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1/N expansion for the transport coefficients of the single-impurity Anderson model
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In this paper the properties of the single-impurity Anderson model are studied via a loop expan-
sion using the functional-integral method developed by Read and Newns, referred to here as I.
First, the low-temperature equilibrium properties were considered and it was shown that, to two-
loop order after zero modes are properly treated, for physical properties (free energy and f-level oc-
cupancy) the loop expansion is one-to-one with the 1/N expansion and to order 1/N the results first
derived by Read, referred to here as II, were recovered. For the transport properties we present the
first calculations of the low-temperature conductivity, thermopower, and thermal conductivity to or-
der 1/X. For the conductivity, our result for the T coefficient in the Kondo limit when N =6 is
(1—g/3N)n =5+/9=5. 6 which is to be compared with the result 5, derived previously from the
"noncrossing'* approximation. In the case of the thermal power S, our result agreed to order 1/N
with the exact result derived here for the first time. In the Kondo regime, this implies that the ther-
mopower is reduced by a factor of (1—1/N) relative to the mean-field result, and that
this is an exact ratio, analogous to the well-known p /y ratio: We may write
(S/TXO)= [2' ks /g j (j + 1)Pse](1—1/N)(m/N) cot(n /N), which is a universal result in the Kon-
do regime.

I. INTRODUCTION

Recent theoretical work on the valence fluctuation,
Kondo lattice, and heavy-fermion problems has tended to
center around the Anderson Hamiltonian in either its
single-impurity or lattice forms, usually with very strong
on-site f repulsion ( U = ec ).' A powerful method cap-
able of handling low-temperature Kondo-like effects in
both single-impurity and lattice systems has emerged —the
1/N expansion. Here N is the degeneracy of the lowest
spin-orbit multiplet of the f shell, N =2j+ 1. In the
standard model, the infinite f frepulsion U -allows only
zero or one f electrons to occupy the f shell at each site,
and the spin-orbit coupling is also taken to be infinite, so
that the angular momentum j of the nI ——1 state is j = —,

'

(cerium) or j= —, (ytterbium, for which one treats holes in

the f shell instead of electrons). Though initially formu-
lated in several ways by different groups, the most
flexible and elegant approach appears to be the
functional-integral method. ' Originally, Read and
Newns treated the Coqblin-Schrieffer [or SU(N) Kon-
do] Hamiltonian using a Hubbard-Stratonovich decou-
pling of the spin-fiip interaction term, and an integral
over another field A, to ensure the constraint n~ ——1. Fol-
lowing Coleman's introduction' of a "slave boson" ver-
sion of the U = 00 Anderson model, Read and Newns '"
noted its formal similarity to the decoupled version of the
Coqblin-Schrieffer model (which in fact is a limiting case
of the model, via a Schrieffer-Wolff transformation ) and
thus extended their results to incorporate the U= ao An-
derson impurity model. The same authors also discussed
the lattice versions of these models. '

The physical content of this method is as follows. The
lowest level of approximation is a mean-field theory, '

which at low temperatures describes a noninteracting Fer-
mi gas with a resonant density of states' (impurity case)
or a "renormalized band structure" (Ref. 12) (lattice case).

In the relaxation time approximation to the Boltzmann
equation, the electrical conductivity o. is obtained from
the energy- and temperature-dependent transport relaxa-
tion time ri (Ref. 15) as

pe vI
0 = JdEk

3
ri(Ek, T),

where p is the density of states in the conduction band at
the Fermi surface, and vF is the Fermi velocity. In gen-
eral, the transport time ~i differs from the usual relaxa-
tion time ~, the time between collisions, but as can be seen
from p. 596 of Ref. 15, when all the phase shifts of the
impurity vanish except for one value of angular momen-
turn, these quantities become proportional. This is the
case in our model, in which only conduction electrons of
total angular momentum j about the impurity site can hop
into the f shell (conserving angular momentum). Expli-

The f density of states (or effective mass) at the Fermi
level is large, giving rise to the observed large magnetic
susceptibility and linear coefficient y of the specific heat.
The charge response (compressibility), on the other hand,
has to be calculated from the mean field "equations of
state" and is small ' '' especially when the f occupation
n~ tends to 1. Inclusion of fluctuations around the mean
field theory ' "leads to a feedback of the suppression of
charge fluctuations into the specific heat, giving a reduc-
tion of y, and consequently an enhancement of the ratio
X(T =0)/y above its value for the noninteracting Fermi
gas (which is normalized to 1), in accordance with the
Fermi liquid arguments' ' for the n/~1 (Kondo) limit.

In this paper our goal is a similar calculation for low-
temperature transport properties of the Anderson impuri-
ty. We next review this transport problem and summarize
existing results.

A. Transport properties
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citly, the Anderson Hamiltonian is 1/o(0) cc +sin 6(0), (1.8)

H = g Ekck~ck~ +Ep g F~Fm+ V g (F~ck~ +ck~F~ )

k, m m k, m

F F F F (1.2)
m, m'

m'&m

Here the conduction electron operators ck destroy elec-
trons in a partial wave state of angular momentum j and
radial momentum k; m runs from —j to j. Ep is the en-

ergy of the f level (all one-electron energies are measured
relative to the chemical potential, which is thereby set
equal to zero). The hybridization matrix element has been
taken to be a constant, and we assume a rectangular band
of width 2D and density of states p. For the Anderson
model, the T matrix is proportional to the F Green's
function, evaluated on energy shell

T = V G~(Ek+i5)

X(angle- and spin-dependent factors), (1.3)

and hence through the optical theorem, the inverse relaxa-
tion time 1/r(Ek, T) is proportional to the F spectral func-
tion pF —( —1/~) ImGF ( Ek +i 6 )

(Ek T) mTkcrkcr ~ V pF(Ek

Similarly, if we define moments of ~,

(1.4)

r(E, T)E", (1.5)

one has for the thermopower S and Lorentz ratio
L =~/o. T, here v is the thermal conductivity,

&(T)=-
eTLP '

L(T) 3 L
Lo ~ (k~T) L

2I I

Lo

(1.6a)

(1.6b)

where
2

k~
Lp ——

3 e
(1.6c)

Therefore the central object of study is the F spectral
function, which is obtained in the usual way from the

imaginary-time Green's function:

GF(1 ) = —&~ F (r)F (0) ) (1.7)

We will calculate r(E, T) to O(E ) and O(T ), and hence

o( )T/ ( 0)0and L(T) to O(T ) and S(T) to order T, all

to order 1/N in the 1/N expansion (i.e., the first correc-
tions to the leading terms).

%'e now discuss the existing results for these quantities.
Since the low-temperature, low-excitation-energy proper-
ties of the system are those of a Fermi liquid, it is natural
to ask whether any exact results are available from Fermi
liquid relations. The resistivity of the Kondo' and An-
derson' models has been investigated. In the next subsec-
tion we derive a new exact result for the thermopower. At
T=O, the T-matrix formulas referred to above give'

where 6(0) is the phase shift at the Fermi energy, and is

related to the f occupation via the Friedel sum rule

5(0) =nf
'7T

(1.9)

in fact one has the exact result' (at T=0) for the F spec-
tral function:

7Tnf
pF(0, 0)= sin

~Ap

where Ap ——~p V is the hybridization width of the Ander-
son model. However, at T&0, the only exact results' '
are for the coefficient of T in the Kondo limit under the
extra assumption of particle-hole symmetry. For our
model (with U~ oo ) this holds only for N=2, i.e., the
spin- —, case.

Far more extensive results have recently been pub-
lished, ' based on approximate numerical calculations.
Several authors ' ' " arrived at identical approximate
self-consistent equations governing pF from different for-
malism. The approximation used is widely termed the
"noncrossing approximation" (NCA), ' ' " and

amounts to calculate of self-energy diagrams with neglect
of all vertex corrections (the vertex in question being not
the U interaction of (1.2), since U = oo, but the hybridiza-
tion event, as in the formalism ' ' '" we describe in the
next subsection). The method is related to the 1/N expan-
sion and is sometimes erroneously equated with it, since
the diagrams assumed coincide through order 1/N; how-

ever the NCA includes diagrams of all orders in 1/N and
is therefore an attempt at a partial resummation of the
1/N expansion. Detailed calculations ' showed, however,
that at low temperatures and frequencies a spurious
feature appears in pF, whose value as T, c~O is indepen-
dent of nf, in contradiction with (1.10). In contrast, as we

show in this paper, calculation strictly in powers of 1/N
leads to agreement with (1.10) and no low T, low E patho-
logies, which are therefore an artifact of the resummation
in the NCA. It has been shown elsewhere that the NCA
incorrectly treats the cancellations of infrared diver-
gences" in the 1/N expansion, so that the effective value
of nf (which appears as a coupling constant at low fre-
quencies) is renormalized towards a fixed point value at

nf —1 in the large-Ã limit; this "spurious scaling" of nf
then accounts for the independence of pF(0,0) of the true
value of nf, and for the power law " ' approach to this
value. Also accounted for is the narrowness of the
spurious peak in pF as nf ~O; ""significant deviations
from the correct behavior set in at frequencies of order

(1.10)

Nb, onf 'exp( N/nf ), —

and below, as the true nf~O. The conflict between the
argument that crossing diagrams are of order 1/N and
so negligible, and the result that pF deviates from the
correct result already at leading order is thus resolved:
some of the omitted terms are needed to cancel infrared
divergences in the terms retained; the divergence of the
coefficients of 1/N, 1/2V, etc. means that these terms
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are not negligible at all. The scaling approach enables
one to understand and sum these terms, and the result is a
leading order effect at sufficiently low T and c,.

