'

We distinguish here the positional average, denoted by a
bar, and the magnetic moment orientational average,
denoted by & &. By assuming that the sources are evenly
distributed over the volume with density N/V and that
the orientational average over p is positionally indepen-
dent (a mean-field assumption), we can write

W (8)=
3&&

exp8~3~' a b

8 8
4a 4b

(5) A (p) = exp ——&g(k h )+g(kphp) &
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where these g functions are given by

g(k h )=—Voka

(12)

Eq. (13), as long as 0&D/p& 1, the integral is convergent
and one can extend the upper limit to infinity. This corre-
sponds to the case of taking the cutoff parameter ro to
zero and we can ignore the short-range-interaction (r & ro)
contribution g(kh ). Under such circumstances
(0&D!p&1),the expression for A(p) is

g(kphp) =—Vokp ~

~P ~ DgP l
—lcoP hP

A(p)- exp ——Cp
V

with

(19)

Here QDro is the volume Vo of a D-dimensional sphere
of radius ro. The [ ] bracket refers to the angular average

d r/(DAD) of its argument. Here k =phoro and
kP ——Ph0r0

—P

There are two types of standard approximations used in
the evaluation of these g functions. The first one, assum-
ing a small-p expansion, leads to the Gaussian approxima-
tion. For small x,

(20)

In the numerical calculations presented in the following
sections, we assume r0-a, the lattice constant, and the
interaction is dipolar in nature down to r =r0. From an
experimental point of view, ro is a fitting parameter

IV. EXAMPLES

g(xhr)
V0

EX d~r
y+eD f QD

+ f (p.hr)' +0(x'),+6 D
(14)

g(xh ) D=l ——x-D"C

g (xh~) =—x 'i'C, —1,
0

where C& and Cz are given by

Ci ——f deuce '+D' [e
' '

]

where @=+1 for y=a and e= —1 for ) =p. One sees
that, unless from some symmetry consideration the angu-
lar average of p-hz vanishes, the function g is not well de-
fined for p=D. And in general, the function g is diver-
gent for p&D/2. The Gaussian approximation is widely
used because the small p limit of A (p) corresponds to the
large B limit of W(B).

A second approximation concerns the beginning of
W(B), or the large p approximation. Traditionally, for
dipole-dipole interaction in three dimensions such a large
p approximation of A(p) is the Lorentzian approxima-
tion. We can write for large x

The formalism developed in Secs. II and III is applied
to different magnetic systems describable with localized
moments. We assume the magnetic field is dipolar in ori-
gin and the lattice constant is the length unit. In the case
of D =1 and 2, the microscopic field b has exactly only
one component for the Ising spin system and exactly two
components for the XY spin system. (See Appendix C.)
This is because the term 3(p.r)r in the dipolar interaction
is exactly zero for Ising spins and XF spins in one and
two dimensions. Therefore, in D =1 and 2, the notions of
Ising field from Ising spin and XY field from XY spin us-
ing the dipolar interaction are workable concepts, whereas
for three dimensions, there are in general three corn-
ponents of microscopic field for both Ising spin and XY
spin, and one can use the anisotropic field distribution for
calculation. These simplifications allow a more general
discussion of different magnetic systems, at the price of
not having a particular lattice structure and consequently
no mention of the location of the muon. The applicability
of these general examples is similar to that of Kubo-
Toyabe. Specific magnetic systems, such as an Ising
chain with some interchain coupling, must be worked out
in detail with due respect to lattice structure and muon
site. Encouraged by the similarity of the Kubo-Toyabe
theory with the detailed few-body quantum-mechanical
calculations of Celio and Meier, ' we hope that these ex-
amples will provide a good approximation to more de-
tailed quantum mechanical calculations on a given lattice.

A. One-dimensional Ising magnet

00

Ci ——f den m
' ~~(1 [e ~—]) .

0

Here, C& and Cz are assumed convergent. This large p
approximation gives A (p ) —exp( —cp ~~) where c is
some constant. For the special case where D =p, the cor-
responding 8'(8) is Lorentzian.

