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By using a generalized version of the infinite- U Anderson model, strong-coupling properties of
mixed-valence systems are modeled by means of an expansion about a broken-symmetry mean-field
theory. A renormalized Fermi liquid, with heavy-fermion bands in the lattice is an intrinsic feature
of this mean-field theory. Strong-coupling divergence of the Kondo coupling constant arises as a
direct consequence of the zero-mode fluctuations about the broken-symmetry state. In the large-
degeneracy limit these fluctuations vanish and the broken-symmetry state is an exact solution, expli-
citly confirmed for the single-impurity case by a new Bethe-ansatz solution. The crossover to strong
coupling is a vestige of the phase transition into the broken-symmetry state. Landau parameters,
charge and spin correlations of the heavy Fermi liquid are directly related to the fluctuations about
the broken-symmetry state. The general approach presented is applicable to an arbitrary number of
impurities or a lattice. Analytic results are presented for the Landau parameters, the dynamical
charge and spin correlations in the one- and the two-impurity models, and the one-impurity f spec-
tral function.

I. INTRODUCTION

The anomalous physical properties of heavy-fermion
and mixed-valence systems at low temperatures raise
many theoretical questions. ' At the heart of the
theoretical problem posed by these systems is the issue of
how we should model their low-temperature, strong-
coupling properties. There are two conceptual frame-
works within which we are accustomed to treating these
systems: the renormalization group and the Fermi-liquid
picture.

In the language of the renormalization group the
mixed-valence and Kondo systems are systems with spin
and charge correlations spanning many decades of fre-
quency, each decade contributing a logarithmic correction
to the renormalized parameters such as the Kondo cou-
pling constant J(A), at lower frequencies. At the critical
frequency scale of the Kondo temperature Tz the
strength of interaction between the electrons becomes
comparable with the electron kinetic energies, and at this
point there is a crossover into strong coupling where the
correlation effects of interactions can no longer be treated
as a perturbation to electronic motions. To continue scal-
ing of the Hamiltonian below the Kondo temperature, we
are obliged to resort to numerical renormalization-group
methods or to attempt to solve the problem exactly and
in practical terms; this limits us to the single-impurity
problem and to calculations of purely static correlations.

Nozieres recognized for the one-impurity Kondo prob-
lem that the low-temperature fixed point of the
renormalization-group approach is a local Fermi liquid,
and he deduced the low-temperature Fermi-liquid proper-
ties, such as the Wilson ratio x/y=(2j+l)/2j from
purely Fermi-liquid arguments. It is generally accepted
that concentrated heavy-fermion systems can be viewed as
the Fermi-liquid "fixed point" of a model such as the An-
derson lattice model. Unfortunately, if we wish to deduce

Fermi-liquid properties which depend on the intersite
coherence of the heavy Fermi liquid (such as the triplet
interaction parameter), then we require more than Fermi-
liquid phenomenology, for there are simply too many de-
grees of freedom to constrain the Landau parameters by
using the Fermi-liquid arguments that are so powerful for
one impurity.

High-temperature perturbation theories with careful re-
normalizations have been developed in attempts to enter
the strong-coupling regime. One of the most successful of
these techniques has been the large- N perturbation
theories, where large spin degeneracy %=2j+1 is used to
provide the expansion parameter 1/X for variational or
perturbation schemes. ' Generally speaking, these ap-
proaches tackle the problem in a language most appropri-
ate to weak coupling, expressing the dynamics in terms of
correlation functions spanning many frequency decades,
rather than expressing the low-energy physics in terms of
a Fermi-liquid picture. Major difhculty is encountered
upon attempting to extend these approaches beyond the
one-impurity model, because the cluster expansions gen-
erated by the perturbation series do not naturally lend
themselves to incorporation of multiple intersite scatter-
ing.

This paper presents a different conceptual framework
which links the latter approaches. We will show that one
can regard strong coupling in the Kondo effect and its
many-site analogue, as an "almost broken symmetry:" a
low-dimensional critical phenomenon involving long-time
fluctuations at each magnetic site, but no critical fluctua-
tions in space. The long-time fluctuations at each site are
independent because of local conservation laws, and the
resulting low dimensionality of the fluctuations prevents
the development of a true broken symmetry.