In any case, the spurious features appear only at very
low temperatures, and the NCA provides smooth and
reasonable-looking results for all other frequency and
temperature ranges. Bickers, Cox, and Wilkins' used the

approximation to study transport and dynamical proper-
ties of Ce compounds, and found that for low temperature
transport properties, little deviation from the universal
behavior at nf ——1 occurs even for nf as small as 0.7.
Coefficients for the low temperature expansion in powers
of T were not reported, except for the result
o ( T) /0 (0)=1+5( T /To ) ( To is the Kondo temperature,
defined more carefully below). The numerical nature of
this study, and the possibility that the results are affected
by the spurious features inherent in the method, motivates
the present work.

~p en~
ED+X(0) N

(1.15)

and

4p/m
pF(0) =

[ED+X(0)] +b,o
(1.16)

we find our exact result

S( T) = = y T cot
—1 L' 2m. Knf
eT LP eX

(1.17)

Comparison of our 1/N expansion result with (1.17) will
provide an extra consistency check on our calculation.
We note that in the numerical results of Bickers et al. ,

'

close to nf ——1, the observed "universality" holds only for
the linear part of the S(T) curve and is merely a conse-
quence of (1.17).

B. Exact result for the thermopower C. Formalism

Here we will briefly derive an exact formula connecting
the linear term in the thermopower S with the specific
heat coefficient y and the f occupation nf, based on re-
sults to all orders in perturbation theory in U for the
Hamiltonian (1.2). This has not, to our knowledge, ap-
peared in the literature previously.

When the F Green's function (1.7) is expanded in
powers of U, one obtains

We now discuss the slave boson' based functional in-
tegral ' '" approach to the 1/N expansion, with emphasis
on the new technical aspects encountered in the present
calculation.

Coleman' writes the Anderson Hamiltonian (1.2) for
U= op as

H = g Ekck~ck~ +ED g fmf~
k, m

GF(ice) =(ice Eo —X(ice)+id—osgnco) (1.12) + ~ X (f~ck~b +ck~fmb) (1.18)
Here we have let D~ oo, which is permissible since U is
finite. y can be obtained from GF at T=O, the result is

=~' 2 ar(E)
y = k~NpF(0) 1—

3 BF
(1.13)

I 1

dE, pF(e)

dpF
(ks T) +0(T4)

[pF(0)] dc, 0

77' (ks T)' 2 &0[ED+&(0)]
(1.14a)

[pF(0)] ~ {[E+X(0)] +b, I2

The thermopower involves the ratio of moments of ~,
L '/L, and so we will drop the proportionality constant
in ~ ~pF. Then

so that H can be diagonalized for each (integer) value of
Q. The eigenspace with Q= 1 represents the U = oo An-
derson model since the f occupation

nf=gf f
m

takes only the values 0 or 1. The operator f b commutes
with Q and raises nf, and so is the analogue of F; thus
the F Green's function (1.7) is now'

GF(r) = —
& Tb «)fm(r)fm(0)b (0)), (1.20)

k, m

where the Fermion operators f,f have a meaning some-
what different from F,F„and b, b are boson operators.
The Hamiltonian (1.18) commutes with the operator

Q= gf f +b'b (1.19)

x dX
dc

L =1/pF(0)+0(T ) .

Now using the Friedel sum rule' (true at T=O)

(1.14b)

where the brackets denote an average over states restricted
to Q= 1.

Read and Newns ' introduced a functional integral for-
malism for the partition function in which the constraint
Q= 1 is imposed through an integral over a r-independent
field A.:

wlP P = = P
Z = f dA, i $ Df DftDc Dc Db Dbt exp —f L (r)dr

L(r)= g f~ f~+

hack~

ck~+b b+H+iA(Q —1), .

(1.21a)

(1.21b)
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where f,ft, c,c are Grassmann numbers antiperiodic
under r~r+P, and b, b are c numbers, periodic under
r~r+P. The Green's function GF is now obtained by
calculating the average (1.20) with the same functional
measure, (1.21), divided by Z. Q generates a gauge sym-
metry of the system, under which

(1.22)

and A, is the corresponding gauge field; in (1.12) a particu-
lar gauge, specified by A, =O has already been chosen.
Other gauge choices are possible ' ' but here we will con-
tinue to use this "cartesian" gauge in which b is a com-
plex, ~-dependent field. With this choice, our formulas
have a close correspondence with those that would be ob-
tained in other formalisms; ' ' ' ' "of course, all physi-
cal results should be independent of the gauge.

The 1/N expansion is obtained from (1.21) by first in-

tegrating out the Fermi fields. By absorbing V into b to
form a new field o,o = Vb, one sees that if NV is held
fixed as N~co, the effective action for the remaining
o.,o. and X integrations is proportional to N except for
the last term, in which A, multiplies the eigenvalue of Q,
which is 1. This comes about because the fermions have
N components, while the remaining cr terms have coeffi-
cients 1/V -N. The basic idea of the 1/N expansion is
to evaluate the functional integral by a steepest descent-
like expansion, in which the first term in Z comes from
the value of the integrand maximized with respect to
o,o. ,k, multiplied by the determinant arising from per-
forming the Gaussian integral in the deviations in these
variables from the saddle point. Higher terms follow
from higher order expansion of the effective action, and
correspond to diagrams with 2 or more loops in the bose-
like variables o.,o~, A.. Thus in the free energy, if the
whole of the effective action were proportional to N, the
leading (saddle point or mean field) term would be of or-
der N, the Gaussian fluctuations of order 1, and in gen-
eral diagrams containing r-independent boson loops (fer-
mion loops being counted as point vertices) would be of
order N'

At first sight, as noted in Ref. 5 (to be referred to as I),
the desired value of Q being 1, not of order N, seems to
preclude such an expansion; there appears to be no reason
why successive terms should be smaller by factors of 1/N.
But with Q (or n/ for the Coqblin-Schrieffer model) fixed
at 1, ' it was found that although the first term in the
free energy at low temperature (which is in fact the mean
field theory referred to above) was of order 1, which can
be traced to the value of Q (or n/), Gaussian fluctuations
gave corrections to physical quantities of order 1/N.
Therefore it was asserted

'

that the 1/N expansion
nevertheless exists, at least at low temperatures. This is
also the result of Refs. 4, 7, 8, 10(a) and 20, where essen-
tially the same limit is taken. On the other hand, Cole-
man has proposed that (1.18) be studied for general

Q =qQN of order N, so that if it is desired to study a
model with Q= 1 and N =N0, say, these values may be
reached in the 1/N expansion by setting qp

——1/Np and
expanding in powers of 1/N (with ND fixed). Clearly this

H~/ ——g el, cj~c~~+E/ g f~f~+s0 g (f~cI~+ci~f~)
k, m

2
Sp

+ (c/ —E0) —1
p2

k, m

(1.23)

The parameters c~ and sp are found by minimizing the
free energy corresponding to (1.23) with respect to EI and

sp, the result as shown in Refs. 5 and 6 is a pair of equa-
tions (here at T=O):

X
n~ ———tan

7T EI

2
Sp

p 2
(1.24a)

c.) —Ep+
Nhp

ln
(

2 +g2)1/2Cy

D
=0. (1.24b)

(Here b =ups~=
~

(b)
~

b,0. ) Then in the Kondo regime
nI~1 (ED~ —oo ) at large N we have

NA Eo
EI—— —D exp (1.25)

Nhp
= TK

TK is the correct Kondo temperature for large N. ' The
Hamiltonian (1.23) thus describes, in addition to the
broad, flat conduction band, a "Kondo resonance" which
is a Lorentzian, ' centered at c~-TK, with width
A=~TK/N. This resonance obviously gets narrower and
taller as N~ oo. At the Fermi level, the f density of
states (per angular momentum channel) is of order 1/N.
This is why thermodynamic results ' such as P (magnetic
susceptibility) and y (linear coefficient of specific heat) at
T=O are of order 1, not of order N as would be expected

leads immediately to a 1/N expansion for all tempera-
tures, by the above argument. He further asserts ' that
with Q=1, a 1/N expansion "certainly did not exist, "
quoting the fact that a phase transition (at which
(o ) ~0) occurs at a temperature of order 1/ln(N/Q),
which tends to zero as N~oo if Q= 1. Then it would
appear that the small but nonzero temperature region can-
not be accessed, in contradiction with the low-temperature
results of Refs. 5—8.