In magnetic systems describable with localized moment,
the magnetic field is dipolar in origin so that p=3. From

A+(p) = exp n+g' dyy (1 —e-+' ), (21)
3 0

so that according to Eq. (Al),

Consider a chain of length I. =%a of Ising spins
@=+fax located along the z axis. Assume that %+ of
them are up (p=px) and X of them are down,
(p= —px). Then A(p)=A+(p)A (p) where A+(p) are
given by
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( cos(Br)) = I exp[ —«gz(g)][ cos[Kmgz(g)] . (22)

Here n+ N——+/(N++N ), (=pr/(ro), m is the mag-
netization given by m =(n+ —n ), and K= —,(ro/a). g~
and gi are the real and imaginary part of g(g) given by

g(g)gl /3 I dyy4/3( 1 e ly) (23)

1 yop
10 a yo

(24)

where 5 is defined to be the coefficient of t term in the
small-t expansion of GI,

Gl'(r, m =0)=1 b, 't'+— (25)

From Fig. 1, the oscillatory term in Gi(t) due to the non-

vanishing of m is damped out by the exponential decay.
Since the one-dimensional Ising model never exhibits fer-
romagnetism, m is zero in the absence of external field.

B. Two-dimensional Ising magnet

The spins are defined on the xy plane with moments

p = +pz. For o,(0)=0, the relaxation GI (r) is given by

( cos{Br)) = { exp[ —Kg+(ght)] I

Q cos[Krngl(gkl')] (26)

with K=(2vr/3)(ro/a) and /=PE/ro Here the .second
moment is given by

If the muon beam has its polarization transverse to the z
axis, then o,(0)=0 and Gq(t) is given by Eq. {21),which
is plotted in Fig. 1. By expanding for small z for m =0
case, we obtain the second moment of the Ising relaxation
function to be

gz and gi are the real and imaginary part of
g2/3 j d+ +

—5/3{ 1 e
—iy) (2&)

Since the two-dimensional Ising model exhibits fer-
romagnetism at finite temperature, the magnetization m
is nonzero below the critical temperature T, . We can use
Eq. (26) to probe the magnetization as the system ap-
proaches T, . A graph of Eq. (26) for different m is
shown in Fig. 2.

C. Three-dimensional Ising magnet

If we assume that we have Ising field from Ising spins
in D =3, then we can repeat the analysis for D =1 and 2.
However, in general, one would have to use the anisotro-
pic field distribution for the calculation of the relaxation
function. Assuming o, (0)=0, we have GI (t) given by

( cos(B~) ) = I exp[Kg+(g)] J cos[Krngl(g)] (29)

with K=(4m. /3)(ro/a), g=p~/ro, and the second mo-
ment 6 is given by

8m yo p 7p (30)
15 a yo

gz (g) and gl (g) are the real and imaginary part of
1

g(g)=g J deuce 1 —f dx e "3" " . (31)

In this calculation of Gi(t), we have assumed that the
transverse fields (B„,By ) are zero.

A plot of the relaxation is shown in Fig. 3. The relaxa-
tion is damped out in roughly one unit of second moment.
A comparison of Figs. 1, 2, and 3 on the Ising relaxation
function indicates that the damping (in units of second
moment) is bigger as the spatial dimensionality increases.

2 2
vr P 3'p

64

ro

a

2

(27)

GI( t)

G', (t )

0

04

02 -05—

+ ~ ——.J
3 4 5 6 7

t (unit-s of 1/6)

—I.O—

FICx. 1. The relaxation function GI(t) vs time t in unit (1/4)
for the one-dimensional Ising model, with different magnetiza-

tion m =0.0, 0.5, 1.0. [o.,(0)=0.]

The relaxation function Gz(t) vs time t in unit (1/5)
for the two-dimensional Ising model, with different magnetiza-
tion m =0.0, 0.5, 1.0. [oz(0) =0.]
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I.O

0.8

Gt(t)

0.4

0. 2

0
2

units of 1/6)

I I

2 3

t (units of 1/h)

-0.2—

FIG. 3. The relaxation function GI(t) vs time t in unit (1/6)
for the three-dimensional Ising model, with different magnetiza-
tion m =0,0, 0,5, 1.0. [o,(0)=0.]