We can motivate this point of view in the one-impurity
model by using Fermi-liquid arguments. Consider the
Coqblin-Schrieffer' model for local moments with

35 5072 1987 The American Physical Society



35 MIXED VALENCE AS AN ALMOST BROKEN SYMMETRY 5073

N( =2j+ 1)-fold spin degeneracy

~= g E(k)cj,~cI,~ ——o a . (1.1)
k, m

Here cr = g& f cI, and f creates an f electron with
spin component m. Let us consider the general case
where there are Q f electrons in the localized f state. The
action of o

l
Q) =

l
t/i) on the ground state

l Q) removes
one f electron into the band, reducing Q by one. Since n/
is a conserved quantity, the final state remains permanent-
ly in a state with Q —1 f electrons. By using Nozieres
Fermi-liquid picture, we know that the initial ground
state scatters quasiparticles elastically, without changing
their spins, and the elastic scattering is determined by a
f-channel phase shift 5/=mg/N, using Friedel's sum
rule. The action of o. on

l Q) transforms it into a new
space of states where it relaxes to a final-state ground
state that is described by an f-channel phase shift
5I n(Q ———1)/N. The situation is identical to x-ray ab-
sorption, where a change in the number of localized elec-
trans induces a change in the local scattering phase shift.
From the x-ray catastrophy' we know that the response
of the system to the suddenly Modified scattering poten-
tial is governed by a power-law relaxation of the
wave function ( P(0)

l
g(~) ) —r 'e ' ' where a is the

Nozieres —de Dominicis x-ray exponent a = g (b,5 /f
m) =1/N in this case, and bE is the difference between
initial- and final-state ground-state energies. Since the
long-time evolution of the final state is into a Fermi-
liquid ground state, an identical power-law relaxation will
occur in our example. Consequently, we deduce that at
long times

( Q l
( ) '(0)

l g ) -1/ ""(— (1.2)
—I'(.E + )

—Eg )~
(where the oscillatory factor e ~+' ~ due to the
difference in ground-state energies has been omitted).

This infrared power-law correlation of operators that
are off diagonal in the conserved quantity Q is a hallmark
of strong coupling in the Kondo problem. In fact, from
(1.2) we can deduce the asymptotic form of the renormal-
ized Kondo coupling constant. When we integrate out the
high-lying states of the Hillbert space in a renormalization
treatment of the Kondo problem, we replace the instan-
taneous bare Kondo interaction by a time-dependent in-
teraction with coupling constant given in weak coupling
by

J*(7.) = pJ(5)rJ+0(g l
CT(7 )C7 (0)

l Q ) .

In strong coupling (low frequencies) the singular part of
the coupling constant is given by

(co)Zf (~)-Jo ( Q l
a(r)a (0)

l Q )~

where Z/(co) =I (8/c)co)GI(co) '] ' is the wave-function
renormalization of the f electron. From Eq. (1.2),
Z/(co) J"(co) -co " '~ '. By similar x-ray arguments,
power-law behavior also occurs in the f Careen's function

G/(r) = ( Tf (w)f m(0) ) -7

so that G/(co+DE)-co"~ " and the f wave-function

renormalization constant scales as Z/(cu) =co' . Com-
bining these results, gives us the strong-coupling behavior
of the dimensionless coupling constant J(co)-co ', and
the strong-coupling form for the P function is

P(J)= = —J, J~ oo
5J(co)
8 lnco

(1.3)

as deduced by Nozieres. This provides a link between the
Fermi-liquid picture and the scaling picture of the Kondo
impurity.

There is a close analogy between the off diagonal
power-law correlations in time of the Kondo problem and
critical fluctuations in space found in one-dimensional
(1D) quantum systems. In condensed-matter physics a
good example of this behavior is in the one-dimensional
Heisenberg antiferromagnet, ' which has a broken sym-
metry antiferromagnetic ground state in the limit of infin-
ite spin S. At finite spin S, long-wavelength spin-wave
fluctuations induce critical power-law decay of the spin-
spin correlation function'

(S„.S ) —( —1)" ln —ml ' + ' n —m

(1.4)

Thus, even in a finite degeneracy system, the critical fluc-
tuations of the order parameter do not destroy the qualita-
tive features of the broken-symmetry state that forms in
the infinite S limit. In particular, the long-distance corre-
lations are intrinsically antiferromagnetic, and the low-
lying collective modes are similar to the broken-symmetry
state. The picture of an almost antiferromagnetic ground
state is very useful for this system, and this forms the
basis of Anderson's semiclassical treatment of the Heisen-
berg spin chain. '

From this example one learns that by making an expan-
sion about a broken-symmetry mean-field theory, the
most singular behavior of the magnetic susceptibility at
long wavelengths is incorporated into the theory. Similar
ideas have been useful in the application of Bardeen-
Cooper-Schrieffer (BCS) theory to heavy nuclei, where the
particle pairing is treated as a broken-symmetry conden-
sate. ' Witten' has developed these ideas extensively in
his study of the large-N expansion of the (1 + 1)-
dimensional Gross-Neveu model, which is a relativistic
analogue of the Kondo model. He shows that one can
derive the power-law singularity characterizing the decay
of the order parameter by analyzing the Gaussian fluctua-
tions about the mean-field theory. Similar ideas are
present in a somewhat different guise, in the theory of
Kosterlitz and Thouless' for the 2D xy model.