How can one resolve this paradox? In particu1ar, in
what sense, if any, does a 1/N expansion at low tempera-
tures exist if Q= 1? Clearly this is important, since most
other calculations' ' ' "have been performed in this
limit. In this paper, we again use this method of taking
N~~, rather than Coleman's, in order to facilitate
comparisons with these works (it also gives rise to simpler
expressions). Let us now attempt to answer these ques-
tions, and outline one or two new features of the detailed
calculations presented in this paper.

First we consider the mean field approximation' to
(1.18), which as explained above is the first step in our ap-
proximation scheme. One replaces o.= Vb by its expecta-
tion value sa [chosen to be real, positive by use of a r-
independent gauge rotation (1.22)] and includes the con-
straint Q= 1 by a Lagrange multiplier s/ ED, thus ad—d-
ing (E/ ED)[n/+—(otcr/V ) —1] to (1.18). In terms of
the functional integral (1.21), one sets the mean field value
of ik=c~ —Ep. We then have the mean-field Hamiltoni-
an
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The spectral function at real c, =ice is therefore

V2
p(E)= 5(E)+

1+

V2

Nhp
1+

(1.27)

for small e, to leading order in 1/N in each term. The
second term in (1.27) represents a branch cut on the real
axis, which arises from electron-hole pair excitations, in
this case an f electron and a conduction hole, for e & 0 or
vice versa for E&0. At larger frequencies, E=T& or
greater, this term is of order 1/N, not 1/N as in (1.27) at
small E. This occurs because the f electron now occupies
the peak at e=Tx described above. As in the single f
electron spectrum, discussed above, this region is not sig-
nificantly thermally excited at low T and all contributions
come from E & T or negative, where the second term is a
factor of 1/N smaller than would be expected from the
naive power counting. Thus the contribution of this term

I

from the general large N analysis described above, or as
would be obtained from Coleman's way of taking the
large-% limit. If we consider the full temperature depen-
dence of, e.g., X( T) or Ci ( T), we see immediately that the
density of states peak at c.=Tz contributes at order 1, not
1/N, per channel, but this contribution vanishes exponen-
tially as T~O. This behavior provides a prototype for
the behavior we expect at all orders; if we first expand in
powers of T (throwing away exponentially small terms;
we call this the Sommerfeld expansion) then a 1/N expan-
sion for these coefficients apparently does exist, which
resolves the paradox discussed above. Note that the tem-
perature at which the excitations to the peak at Tz are as
large as the density of states at the Fermi level is given by

e =1/N, giving T=Tx /lnN, the same as the
mean-field transition temperature discussed earlier. One
may also understand the existence of a 1/N expansion for
the Sommerfeld coefficients by saying that T, ~O only
logarithmically, which is too slow to affect the expansion
in powers of 1/N.

To underline this picture and to see why fluctuation
corrections are not of the same order as the mean field
terms in this low-T regime, let us consider the effects of
fluctuations of o,o' at the Gaussian level. '" At low
frequency (and T=O) the boson propagator D, takes
the form for large N:"

Nhp Nhp
D „(co)=V ice 1+ +iso i b, sgnco

'ITEf

(1.26)

is indeed a 1/N correction to the thermodynamics, when
expanded in powers of T (or magnetic field h) as in Ref.
11 (to be referred to as II). However, the first term in
(1.27) is only of order 1/N, which would appear to be a
contribution of the same order as mean field theory. This
part was omitted in II. In this paper, one of our major re-
sults is the proper treatment of this and related terms.

The 5-function term in (1.27) obviously arise from the
vanishing of the denominator in (1.26), which is a conse-
quence of the Goldstone-like nature of the fluctuations
transverse to &o & (angular fluctuations" ). To see how
these terms which we call "pole terms" contribute, let us
examine the fluctuation correction to (1.24a) where they
first arise. This equation is obtained by varying Ef in the
effective action and expresses the constraint

which we rewrite as

V V
= 1 nf—— & ( o.—

& o & )(o *—
&

o'*
& ) & .

(1.28)

We need not examine here the fluctuation corrections to
nf in (1.28) (we do not explicitly distinguish nf from
&nf &). At the Gaussian level, the last term in (1.28) is
just the sum over frequency of the propagator for the
fluctuations in cr, o' about their expectation values, given
at low temperatures in (1.26).

The co=0 term in the Matsubara sum over frequency in
(1.26) is obviously meaningless. Indeed, since the co=0
mode is a Goldstone-like mode, symmetry demands that it
not appear in the effective action to any order in 1/N, and
so this divergence always occurs. The solution is to factor
out this zero mode from the functional integral, and do
the integral over the angular part of a at zero frequency
exactly, giving a constant. This we do in the next section.
The sum over frequency then contains no co=0 piece, ex-
cept for the radial fluctuations in o., which we handle
separately. The last term in (1.28) is then of the form

Nhp
i 6 sgnco

Nhp
+ l CO~

VEf 7TEf

(1.29)

Converting the sum to a contour integral in the usual way
we obtain, after bending the contour to surround the real
axis,

oo+i5 oo —i5
dE — de b(E)

27Tl . oo + I~ —ao —i6 Nhp
E 1+

P'Ef

Nbp
ihE sgn ImE.

2 1+

1

Nhp

7TEf

Nho 1+ '2
27TEf

1+
7TEf

T +(branch-cut part) . (1.30)
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The last step requires careful consideration of the double
pole inside the contour at E=0. The second term in (1.30)
is half cancelled by including the fluctuations in the radial
part of o. at zero frequency, leaving

= 1 —n/+ (branch-cut term)
p2

1

Xhp
2 1+

Nbo T/e/
4&8'

1+
7TEy

(1.31)

(Here the two terms have been evaluated to lowest non-
trivial order in T only; in general the coefficients of T
and T have temperature dependence in powers of T ).
The branch cut term is exactly that given in II, the other
two correction terms are new. They are of the same order
in 1/N as the mean-field terms (indeed the first of them is
—,
' the mean field value of 1 —n/).

The form of (1.31) suggests that the extra terms can be
regarded simply as a renormalization of 6/40. This
would present no difficulty, as

~

(cr)
~

is not directly ob-
servable, since it is not gauge invariant. " To make this
interpretation of (1.31) work, we must show that the other
self-consistent equation, which does not involve b, to
O(1/N), " has no pole term corrections, and that in all
other physical results, pole terms appear wherever 5 ap-
pears, and so can be absorbed in the manner of (1.31).
This is in fact precisely what happens, as we show in the
following. In general, one finds various terms, many of

i

which are cancelled when one includes also the (zero-
frequency) fluctuations of A, , which were also omitted in
II. The terms left over are cancelled when one uses the re-
normalization of the value of

~

(cr)
~

implied by (1.30).
For the free energy at one loop order, we obtain the same
result as II, a correction which is of order (1/N), at two-
loop order the correction to the free energy is at least of
order (1/N) . Thus though we do not have a general
proof we have established to two loop order that a (1/N)
expansion does exist for the coefficients of the Sommer-
feld expansion, with terms containing r boson loops con-
tributing to order N ' at largest. If by extension it is as-
sumed that all pole terms and A, fluctuations can be ab-
sorbed into

~
( o. ) ~, or if these terms are ignored

throughout, this result can be established in general.
Finally, we summarize the layout of the remainder of

this paper. In Sec. II, the thermodynamics at low T is
rederived, including elimination of the zero mode and cal-
culation of pole terms and A, fluctuations. Some new re-
sults at finite temperature are given. In Sec. III, the F
spectral function is calculated at small c and T; no new
technical problems arise, other than the need to include
the "anomalous" boson propagator (o cr ) . Section IV
then calculates the low-temperature transport properties
to order 1/N. The final section summarizes the results,
and three appendices contain further details of the calcu-
lations.

II. THERMODYNAMICS AT LOW T

Following Read (II), the partition function is written as
a functional integral

n/PZ= f dk $ J DbDb DfDf DcDc exp —f L(r)dr (2.1)

where

L (r)=b b + g f +Eo f +

hack

+ok cr, + Vg (ck f bt+f ck b)+iA(n/+b "b —1) . (22)

The integral over A, enforces the constraint Q =n&+b b= 1 and so the model is equivalent to the U= oo Anderson
model. The Fermi fields can now be integrated out to give

Z =Z f dk, J $ DuDcr*exp( —S),
m!P P (2.3)

where the action S is a functional of the boson fields (cr, X) only:

a aS [cr(T),cr (7 ),A]= NTr ln, +E—o+i Ao cr g, —
a~ a7

cr' + f dr o.* +ik o. —f dr(iA ), .
a

aw 0

(2.4)

Here Zp is the partition function of the noninteracting
conduction band and the fields o.= Vb have been intro-
duced for convenience.