FIG. 4. The relaxation function G ~(t) versus time t for the
XY model in one, two, and three dimensions. The unit of time
is 1/6 with 6 given by Eqs. (35) or (43) for the XYmodel in one
and two dimensions. For the three-dimensional XY model,
computed with an anisotropic distribution, the unit of time is
1/b, with A=V 21' and Ir given by Eq. (45). For the two-
dimensional XY model, X=0 and 1, corresponding to the case
of vortex free and vortex saturated systems.

D. One-dimensional XY magnet

The spins are free rotators on the xy plane but are lo-
cated along the z axis. [@=p(cosP„x+sini))„y).] The re-
laxation function G&y is given by

n/2 d
G„&(t)=—,'+ —,

' f d8sin8 A(p)+ A(p), (32)

with p =r sin8. A (p) is given by

g(g)
ro

(33)
3 a

where /= @piro and g(g) is given by

g(g)=g f dyy '[1—Jo(y)] . (34)

The result of G„~(t)is calculated numerically, shown in

Fig. 4. The second moment 6 is given by

2

Q2 pgp
3ro

A(p) = exp

1 ro

20 a

Since there is no phase transition in the model, one does
not expect any oscillatory behavior in the relaxation.
However, correlated region of spins will modify the form
of Gzz, computed here assuming a random angular distri-
bution of the moment p, (P&)

E. Two-dimensional XY model

6aor
b+ —+p 5

sing r,r)
(36)

a r
b =+p, [18sin(P' —e8)p+ 12 cos(P' —e8)p *],

r&
(37)

The spins are free rotators on the xy plane and are also
located on a two-dimensional square lattice defined on the
xy plane. (p(r) =iM[ cosP&(r)x+ sing„(r)y] with r
=r„x+r~y. ) There are special topological configurations
of spins with definite vorticity that must be discussed
separately, as these vortices will give a different random-
field contribution to W(B) from ordinary random non-
vortex spins. Besides this complication of the presence of
extra magnetic random sources, the formalism can be ap-
plied in a straightforward manner to give the relaxation
function.

Let there be f spins associated with a vortex ( + or-
vorticity) and let there be N+ of + vortices. Then the to-
tal number of spins are N =No+ f(N+ +N ), where No
are the number of nonvortex spins. Let n+ ——N+/N and
the vortex density (n+ +n ) defined by X/f. Then
no ——No/N=1 —X. From the dipole field contributions
of vortices, shown in Fig. 5, one can show the magnetic
fields of the + vortex are
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g (g) =j f dcoco[1 —Jo(15co)Jo(3co)]

and

I /2

+ f dcoco [1—Jo(15co)Jo(3co)], (41)

2/3

go(ko) = 3 co

p
de CO 1 —Jp CO Jp

2 2
(42)

Here /=pe/ao and go=pp/ro. Using Eq. (39) we can
compute (31), with the results shown in Fig. 6 for various
vortex density X. The second moment b, is given by

2 2

6 (X)=
32 ap

ap

rp

4
357 rp

20 ap

4

(43)

If

I

I

I

I

I

I

I

I

I

1

I

I

I

Note the linear dependence of the square of the second
moment of Gx~(t) on the density of vortex. By the mea-
surement of the zero field pSR relaxation function, one
can test the prediction of the Kosterlitz-Thouless theory, '

which give a definite prediction on the temperature depen-
dence of the density of vortex near the vortex unbinding
transition to be

FIG. 5. Vortices of + and —vorticity. The vorticity of each
vortex is fixed, but their dipole fields are different for different
angle P.

X—exp[ 2b!(T —T, )' ], —T) T, ,

with 6 a positive constant. Therefore, the quantity
1 —[&(T)/b, (T, )], which is proportional to X will exhib-
it the exponential temperature dependence near T . InC'
Fig. 6, G„~(t)is calculated for the case with ro=ao/v 2
and f =4, suitable for a square lattice.

with P'=P 8, r) ——m—ax(r, ao), r=( cosP, sing),
p=(cos8, esin8), p"=(—esin8, cos8), and @=+1 for
r)&a. These expressions for b+ are valid when r is not
close to ao ——a/v 2. For nonvortex spins, the magnetic
field is bp, given by

0.