These considerations strongly motivate us to regard the
strong-coupling regime of the Kondo effect as a low-
dimensional critical phenomenon with critical fluctua-
tions in time about a state of almost broken symmetry.
Within this picture, zero-mode fluctuations present in fi-
nite degeneracy systems restore the symmetry and gen-
erate the divergence of the Kondo coupling constant.

These arguments extend to many sites. Let us define
o~j~

——QI, f ' 'cI, ' for each site j where cj,' ' creates a
conduction electron in the same partial wave state as the f
state. Conservation of QJ at each site ensures
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(Q ~a~~~(r)cr~;~(0)
~

Q)=0 for i+j . For i=j, provided
that a nonmagnetic Fermi liquid is formed where the local
moments are fully quenched, the application of the opera-
tor o.

~j~ to the ground state creates a permanent hole with

QJ reduced by 1. The hole generates a persistent local
scattering potential which induces power-law decay of the
correlation function (Q

~
o~i~(r)o~~~(0)

~
Q) as the state re-

laxes to the new ground state with a hole at site j. In the
case of one impurity, local rotational invariance about the
impurity guaranteed that there were N degenerate scatter-
ing phase shifts created by the hole. In the more general
case the local scattering phase shifts will not all be degen-
erate (as we shall see for two impurities), and the x-ray ex-
ponent is a =y/N where y is of order one:

(Q ~;( ),(0)
~
Q) -5;,-1/ ", . (1.5)

The most important point is that independent conserva-
tion of f charge at each site leads to critical fluctuations
in time, but not in space.

The recognition that an underlying local symmetry can
be associated with the strong local correlations governing
heavy Fermi liquids is at the heart of this approach. In
the case of the Coqblin-Schrieffer model, the f-electron
number is the conserved quantity. In the more general
case of mixed valence, charge fluctuations are restricted to
a subspace of all possible f configurations, usually
If",f"+'I, and the projection operator P into this sub-
space provides the conserved quantity associated with
low-frequency charge fluctuations.

From a mathematical perspective, this philosophy
evolves naturally from the pioneering functional-integral
treatment of the Kondo problem proposed by Chakravar-
ty and developed extensively in the context of the large-
N expansion by Read and Newns. ' Within their formal-
ism, the broken-symmetry state appears as the large-N
saddle point.

A technical problem encountered in the early use of the
functional-integral approach was caused by constraining
Q to one, as in the conventional Kondo model. This
caused difficulties, because intersite correlations then be-
come a 1/N effect and vanish from the mean-field theory,
and extensions to finite temperature or field become diffi-
cult. True mean-field behavior occurs when N~op
with q=Q/N finite, thereby leading to "macroscopic"
occupation of the f state. By preserving the full function-
al dependences in q in the 1/N expansion about the
broken-symmetry state, intersite interactions are preserved
and a useful 1/N expansion is developed.

This change in the way the large-% limit is taken makes
it possible to extract mean-field behavior from the large-N
limit of exact Bethe-ansatz equations for one impurity
as shown by Coleman and Andrei. They have solved the
Coqblin-Schrieffer model and the analogous generaliza-
tion of the infinite- U Anderson model for general Q, and
demonstrated that when N~ oo with Q/N finite, the
mean-field equations derived by direct means appear as
the large-N limit of the Bethe-ansatz solutions.

It is illuminating to directly derive the properties of the
broken-symmetry limit for the Coqblin-Schrieffer model.
By inserting (o.)/~N =o into (1.1), we arrive at the
mean-field theory governing the large-N limit,

A *=g E(k)cl,~ci,~+ V g (ci,~f~+H. c. )
k, m

+E(Q —Qp),

k, m

where V= —Jo and we have associated a I.agrange mul-
tiplier of chemical potential E with the conserved quanti-
ty Q to aid in constraining it to the value Qo.

This one-particle mean-field theory describes a reso-
nance level at position E with width 6=m. V p
=(nJp)o. , where p(co) is the density of states in the
band, which we assume to be slowly varying on the scale
of h. The mean-field theory breaks the symmetry associ-
ated with Q conservation, and it only gives answers accu-
rate to 0(1/N) due to the fluctuations (5q ) =0(l/N)
present in the broken symmetry state. In the real
Coqblin-Schrieffer model we ultimately have to go beyond
the mean-field treatment to incorporate fluctuations. We
now use this mean-field Hamiltonian to self-consistently
determine o and q = ( Q ) /N.