The functional integral is evaluated by first determining
the saddle point of the action for ~ independent o.,o.*=sp
and k=kp and then expanding in the fluctuations about
these stationary values:

1 —I Ql

cr(r) so —g—o (——i~„)e

—led T
cj (1 ) —so ———g o *(~~ )e (2.5)
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Our strategy will be to perform a loop expansion of (2.3)
and (2.4) in terms of these fluctuations and then to show
that to two loop order the fluctuation corrections to phys-
ical quantities at low T are O(1/X) compared with the
mean field results. To this order our expressions for phys-
ical quantities are the same as those first derived in II.

To proceed we notice that S is invariant under uniform
rotations of the cr fields, cr +e'~cr—, which in turn means
that it is independent of the phase 8 of cr(cp„=O). Conse-
quently one cannot do Cxaussian integrals over 8 [or
cr(co„=O)—cr*(cp„=O)] since the propagator for this mode

I

(2.6)

here

would be infinite. The correct procedure is to integrate
out this variable and then carry out the saddle-point
analysis. This is achieved by separating the zero-
frequency and (nonzero) finite-frequency parts of the
functional integral and then in the zero-frequency sector
transforming to polar coordinates cr(cp„=O)=se', in so
doing, the integral over the phase 0 may be carried out ex-
actly. The result is

ZZS(Atoso)6S
0e

a c}S ( A,p sp ) = —K Tl 111 +Ep + I A,p
—s() g +Ek

O'T O'T
sp +i s()A,p

—(gl A,p
p 2

(2.7)

and

(s, +s) , (icp„)dcr(icp„) . ~ . sp
e = J dl, Ids + Jdcr " "

exp iA—P —. g gf(icp„)+ 2
—1

mV P „(~p) 2miP V „V
—2$0S ~y2

Xexp iA+p, ggf(icp„)gp(ice„)p'2

cr(i cp„)
Xexp — g [o ( —icp ), ( ice„)]D —'(ice )

Q exp s(A, ,s)D '(0) higher-order terms
4 (2.8)

Here the normalization of the functional integral has, for the first time, been shown explicitly. In (2.8) the f electron
propagator is given by

1

gf(i~n ) i~n Ep i~p sp g (i~n Ek) sp
k

the conduction electron propagator by

gp(i cp„)= g (i cp„—Ek ) '—: in p sgncp„, —
k

and the inverse boson propagators by, at finite frequency,

(2.9)

(2.10)

D '(cp„)=

1
( i co„+imp—)+ I p(ice„)+I i(icp„)p2

I p(ice„)

I p(icp„)

1 (ice„+iAp)+ I ()( ico, )+—I i( icp„)—
(2.11)

So

FIG. 1. Self-energies I .
FIG. 2. Diagrams contributing to the action at one-loop or-

der.



5130 A. HOUGHTON, N. READ, AND H. WON 35

and at zero frequency

I -- 2iI—

2iI z 2I „
S

(2.12)

in the notation of II, s&(0)= Tz and therefore
2

EI( T)=T„ 1 + p 77 T
1+p 6 Tg

where

(2.18)

The self-energies I which arise from the fermion loops
shown in Fig. 1, see also I, are given explicitly in Appen-
dix A.

Differentiating the action S (so, k 0) with respect to Ao

and so we find the mean field equations of state (station-
ary point conditions)

and

sI(T) Eo —N
VZ P

+—g g/(i co„)g0(i co„)=0 . (2.13)

—1=0

F =Eo —E/(T)+ g (T),
hp

where

(2.15)

il (T)=a&(T) Eo+ —g g&(i co„)go(ico„) (2.16)
NV

is equal to zero at this level of approximation because of
the stationary point condition (2.13). Evaluating the
Matsubara sum in (2.13) and keeping terms to order T,
we find in the large-N limit, N~ oo with Nhp fixed,

Nhp cf
E/( T)—Eo — lil

D
Nhp ~2

(k~T) =0
6

(2.17)

—g g/(icon )+N (2.14)
P „"~0

here A=mpsp, Ap ——mpV, p is the constant density of
states in the conduction band, and we have defined a re-
normalized f level energy by sI(T)=EO+iko The fr.ee
energy is given by

Nhpp=
7T TQ

The f level occupation can be found on using the relation

(2.19)

dF
f (2.20)

hence
c)E/( T) g( T)

nf ——1— =1-
aE,

where h(T) is the solution of the equation of state (2.14)

(2.21)

b, ( T)
Ap

2 T1+ —1
(1+etc) 6 T„

(2.22)

(2.23)

We will now demonstrate explicitly that the corrections
to F at one loop order are in fact at most of order (1/N),
and at two-loop order at most of order (1/N) as outlined
in the Introduction. The one-loop contribution to the ac-
tion is determined by computing the functional integral
over the Gaussian fluctuations shown in (2.8), the corre-
sponding Feynman diagrams are shown in Fig. 2. The
contribution to S from the finite frequency fluctuations to
order (1/N), for details see Appendix B, is given by the
diagram involving the boson propagation D, which to
this level of approximation is written

V2
D „(ico)=

ico —(s/ —Eo) —V I 0(i co, T)
The propagator D, is explicitly temperature dependent
through its self-energy I 0(ico, T) (See App. endix A). The
diagram involving the anomalous propagator

v'r, (i~)
D (ico)=D, ~(ico)=

[ ico+(s—I—Ep)+ V I o(l co T)][ico+(sf'Eo)+ V I ( ico, T)]-
only contributes to the action at order 1/N at low T. We find

(2.24)

I 2
1 6 N~p

5S ~0 ———pci
N Ap vr

L

D
deb c

Nhp c —cf
ln

77 —Cf

N~p m2
(ks T)

6

1 1 m 2 1 1+ + (k&T)
~ +

E Cf Ef 3 Ef (E sf )

(E—s/)

1 Nhp ~2 kg T
+—ln. 1+ 1+

p 7TE/ 3 E/

1

2P

7TEf

NA
1+01+

1TE.f

2
Nhp k~ T

1+m

2 2
Cf

1+
2 Nhp1+

7TE,f

2
1 2 1

k T
-2- n+O

1+
3 E,f

(2.25)
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here b (e) is the Bose-Einstein distribution function and the parameter "a"counts the number of boson loops, in this case
one, the correction to the action at two loops is of order a etc. At the end of the calculation "a" is set equal to one.
The first term in (2.25) which was given, at T=O, in II is of order (1/N), however the remaining terms which stem from
the fact that D, has a pole at zero frequency contain terms that are not only O(1) but would also give contributions to
the free energy linear in T. These terms were omitted in II.

The contribution from the zero-frequency sector to this order is given by

(&) 1 r„r„
S( p) =a lnI ~+— —ln

4 r2
Sp

p2 (2.26)

the last term in (2.26) comes from the Jacobian of the transformation to polar coordinates [see (2.8)]. On combining
(2.25) and (2.26) and making use of Appendix A, the logarithms cancel exactly and the total action to one loop order is
given by

S=p Eo —Ef+ rI +5S'",
Ap

(2.27)

where

2
NhpSS"'=—Pa-

N Ap

Df deb(e)

1 1+
Ef E, —Ef

Nb, p E, —E.f
E, —'g ln —E,f

1

2
Ef

(k~ T)' 1

Ef (s—Ef )

Nhp
(k~ T)

6 77 (E—Ef )

1

4p

Nhp 2 kBT
1+~2

Ef Ef ~2

p ~2 kB T Ef 2
1+

. g +O((1/N) ) . (228)
Nhp ~2 kB T

1+
7TEf 3 Ef

Differentiating with respect to b, and ef gives the one-loop corrected equations of state

E.f—Ep+
Nhp Ef

ln
D E,f

2
Nhp ~2 kB T

6

and

2
a Nhp

N

D
deb E

1 +
E,f

E. —E.fE— ln

+ (kg T)
1

Ff (e —Ef )

, N~p '
1

(kg T)
6 7T ef (E—sf )

=0 (2.29)

2
Ngp ~2 kB T—1+ 1+ 1+

Ap 7TEf 3 Ek

'2
Nhp—a

N hp m.