D =2.0
x =0.0
x = 0.5
x =1.

3(pr)r" p, —
bp ——

r3 (38)

We assume that this form holds down to a short distance
ro. After averaging over the orientation of p(P) and r,
we have"

g(p) = exp —~ n+g (g+)+n g (g)

rp
+np

ap

2

go(ko) (39)

with the following g functions,

g+(k) =g-' f dcoco[1 —Jo(6co)]

p 1/2

+ de CO 1 —Jp 6' (40)

2 4

units of 1/b (x=0)

FIC7 6 The 1elaxat1on funct1on Gzy ( t ) versus time in units of
1/5(X=O) for the two-dimension XY model. X is the vortex
density G&y(t~ oo )~&



35 THEORY OF ZERO-FIELD MUON-SPIN RELAXATION IN. . . 5215

F. Three-dimensional XY magnet

Here p is confined to rotate on the xy plane. The angu-
lar average of p and r produce an anisotropic A(p) given
for small p by

O. S

A(p) = exp[ —1~( —', p~~ +p J )] (45)

where ~= (4ir/3)(ro/a ) and
+ singly).

Making use of Appendix B, we can calculated the relax-
ation function G "(t). The results are shown in Fig. 4.
The value of G (t) approaches 0.359 as t approaches in-
finity.

0.6

0.4

Cx. Heisenberg magnet in 1, 2, and 3 dimensions

The magnetic moment of a Heisenberg magnet has
three components. Generally the angular average of p for
a dipolar field is complicated and one can simplify the
calculation by the Gaussian approximation. The resulting
magnetic field distribution W(B) is generally anistropic.

In one dimension, we have

A (p) = exp[ —x
~ @~ ~

—~ip i ],
~here K~~ =K) and K&

——8K~ with

2 2
32 ro p 7pK]= 615 a ro

(46)

(47)

FIG. 7. The relaxation function G&(t) versus time T for
Heisenberg systems in one, two, and three dimensions. The
Gaussian approximation is used. The unit of time is 1/6 with
5=(16'[)',(2K2), (2K3) for one, two, and three dimen-
sions.In two dimensions, KI

~

=
2 K2 and Kz

——K2 with

~2 (m. /12)(ro——la ) (p y„/ro). In three dimensions, the
distribution is isotropic with K~

~

=K~ =K3

=20m/27(ro/a) (p y&/ro). The fact that it is isotropic
implies Gtt(taboo)~ —, . This is the prediction of the
Kubo- Toyabe theory.

For the two-dimensional Heisenberg model,
Gtt(t~ ao )~0.4608 and in one dimension,
Gtt(t~ ao )~0.1168. These features of the Heisenberg
relaxation functions are shown in Fig. 7.

V. DISCUSSIONS

The formalism developed in Secs. II and III provides a
classical method of calculating the probability distribution
of the random fields of the muon site for a given magnetic
system. It extends the Kubo-Toyabe theory beyond the
classical three-dimensional Heisenberg spin model to dif-
ferent magnets in one, two and three dimensions. The
formalism itself is very versatile in dealing with various
magnetic arrangements, in that the details of the calcula-
tion can be categorized into Ising, XY, and Heisenberg
cases, corresponding to one, two, and three components of
the random fields. Qn the other hand, the details of
specific magnetic system enter into the calculation of
W'(8) and correlation function G(t) in the form of nu-
merical integration. The model calculation presented in
Sec. IV provide a framework where all corrections due to
various perturbations can be made, just like the role the
Kubo-Toyabe theory plays in the study of three dimen-
sional Heisenberg system.