Df dEb(E)
Ef —D

E,f
Nhp E.—Ef

E —'g ln
N~p

(k~ T)
6

1
2

E,f

(k~ T)' 1 1

ef (E—Ef )

(E —Ef )

1 1

2 4P

77Ef

Nhp kB T
1+~

77Ef Ef
2

Nhp ~2 kB T
1+ 1+

3

=0. (2.30)

Modulo, the T dependence the equation for Ef, which is independent of 6, was first derived in II, the equation for 5
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differs from the corresponding result of II in the appearance of a term, of O(1) at order a. The free energy to order a is
now obtained if in the mean-field action one-loop corrected equations of state are used, while the one-loop correction is
evaluated at the mean-field level.

From (2.29), rI =0 (a /N),

rl =aL(Ef),
where

2
Nhp

L (Ef)=-
N

Df deb(E)
Nhp E. —Ef

E, — ln
N~o m'

(ks T)
6 (E—Ef )

1 1 n 1 1+ + (k&T)', +
e Ef Cf 3 Ef (8 Ef)

(2.31)

(2.32)

and therefore given the form of the action it suffices to
compute (b, /bo) at the mean field level. For 5S"' at the
one-loop level we can set g =0, hence,

2p
1+p

(1+p)2 L3 Lg —(—1+p)K,~+pK„
p

5S'"=ap L (Ef),
b,p

(2.33) — 2—
1+p I-) + 1

2
—1; (2.36)(1+p)'

which exactly cancels the term proportional to g in
(2.27). The free energy is therefore given by

F =Eo —Ef(T), (2.34)

where ef is the solution of (2.29). The result obtained in I:
After some algebra Ef may be written explicitly as

here

and

1— 1

A
I

(1+x)I k
—— dx

0 x +p ln(1+x) (2.37)

ef(T) = T~ 1+— L,a p
N 1+p

+ p 77

1+p 6

where

2
a1+—6
N

(2.35)

D/TAK„=f "dx- (1+x) (1+x)~
(2.38)

[x +p ln(1+x)]~
putting a= 1 in (2.35) and differentiating the free energy
(2.34) with respect to T we obtain for y the coefficient of
the linear term in the specific heat,

T 2
P 1

P
3 1+p T„N(l+p)

2(1+p) pL 3 Lp —( I +p )K—)p+pK ( (—
p 1+p Li +—1 1 —1

(1+p)'

(2.39)

the result first derived in II.
Using (2.20), 1 —nf ( T) =Ref /BED, the equation of state (2.30) can be rewritten as

Ap

2

a N~o=[1—n (T)] 1+—f N

D
deb E.

Nho E —Ef
E — ln

N~o ~2
(ks T)

6 (e —ef }

(k~ T}
1 1

3 Ef (E —Ef )

o

7TEf

4P I Nb, o1+

2
kgT1+~

Ef 1

k~T
1+

1+—
2

E,f
Nhp ~2 kg T

1+ 1+
17 3

(2.40)
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nf = p 7T

(1+p) 6
+

r

the result quoted in the Introduction, (1.31). The f level occupancy n/ is given explicitly by

T p(2+p)
T„(1+p)

+—
~ (Lp —pKii — Li)

a p p
N (1+p)~ 1+p

'r . 2p (2+p)
6 TA (1+p)

2PL)+P
1+p (1+p)'

2p —6p Li1+p

+
q

(2Lp —3pE)p+2p M))))+ q (4K)g+Kpp —2pM)(p)
p p

(1+p)' (1+p)'

6p L 2p 3 p
(1+p)' (1+p)' 1+p

P 2 P
1+p 1+p (2.41)

where

D/T~
M~)k

——f dx
(1+x)'

1— 1

(1+k)J
J

[x +p ln(1+x)]
(2.42)

Equation (2.38), which contains terms which diverge in the infrared (we will return to this point later), reduces to the re-
sult quoted in II with one important difference: the last term, a one loop correction, which is of O(1). On the other
hand, the physical quantity nf is well defined and reduces in the zero temperature limit to that obtained in II.

The results (2.34) and (2.41) have so far been shown to be correct only to one-loop order. They contain 1/N correc-
tions, and in principle higher-order terms in the loop expansion could contribute terms of O(1) or 0 (1/N) to F or nI
We now show that at two-loop order such terms cancel either among themselves or when the one-loop corrected equa-
tions of state are used and hence do not contribute to physical observables such as F or nf which are correctly given to
this order by (2.34) and (2.41).

At two-loop order the contribution to the action from the finite frequency sector is given by the diagrams shown in
Fig. 3, some of which contain zero frequency propagators. Diagrams involving the propagator D~~ can be discarded at
this order, because as

1 ~o
XX 2P

1 2-2- '9
Nbo ~2 kg T

1+ 1+
KFf 3 Ef

(2.43)

and g =O(a), from (2.29), they will only contribute to the free energy at order a, three loops. Pole term contributions
proportional to g can be ignored for the same reason. On neglecting these terms we find

k~T
1+m

(2) 25S(~ ~o) —a
] Nho

4' ATEf Nho1+.

Cf

k~T1+
3 cf

r 2
o m kgT1+ 1+

7Tcf 3

2
Nho 1 D—f

deb�(E)

N Nho
ln

(e —E/)'

(k~T)
q +

(e —E/)

(kg T) 2

, +O((1/N)') . (2 44)



5134 A. HOUGHTON, N. READ, AND H. WON 35

bution of the Jacobian, which is expanded in powers of s
and contracted using D„:

1 1
6SJ =

2 2Dss2 pso

(b)

~o
8 psf b,

+

7TEf

&~o m2
1+

7TEf 3

Ef

k T

2
Nho 2 kB T

1+w

(2.46)

(c)

D

FIG. 3. Diagrams in the finite frequency sector which contri-
bute to the action at two-loop order.

Ndo 2 kBT1+8'
Ef

ksT
1+

3 E,f

g$(2) p 2

4pEf Nb, o-1+
7TEI

Thus, the correction to the action at the two-loop order
modulo terms of order (1/N) is given by

T

This contribution to the action contains terms of 0 (1/N)
in addition to the expected terms 0((1/N) ). The contri-
bution from the zero-frequency sector, again discarding
terms proportional to D&& is given by the diagrams of
Fig. 4:

1+—
2

1
L(Ef ),

o ~2 kBT-1+ 1+
77Cf 3 E,f

(2) —a 1 ~o2

8 P b,

o 2 kBT1+~
Ef

kBT

7TEf

&~o 1+
7TCf'

. 1+
(2.45)

which is 0(1); but this is exactly cancelled by the contri-

(2.47)

where L(ef) was defined by (2.32). Notice that 5$' ' is
independent of 6 and therefore does not contribute to Ef,
for this stationary point Eq. (2.29) the naive power count-
ing is valid, i.e., terms with r boson loops are automatical-
ly of order N ' at most and hence we have i) =0(1/N).
Furthermore, as we only need (b/60) to one-loop order
the contribution of 5S' ' to the stationary point conditions
can be ignored. Returning to the free energy we see that
when 6$'" (2.28) is corrected to order a the terms pro-
portional to g exactly cancel 6S' ', the correction to 5S"'
on correcting (b, /50) to one-loop order is cancelled by the
correction to (b, /b, o) in the mean-field term, giving

F =ED —ef(T) (2.48)

(b) (c)

to two loops and (1/N). This then confirms that the re-
sults (2.34) and (2.41) are correct to two-loop order as
claimed and that for physical observables such as F and
nf naive power counting is valid. The results of II are re-
tained apart from changes in 6/Ao which is unobservable.

If we now consider the b (or o ) correlation function

(Mcr(r)o'(0) ), (2.49)

(e)

FIG. 4. Diagrams in the zero frequency sector which contri-
bute to the action at two-loop order.

which at lowest order —
~

(b)
~

V . Whereas explained
above

~

(b )
~

at one loop contains terms of 0(1) as well
as infrared divergencies. These terms, however, are re-
quired to cancel infrared divergencies and 0(1) zero fre-
quency and pole terms which appear in the one loop
correction to the correlation function. The result to
0 (1/N) is, as ~~ ao,
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2

(~o'(r)o'(0) ) —V (1—nf) 1 — InT&
~

r
~

assuming the series exponentiates we have

(2.50)

FIG. 5. Self-energy at mean-field level.

III. CONDUCTION-ELECTRON LIFETIME
(Mo(r)o'(0)) -(1 nf—)V (T~

~

r ) (2.51)

where a=nf/N, the result found in II. In summary the
additional terms in (b /b, p) are required to cancel order 1

corrections to the (oo*) propagator which as a result has
power-law decay at large times as stated in II. This in
turn implies that fluctuations drive b, /b, p to zero restoring
the symmetry.

The conduction-electron self-energy is given by

X,(r)= —V (T,b (r)f~(r)f~(0)b(0)), (3.1)

where the statistical average is taken with respect to the
Lagrangian (2.2). Expressing the boson operators in terms
of the fluctuations about their stationary point values this
can be rewritten as

&,(r)= —~p(~f (r)f (0))+~p(~~ (r)f (r)f (0))+(~f (r)f (0)o(0))+(~~ (r)f (r)f (0)o(0)) . (3.2)

The conduction electron scattering rate R (co, T) is obtained on computing the Fourier transform X,(iso„) and then after
analytically continuing co„~co+i6 taking the imaginary part. At the mean-field level the only diagram contributing to
the scattering rate is shown in Fig. 5:

Q2
Rp(co, T)=

~p [Ef(T) co]— (3.3)

as we calculate to one-loop order Ef(T) and b, (T)/hp are given by the one loop stationary point conditions. Equation
(2.40) can be used to rewrite (3.3) as

2

Rp(co, T)= 2 ~p 2 2a
[1—nf(T)] 1—

rrp [Ef(T)—~]2 N

2
Nhp k~T1+~2
rref Ef D b (E)

Nhp ~2 kg T
1+ 1+

ATE,f 3 E,f

2
Nhp

+ (k~T) ~ +1 1

3 Ef (e —Ef )

Nb p c.—c.fln
N~p n-2 1

6 (s —ef )

1+— Ef
2 2

k~T
1+

3 Ff

kgT1+~
Ef

Nhp
1+

k~T
+

3 Cf

p 5p 3 p
(1+@)2 3(1+@) 4 1+p

2

b, (T)+a
p Nhp1+

KEf

1
2 + 1

kgT 2
1+

N~p1+
VEf

Ef
2 2k~T1+

Cf
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(a) (a)

(b)

(c)
(c)

FIG. 6. Diagrams in the (nonzero) finite-frequency sector
which contribute to the self-energy at one-loop order. J

1.

where Ef(T), nf(T), and b,(T) are given by (2.35), (2.41),
and (2.22), respectively. Equation (3.4) illustrates the dif-
ficulties inherent in the calculation, as the equation of
state (2.40) contains terms which diverge in the infrared as
well as one-loop corrections of O(1) which originate from
the pole of the boson propagator, as discussed in Sec. II,
the equation for the relaxation rate Ro(co, T) is fraught
with similar difficulties.

To complete the calculation of the relaxation rate to
one-loop order, as in Sec. II, we separate the contributions
to the functional integral which must be computed in or-
der to determine the statistical averages of (3.2) into a fi-
nite frequency sector and a zero-frequency sector. The
Feynman diagrams contributing to the self-energy in the
finite-frequency sector are given to one-loop order in Fig.
6. As an example, a detailed evaluation of the diagram of
Fig. 6(a} is given in Appendix C where the contributions
of all diagrams to the relaxation rate are listed. Each in-
dividual diagram is divergent in the infrared, however as
we shall see this divergence exactly cancels the corre-
sponding divergencies of (3.4) which originate in the sta-
tionary point condition, hence the relaxation rate is well
defined. In addition each such one-loop diagram contains
terms of O(1) which originate from the pole of the boson

(e)

FIG. 7. Diagrams in the zero-frequency sector which contri-
bute to the self-energy at one-loop order.

propagator, we will find that these terms together with
the "pole" term of (3.2) are exactly cancelled by contribu-
tion to the one loop relaxation rate from the zero-
frequency sector and hence the one-loop correction to the
self-energy is of order (I/N) with respect to the leading
term. The diagrams contributing to the zero-frequency
sector are shown in Fig. 7 and their contributions listed in
Appendix C. Summarizing the information contained in
this appendix we find

(1. )R ~p
———

2
2a

~P bp

2
kgT1+~2

2hp Xhp

(Ef —co) ~sf Nb, o1+
7TEf

1 D b(E)
~ 2- -2 dE

77 8 N —D E.

3 Ef

2 2
2hp 1 W5p P+ dE

(Ef —co} N m.

1 1+
Ef E, —Ef

Ehp
ln

7T

(kg T)
ef (E—ef )

&~p ~'
(k~T)2

6 (e —ef )2

2
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k~T1+~2
Ef ( ef —N )

Nhp 1+
KEf 3

2ho 1 Nho
+ dE

E.f—co N

(Ef —~)' (E+Ci)—Ef )

E —E.fln
7T —E,f

N~o w2
(kg T)

6 (E—Ef )

2
k~T ho 1 p

N 1+pEf
2

kgT
2 E,f

2
2m' ka T

3 E,f

E,f
2

~o 1 p
Ef N 1+p

2
~o 1 p
Ef N 1+p
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1+p

2
4 p

1+p 1+p
2

'2

2+ +1 5 p 3 p
1+p 3 1+p 4 1+p

2

2
~o 1 p+2
Ef N 1+p

co
2 p co

Ef 1+p

'
13 5 p

2 1+p

1 ~o 1 p
2 Ef N 1+p

2

E,f

2
4 p

1+p 1+p

2

Q22a
7TP AP ( gf —co )

Nho
2

kgT1+~
2hp1 7TEf

Nb ~~ kg T (&f —co) PEf Nhp1+ 1+
3 Ef 77Ef

0. 1+
KEf

E,f
k T

1+
3 E,f

and

4ho 1

(Ef —~) 13
2

Nbp ~2 kgT1+ 1+
7TEf 3

(3.5)

(, ) 2a
R (~ —p)— 7' ~p

N~o
ATE,f
Nho

3 1

2 (Ef —Q7} Pef . 1+
7TEf

k~T
1+m'

46p

k~T (ef —co)' 13
1+

3 Ef
1+

VEf

NA ~2 k~ T
1+

3 Ef

(3.6)

The last three terms of (3.5) all of O(1) are "pole" terms on combining with the "pole" term of (3.4) which originates
in the equation of state we see that they are exactly cancelled by the contribution of the zero-frequency sector. Thus the
corrections to the relaxation rate at one-loop order are at most of order (I/N). In the calculation of the relaxation rate as
in the calculation of the free energy and therefore by extension any other physical quantity the contribution of the zero-
frequency sector and the pole contribution to the finite-frequency sector exactly cancel once the constraint equations are



5138 A. HOUGHTON, N. READ, AND H. WON 35

used consistently. Further the first two terms of R'(co~0) are infrared divergent and exactly cancel the corresponding
infrared divergences of R leaving us with a well-defined relaxation rate which could have been calculated directly from
the finite-frequency sector if pole terms were ignored. Putting a equal to one,

R (co, T) = [1 —nf ( T)]
7TP

X 2(Ef —CO)

2 2
26p 1 Nho

(Ef —co) N

pxJ

1 +
Cf

(k~ T)
1 1

Ef (E—Ef )

1 1+
E,f—ci) 6+ cO —Ef

Nhp c.—cf
ln

Nho ~2
(kii T)

6 (E—Ef )

2ho 1 N~o
dE

(Ef —a)) N

( Ef —Ci) )

C, —Cf
ln

7T —Ef

(E+Ci) —Ef )

N~o m'
(kg T)

6
1

(E —Ef )'

2
~o 1 p'
f N 1+p

co 2+p co+
Cf 1 +p Ef

'
13 5 p

2 1+p

1 ~o 1 p+—
2 cf N 1+p

2 2
4 p

1+p 1+p

2
2~' ~o+

k~T
N cf 1+p

2

1+ 1

1+p

2
~o+

k~T
N cf

r 2
~o+

2 E,f

2 2
kgT

N cf 1+p
4 p

1+p 1+p

2

At T=O, the zero-frequency relaxation rate
r

2

(3.7)

R (0,0)= 2

7TP cf
2 D/T 1 +x 2 D/T~

[1—nf(0)] 1 ——p dx + —pN 0 [x+@ln(1+x)] N o

1— 1

(1+x)
x +p ln(1+x)

(3.8)

where from (2.35)

cf——Tg 1+— L ]
1 p

N 1+p
(3.9)

nf(0) =
1+p

1+—1 p L2 —pE — L I
p

N 1+p 1+p
(3.1 1)

therefore

250[1—nf (0)]
R (0,0) =

'7Tp Tg

X 1+ L2 —pE — Li2p p
N 1+p

(3.10)

From (2.40), the f electron occupancy at T=O is given by

hence we obtain
2

mnf (0)
R (0,0) =

7TP

which is exactly the prediction of the Friedel sum rule
which was shown to be valid for the Anderson model by
Langreth. ' In the next section we will derive the
temperature-dependent corrections to the transport coeffi-
cients to order (1/N).
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IV. TRANSPORT COEFFICIENTS

2

=r(O, T)+ (kg T)'~ (~,0)
~
~=0,6

(4.1)

As discussed in the Introduction the conductivity is
given by

cT ~ I r(co, T)dc'
—a (~)