The examples we worked out in Sec. IV can be applied

to various real systems. But before discussing the applica-
tions, we first note that in real magnetic systems, there are
modifications on the nature of the spin involved, as well
as the spatial dimensionality. In our model calculations,
we discuss purely Ising, XY, and Heisenberg spins. In
real magnets, the moments p are usually not so ideal in its
orientational degree of freedom. Generally, p behaves
more like a Heisenberg moment p(8„,$&) with certain
constraints on 8& and P&. These constraints will affect the
average of the orientation of p. Such nonideal behavior
of the moment p in real magnetic systems usually comes
from the anisotropy of the nearest neighbor spin model
Hamiltonian. Another common consideration is the
nonideal spatial dimensionality of real magnets. It is usu-
ally necessary to consider interchain coupling in the case
of one dimensional system and interplanar interaction in
the case of the two-dimensional system. Generally, the
real system is three dimensional but with a nonrandom
distribution of its moments p. Thus, in the average over
all the possible positions of the moments, the magnetic
lattice structure must be taken into consideration. These
modifications on our model calculations are necessary in
the application of the theory, and they must be dealt with
for each individual experimental system. ' ' Neverthe-
less, the model calculations in Sec. IV provide the basic
predictions of ideal magnetic system.

In one dimension, [(CH3)4N][N;C13] is an example of
Heisenberg magnet. ' Susceptibility measurements indi-
cates a spin 1, ferromagnetic and Heisenberglike intra-
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chain interaction with weak ferromagnetic interchain in-
teractions. CsN;F3 is an example of quasi-XY magnet. '

The easy plane of magnetization is perpendicular to the
chain axis. For the Ising magnet, CoC12 2NC5H& (Ref.
17) is an example. It undergoes a crossover to three di-
mensional ordering of an ensemble of ferromagnetic chain
below -4 K.

In two dimension, graphite intercalation compounds
provides a large category of quasi-two dimensional mag-
nets. ' Depending on the number of graphite layers be-
tween intercalants, the effect of the interplanar coupling
can be monitored to yield an approximation to ideal two-
dimensional magnets. Intercalation of different magnetic
species provides quasi-two-dimensional Ising, XY, and
Heisenberg magnets. However, this subject is still fairly
new and deserves much more exploration. A successful
example is the intercalation of CoC12 into graphite. ' It
provides one of the best model two-dimensional XY mag-
net and the possibility of observing the vortex unbinding
transition predicted by the Kosterlitz- Thouless theory.
Intercalation of FeC12 into graphite provides an example
of quasi-two dimensional Ising magnet, where as the in-
tercalation of FeC13 yields a quasi-two-dimensional
Heisenberg magnet. ' There are other quasi-two-
dimensional magnetic systems that are of interest. The
family of CuC14 compounds (C„H2„+&NH3)2CuC14 for
n = 1,2, 3. . . are examples of quasi-two-dimensional
Heisenberg magnets, while FeC12 is an example of Ising
magnet. Since in two dimension, Ising magnet has a fi-
nite temperature phase transition with the magnetization
m a: (1—T/T, )~ with P= —,', one may measure the critical
exponents through the magnetization dependence of the
correlation function Gt (t), given in Eq. (25).

For three dimensions, there are plenty of Heisenberg
magnets, such as Cu(NH4)Br42H20, EuO, etc. There
are some ferromagnetic Ising systems, such as Tb(OH)3,
Dy(OH)3, and HO(OH)3. We do not know of a good ex-
ample of ferromagnetic XY magnets in three dimension.

The above magnetic systems are all ferromagnetic. Our
formalism can be extended to antiferromagnetic systems.
However, the fundamental limitations are more subtle.
The description of a muon spin precessing in a random
field with a distribution computed classically assuming no
correlation between spins and purely dipolar interaction is
a great simplification. In real situations, we expect that
the spins in the immediate neighborhood of the muon will
play an important role in the dynamics of the muon.
Futhermore, there are indications' ' ' that quantum ef-
fects are important. The consideration of the effects of
nearest neighbors on the muons necessitates a specifica-
tion of the lattice structure and the muon site. All these

microscopic details are ignored in our calculation. It is
desirable to extend our investigation to include these mi-
croscopic details, at least semiclassically. However, such
an extension necessarily requires specifications of the de-
tails of the system under investigation, thereby a general
statement on the behavior of the muon relaxation function
is likely to be very difficult. An important point about
our formalism is that it tries to take into account all the
spins in the systems. This is almost impossible to achieve
quantum mechanically on a lattice. In one point of view,

with v=v —e.
We can extend our analysis to the general problem of

muon spin relaxation in a finite field. The formalism
readily accommodates these situations with the total field
as the sum of the local random field plus an external field.
Finally, we can also employ the formalism developed in
this paper to deal with the relaxation of muon in a spin-
glass environment.
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APPENDIX A