8 co

here o.
p is the dc conductivity at zero temperature, Rp is

the relaxation rate at zero temperature and frequency, R'
and R" are the first and second frequency derivatives,
respectively, of the zero-temperature relaxation rate
evaluated at co=0, and R is the coefficient of (k&T) in
the expansion of the zero-frequency relaxation rate. Ex-
panding R (co,O), (3.7), in powers of co and using (3.9) to
express sf in terms of Tz, we find

which when expressed in terms of the relaxation rate cal-
culated in the preceding section can be written as

=1—(k T)2 R ~
(k T)2

2(R')' R"
+

R

(4.2)
I

R'
Rp

2 ~ p1— L, —p(K11 —K,z)
Tg X 1+p

+(L,—2L, )+ 2+p
(1+p )' (4.3)

R"
Rp

6 2p 31+ p 2K11 —K12 —K13 — L 1
—(2L q

—2L 3
—3L 4 )

3X 1+p

hence

1

2(1+p)
13—

1+p
5p p 1

(1+p) 1+p 4
(4.4)

r"(coO) 2 2p p1 — L1+ (2L p
—6L3+3L4) —p(2K11 —3K12+K13 )

r(0, 0) T~ N 1+p

p p3 1 1 (4.5)
2( 1+p) (1+p ) 1+p, 4 1+p

We now turn to the temperature dependence of the zero-frequency relaxation rate R, (4.2). There are three distinct
sources of temperature dependence as can be seen from (3.7). Explicit temperature dependence of the boson propagator
which gives a contribution

Rp

Rp

1 p [2K13—2pM 112 +Kp2 ],
T~~

(4.6)

the temperature dependence of sf, (2.35), which contributes

R,Cf

Rp
p, 1 1 p+—Q p L )

—pE()+L2
3 1+p T„X 1+p +p(2L3 —3pK12+2p M111) -, (4.7)

and finally the temperature dependence of nf which contributes

R„)if
Rp

1 1

3 Tg 1 +p
p(2+p)

1+p

L2 pK11 — L1—+ (2L3 —3pK1q+2p M111)
p'(2+p) p p
(1+p)' 1+p 1+p

+p (2pK13+pK22 2p M112)+p pK13 3L4+ L 11+p

5—2p 2p L) 2p p+ 3—
1+p 1+p 1+p 1+p

2p p
(1+p)' 1+p

(4.8)

Collecting together the results (4.3)—(4.8), the conductivity can now be written explicitly as
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cr( T) vr

c7p 3 TA

p p(2+p)
1+p (1+p)'

~2
+

2
T 1 p

T~ X 1+p
4p 6p 10p

1+p (1+p)' (1+p)'
4p

(1+p)'

p' + p'(2+p)
4p+ 1+p (1+p)'

+6p 2L3 pK] p
1+p

Lp —pEii — L]p
1+p

L& + ~
2L) —3pE] ~

— Lp 2p

(1+p) 1+p

+ (pKq q+4pKt q
—6L4 —2p M))p)+ ~

(5+2p M)), ) . .p 2 p
1+p (1+p)'

(4.9)

In the Kondo limit, nf ~1, p~ oo, the conductivity
reduces to

o(T) z T 2=1+~ 1+—[2pLq+p (K„—K,~)
2

~o TA

which, on using the expressions for y, (2.39), and nf,
(2.41), can be written as

S(T)=
e nf

(4.14)

in agreement in the large-% limit with the exact result de-
rived in the Introduction (1.17). In the Kondo limit,

4
pLq pL q

——,]— 2~~ k~
S(T)= 1 ——

3 e T~ X
(4.15)

(4.10)

as the Kondo temperature, Tz, which can be deduced
from the zero-temperature magnetic susceptibility
Xp ———,(gP~) j (j + I )/Tx, is given to O(1/N) by "

T~ ——Tg 1+ [p(K)p —K)) )+L)+Lp —2Lp]

(4. 1 1)

here the coefficient (1 —1/N) has its origin in the reduc-
tion of y due to the suppression of charge fluctuations.
Finally, the Lorentz ratio given by (1.6b) and (1.5) is given
in the Kondo limit by

2
L (T) 4n.=1-

Lp 15

X 1 ——(I+pL~ —p K))+2p K)p
8 2 2

1— 8

3X

we find the very simple result
2

o(T) q T= 1+m.
C7p Tx

(4.12) 4pL~+3pL&+p —K~&)

For Cerium compounds, %=6, the coefficient of the T
term in o(T)/opis 5m /9. This is to. be compared with
the predictions of numerical calculations based on the
"noncrossing approximation" which gave a coefficient of
5.

(4.16)

Although all the integrals contained in (4.16) are diver-
gent in the infrared L (T)/LD is finite and can be evaluat-
ed analytically. We find

The thermal power S(T) given by (1.6a) and (1.5) is
found to be

k
S(T) 277 B T

3 8 Tg
T

X 1+—2pLg —pL~ —p K],~+p K~~
1 2 2

L (T) 4m=1-
Lp 15

4m=1—
15

2

1 ——(1—2 ln2)
8

N

3. 1

N
(4.17)

p(2+p)
1+p (1+p)'

(4.13)

V. CONCLUSIONS

In conclusion we will summarize the technical and then
the physical aspects of this work, adding some final inter-
pretation.
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In Sec. II, we reconsidered the low-temperature free en-
ergy of the Anderson impurity to order 1/N, taking the
large-% limit with Q fixed at 1. We uncovered, for the
first time, fluctuation terms of order 1 (i.e., the same or-
der as the mean-field terms), coming from the pole of the
boson propagator (after zero modes had been properly el-
iminated) and from terms at zero frequency involving the
constraint field A, . It was then shown to two-loop order
that for physical quantities (free energy, f occupation) all
these terms cancel to order 1/N leaving the same results
found earlier. In the expression for

~

(b ) ~, on the other
hand, the new terms do not cancel. The appearance of the
additional terms only in unobservable quantities such as

~
(b ) ~, parallels the appearance of infrared divergences,

discussed earlier;" the resolution of the infrared diver-
gence problem" appears to be unaffected by the new
terms as far as we have been able to check (the new terms
in

~

(b)
~

like the old are multiplied at T=O by a series
of powers of logarithms, which is expected to exponen-
tiate, so that

~

(b )
~

eventually vanishes). In fact in the
correlation function (a o(r)o*(0)), —V

~

(b )
~

in
lowest order, these terms together with their accompany-
ing infrared divergencies are exactly cancelled to order
1/N by corresponding contributions to the one-loop
correction to the correlation function. Assuming ex-
ponentiation of the remaining logarithmic corrections we
find as in II the correlation function has power-law decay
with exponent a =nf /N again implying that

~
( b )

~

must vanish.
In the calculation of the F Green's function (Sec. III)

again 6=
~

(b)
~

b.o appears explicitly at lowest order
and again we were able to show that such cancellations
occur to one-loop order, keeping terms to order 1/N at
low frequency and temperature. In summary, while we
have not shown explicitly that our results are exact to or-
der (1/N), this seems overwhelmingly likely to be the
case; we now discuss some additional facts which point in
this direction.

Calculation of the free energy to more than two loops
reveals still more terms of order 1 and 1/N however they
necessarily involve zero frequency (As) propagators. One
can show that the order 1 class of free energy diagrams
involving only (As) and (ss) propagators, with arbitrary
number of loops, cancels against terms arising from con-
tractions of the Jacobian as in the calculations of Sec. II,
such cancellations were mentioned also in the Appendix
of I. It seems likely that all diagrams can be accounted
for by extending our arguments. Furthermore, other
methods exist, ' which take the large-N limit in the same
way we do. Though less flexible than our approach, they
unambiguously show the existence of a large-N expansion
for the free energy at low temperatures, of the kind dis-
cussed in the Introduction.

If instead the large-% limit is taken with Q ~N, the
pole terms still arise when the calculation is done in the
"cartesian" gauge used here, and still have to be cancelled
against the zero-frequency fluctuations. In this case, of
course, the terms are of order N' ' for r loops, as we ex-
plained in the Introduction. The cancellations are impor-
tant, in that we now account quite generally for all types
of fluctuations, including those of the constraint field A, .

The structure of the calculation suggests that expansion in
the number of boson loops, as used here, may be the more
fundamental approach, and may be useful even when the
1/N expansion does not exist.

Turning to our results for transport quantities, we have
presented the first calculations of the low-temperature
conductivity, thermopower, and thermal conductivity in
the 1/N expansion, to order 1/N. Our results were given
in Eqs. (4.12), (4.15), and (4.17). For the conductivity, ouf'
result for the T coefficient in the Kondo limit when
N=6 is [1—(8/3N)]sr =5&/9=5.6 which is to be com-
pared with the result 5 obtained by Bickers et al. ' from
the noncrossing approximation. In the case of the ther-
mopower, our result agreed to order 1/N with the exact
result derived in Sec. IB. In the Kondo region, this im-
plies that the linear term in the thermopower is reduced
by a factor of (1—1/N) relative to the mean field result,
and that this is an exact ratio, analogous to the well-
known 7/y ratio: we may write

2m k~

g'iV +1)Vae
1

1 ———cot
N N

(5.1)
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APPENDIX A

In this appendix we give expressions for the boson self-
energies I introduced in Sec. II, Eqs. (2.11) and (2.12), see
Fig. 1, and the boson propagators D ~ and D ~, . All
results are for large bandwidth D && Tz, and co„:

which is a universal result in the Kondo regime. We wish
to emphasize that, like the 7/y ratio, this arises in our
calculation from a reduction of S or y, not an enhance-
ment of X. If we think of S as a measurement of the ratio
of heat carried by a quasiparticle to current carried, then
we can give a simple interpretation of this result. Current
is carried only by conduction electrons, not by the f quasi-
particles which are localized at the impurity site (the f
component has zero velocity even in the lattice case). The
heat current, on the other hand, probes the total number
of degrees of freedom available for the low-energy excita-
tion. In the Kondo limit, the charge degree of freedom of
the ion is fixed and the spin excitations of the ion dom-
inate, giving N —1 degrees of freedom in the Fermi-liquid
picture. Thus the quasiparticle carries f spin, but no f
charge degree of freedom '" and we recover the value of
(5.1).
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Nrp(i' ) =—y gf(i'„)gp(i (co„—co„))

E,f=Np ln
D

kgT
+ln

ice —cf +i 5 sgnco„
—cf +i 6 sgnco

1
(k~ T)

( cf +—i b, sg neo ) (i' cf+i—b, sgnco )
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P z 77cf cf

T' r 2
SP N 2 . &p Nkp ~2

I ~ =
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I! 3 E,f
(A4)

(A5)

1 1r„= (cf —E )+I (0)+I,(0)+I (0)-=cf E +p'2 p 2

Nhp Ef
ln

D

2
Nhp ~2 k~T

6 cf
~2/ p2 (A6)

Given the self-energies we can compute the boson propagator D, and the anomalous propagators D, , =D . To
the accuracy required in this paper,

and

p2D, (c+i5)=
c (cf Ep) ——V I—p(c+i5, T)

V I q(c+i5)
D , ,(c+i5)=

[—c+(cf Ep)+V I p(c+i5, T)][c+(cf Ep)+V I p( —c i5, T)]——

(A7)

(A8)

Both propagators are explicitly temperature dependent via the self-energies I and implicitly temperature dependent via
Ef ~ In the text we will make frequent use of the real and imaginary parts of D ~ which are given at the stationary point

g =Oby

ReD, (c)=
Nhp

ln 1—

p2

N~p m-2

(kg T)
6 (cf —c)

ImD (c)=

KAp
V (kg T)

1 vr', 1 1

cf 3 cf (c—cf)
2 (A10)

KAp
c.— 1n 1— N~o w2

(k~ T)
6 (cf —c)
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Both propagators have poles at the origin:

1ReD, (e =0)=-
oCr+

g2
2 7

Nhp ~2 k~ T
1+

7TEf 3 Ef

(A 1 1)

and

1ImD, (8=0)= ——
crcr +

Nhp
p2 1+~

'7TEf Ef

Nhp
1+ 1+

&Ef 3

2
kgT

(A12)

1ImD „,(E—=0)=-
ET 0'

'2
2Nhp g 2 kgT

p 2 1+sr'
ATEf Ef Ef
Nhp ~2 kg T

1+ 1+
ATE,f 3 E,f

(A13)

APPENDIX B

In this Appendix we evaluate in detail the contribution of the finite-frequency sector to the action at one-loop order.
To the order considered here this can be written as

5S'"=a g ln[p( i~ +ri +—V I p(ice„))],
co (~p)

(B1)

where using (2.23) and (Al)

I'p(iso„) =Np ln
le Ef +l Q Sgnco ~2 1+ (kg T)

ef +i b sgnco„6 ( —e + & Q sgn~ )2

1

(i co 8~ +i 6—sgnco )
(B2)

The sum over the Matsubara frequencies co =2nvrT can be written as a contour integral, the contour C is shown in

Fig. 8:

5S"'= f b (z)ln[p( —z+g'+ V'I, (z))] .
277l

(B3)

The contour C can then be distorted around the cut on the real axis as shown in the figure. Now the Bose function b (z)
has a pole at the origin and the argument of the logarithm vanishes at

rl 1—
Nhp ' ~2 k~T1+ 1+
'ITKf ' 3

2 1+ p

7TEf

Nhp k~ T 2

1+~2
7TEf' Ef

k~T1+
3 Ef

E,f
'2 2 (B4)

hence

2

5S'"=—aP — f dc b(e)
Ap N —D

1 1+
Ef E —Ef

Nhp
E, —'g ln 1— N~p

(kg T)
6 m.

1 1

Ey (E—Ey)
2 2

J

2

+ (kg T)', +
Ey (e —EI)'

—aP f dx —a ln(Pg ) .-2 Px (B5)
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The first term in (B5) is the discontinuity of the logarithm across the branch cut Fig. 8. The second term due to the
discontinuous change in phase of the logarithm at its branch point at g and the last term from the pole of the Bose
function.

Now

p f dx = —ln(pg ) —ln(1 —,' pg—)= —1n(pg )+ —,
'
pg-2 Px

(B6)

hence on combining the pole terms and using (B4) we find

SS")=—a p——Nhp

6 N

Df dEb( E)

1 1+
Ef E —Ef

Nhp
E —'g ln 1—

1 1
(k~ T)'

Ef (E —Ef )
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6 (E —cf )

+ln. 1+
2

Nhp ~2 kg T
1+

Ef

2

1++
7TEf E,f

2 2 +
Nbp ~2 k~ T

2' ~ 1+ 1+
7TEf 3 E,f

2
Nhp ~2 kg T

1+ 1+
7TEf 3 Ef

(B7)

This result is quoted in (2.25).

APPENDIX C

In this Appendix we evaluate in detail the contribution of the diagram of Fig. 6(a) to the relaxation rate and list the
contributions of all diagrams in the finite-frequency sector Fig. 6 and zero-frequency sector Fig. 7:

R«, )(co~0)=—g D ~(ice )gf(i (co„+co„)).1 =2
p ru„(+0)

The sum over the Matsubara frequencies cu =2nm. T can be written as a contour integral, the contour C is shown in
Fig. 9:

a«„(~~O)= . dzb(z)D .(z)gf(z+i~„) .1 1

7Tl acr (C2)

)l C

~) lp

=0 z=Q

Z=O Z=q
Z =-)m n

FIG. 8. Contour C, Eq. (B3). FIG. 9. Contour C, Eq. (C2).
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The contour can then be distorted around the branch cuts of the Bose propagator and "f"' electron propagator as shown
in Fig. 9. Shifting variable on the lower contour, we find

1 D
R@,~(co~0)=2 —f deb(s)lm[D, (E~i5)]g~(Enrico„)

dc c. Im g~ c~i6 D c.—ice„+"pole terms"
vr

(C3)

The terms written explicitly in (C3} are simply the discontinuities of the integrand of (C2) across the cuts shown in Fig.
9. As both the boson propagator D ~ (z) and Bose function b (z) have poles at the origin there are additional pole terms.

To obtain the contribution to the relaxation rate we analytically continue ico„~co~i5 in (C3) and then take the imagi-
nary part and find

Rg, ~(co~0)=2 —f [b(e)+f( s+ co)]I m[D( E~i5)]I m[g~( 8+ co~i5)]1
D

i f—f(E)5(s co)—ImgI(E~i5)
p2

0 2 kBT
1+

KEy 3

—Im [z b(z)D ~(z)gI(z ~co~i5)] ~,
d 2

dz
(C4)

where in (C4) the pole terms have now been written explicitly. The integrand over ImD(E+i5), given in (A10), is in-

frared divergent. Extracting this divergence the remaining analytic part of the integral can be evaluated using the
Sommerfeld-Watson expansion. As we wish to determine the conductivity 0 (T ), we must retain terms to order co and
T in R (co, T). Using the results listed in Appendix A we find
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I'he last four terms in (C5) are pole terms. We now list the contributions of the remaining diagrams of Fig. 6:
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and finally the contribution of the anomalous diagrams Fig. 6(a):
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It is now clear that the infrared divergent terms (C5a), (C7a), and (C8a) sum to zero as do (C6b) and (C7b); (C6c) and
(C7c) combine to give a finite integral. The only remaining divergent contribution to R ((o~O), (C6a), cancels the in-
frared divergence of R (p)~0), (3.4) of the text, which had its origin in the equation of state. The pole terms, (C5d),
(C6g) and (C7f) sum to
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Combining (C5)—(C9) gives (3.5) of the text.
Finally, we list the contribution of the zero-frequency sector Fig. 7,
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