For the Ising case,

( cos(Br)) = f dB f A(p)e't' cos(Br)—OO 2'lT

= —,[A(r)+A( —~)] . (A 1)

For the XY case,

( cos(B~))= f BdB f p dpJp(pB)A(p) cos(B&)

f pA(p)dp f si (Bn1) pJ(p )BdB

d ~ pA(p)
p (r 2)1/2

m/2 dA (p)= f d8sin8 A(p)+p
0 dp p =csin(9

(A2)

we can consider that the calculations made here are the
required limits of the corresponding refined quantum
treatments as the number of particles goes to infinity.

Our calculations can be used as a basis for the analysis
of experimental results, provided that we take into ac-
count the muon diffusion process. Such an analysis is
fairly straightforward, but the details of the muon trap-
ping and escaping processes require some knowledge in
the material under studied. If we let the e be the muon
hopping rate and v the muon trapping rate, and denote
our relaxation function calculated assuming no dynamical
processes as G(t), then the measured relaxation function,
Gd(t), is '

Gd(t) =e "+e 'v dt'e "G(t t')—
0

tl

+ev dt" dt'e ' ' G t"—t' Gd t —t"

(48)
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Finally, for the Heisenberg case,
d p( cos(Br)) = f d B f A(p)e'1' cos(Br)

(2n. )

f BdB f pdpA(p)[sin(p+r)B
0

+ sin(p —r)8]

f p dpA(p)[5(p —r) —5(p+r)]
dw

W(B)= exp( —riB& —A,B
~~

) .2)VX 2 2

Then,

II I "B2dB d

1 2 2X,d cosOcos Oe '~+&' ' ~

(Bl)

d [rA(r)]= A(r)+r dA (1.)
d7

(A3)

~3/2 gg o o

APPENDIX Q

For anisotropic W(B) given by (5), we introduce
ii= 1/4a, A. = 1/4b, /=1, —2) and write

1

=yves f dxx z3/

where z =(21+/x )

(B2)

Bg2 2m

2
cosB~ =

3/2 dB d dxB'1 —x'e-'(~+~ )cos B

a
3/2 f dB f dxe '"+~" 'cos(Br)

o o

7-2

=rigel, f dx(1 —x ) z / ——z / e ' /, as r~oo, G "(r)—+
B2

For j&0,
16"(a))=—
2 (1+ 2)1/

1——in[a+(1+a )' ]a

with a=v'g/rl and, for /&0,

G (~)= ——sin 'p
p2 ( 1 p2)1/2 p

(B3)

(B4)

2. Two-dimensional Ising spin system

The Ising spin moments (p=pz) are located on the xy
plane. The microscopic dipolar field at r=xx+yy from
the moment is

3(p r)r —y, 1u,z
r3(x2+y2)3/2

so again there is only one component of the field.

with p=i/ —g'/21. The second moment for the anisotro-
pic distribution is 6=v'2a.

APPENDIX C: ISING FIELD AND XYFIELD
FROM CORRESPONDING SPIN SYSTEM

1. One-dimensional Ising spin system

The Ising spin moments (@=ax) are located along the
z axis. The microscopic dipole field at a distance r=rz
from the moment is

b= 3(y, r)r —p, px
3 p 3

so that there is only one component of the dipolar field,
thus the name Ising field.

3. Three-dimensional Ising spin system

For three dimensional Ising spin system, the microscop-
ic field has three components and the idea of Ising field is
an approximation.

4. One-dimensional xy spin system

The moments of the XY spins are p =p„x+p„ylocated
along the z axis, so that the microscopic field b at a posi-
tion r along the z axis is

b= 3(p.r)r —p p
T r

There are only two components of the field b, which is
called the XY field.
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5. Two-dimensional XY spin system

The moments are the XY spins p=p x+p~y located
on the XY plane. The microscopic field b for a position r
on the XY plane is

b= ~ =(,b„,by )
r

and there are only two components.

6. Three-dimensional XY spin system

The moments are XY spins in three-dimensional space.
In general there are three components of the microscopic
field and the anisotropic distribution function can be used.
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