As A is a noninteracting Hamiltonian, it is very
straightforward to calculate a and q=(Q)/N directly
using standard techniques. We find

o = VpReI(g) and q= ImI(g),

where g=E+iE,
(1.7)

I(g)= f f(s)

and @(e)=p(e)/p(cF) is the ratio of electronic density of
states at s to the value p(e) at the Fermi energy sF. In
(1.7) we assume that the bandwidth D is much greater
than b, . Employing a Lorentzian cutoff function
4(e) =D /(e +D ), we find

I(()=—g —+ —ln
1 1 gP DP

m 2 2+i 2mi

where g is the digamma function, so that (1.7) can be
written as one compact equation

ln +iqn=g —+ . +Tsc 1 gP in
2m T 2 2mi 2

(1.10)

in/= lnTz+i nq (1.12)

or

k= r~e'& (1.13)

This expression demonstrates that the broken-symmetry
state corresponds to a resonance level with
(E +5 )' =Tx, whose position is tuned through the
Fermi level by the value of the phase shift 5=mq. This
resonance level is naturally identified with the
Abirikosov-Suhl resonance, and it is satisfying to discover

where

T~ =De -"J&

is recognized as the leading order expression in the 1/N
expansion Kondo temperature.

' ' ' At T=0,
P(Pz)~ In(zP) and (1.10) becomes
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that this strong-coupling feature appears as naturally in
this mean-field treatment. Chakravarty, Newns, and
Read obtained this expression for the case when q=1/N
from the saddle point of their functional-integral forma-
ti 20 2 1 26

The paper is divided into four parts. The first section
examines the mean-field theory in a variety of different
cases, using the generalized Anderson model to extend
this approach to mixed valence. The second section em-
ploys Newns's and Read's path-integral formalism to
evaluate and relate the fluctuations about mean-field
theory to the electronic correlations of strong coupling.
Explicit calculations are presented for the one-impurity
model, showing how the dynamic spin and charge suscep-
tibilities, the Nozieres Fermi-liquid parameters and the f
electron propagator can be evaluated in the one-loop or
Gaussian approximation. Particular emphasis is laid on
the way in which the fluctuations conserve q. The third
section extends the approach to the two-impurity model,
presenting analytic results for the Gaussian correlations,
and emphasizing the new features which arise from a spa-
tially extended, coherent Fermi liquid, such as exchange
interactions and intersite spin correlations. In the final
part, we discuss the extension of this formalism to a lat-
tice, showing how the local constraints are consistently
imposed in the Gaussian fluctuations and setting down
the approach for a realistic angular momentum structure.

II. MEAN-FIELD THEORY

A. generalized Anderson model

g E(k )CkmCkm +g Effmfm +~m,.+~(Q —QO) ~

k, m

(2.1)

where

g V(k)(ckmfmb +bf ck )
& k,

(2.2)

induces mixing between the localized f states and band
electrons, while

Q= gf.f.+b'b (2.3)

is a conserved charge which plays the analogous role to Q
in the Coqblin-Schrieffer model. The sums over m run
from —j to j. The operator ck creates a band electron in
the partial wave state of energy E(k) with the same total
angular momentum numbers

~

jm) as an f state. b
creates a local boson, and b satisfies canonical commuta-
tion laws [b,b ]= 1.

In the case Q =1, the generalized Anderson model re-

The infinite- U Anderson model has recently been gen-
eralized by the author in a way which exploits the under-
lying symmetry associated with restricting charge fluctua-
tions to a few valence states. "Slave-boson fields" b are
introduced which describe the availability of an f state for
hybridization. For the single impurity the generalized
Anderson model is written

Xom =b'fm Xmo=fmb

we find that the X ~ obey the commutation algebras:

[Xa13rXys l =~pyXas ~asXyp

(2.4)

which can be identified as the commutation algebra of the
Hubbard operators introduced by Hubbard for the
infinite- U Anderson model, enabling us to write (2.1) in a
more familiar form:

A = g E(k)ckmck +(A+Ef) gX m+A;„+~op,
k, m m

(2.5)

A;„= g V(k)(ck Xp +X pck ),1

N k, m

For the case Ef «0 (taking the Fermi energy equal to 0),
we can carry out a canonical transformation to integrate
out the Bose field, in which case we arrive back at the
Coqblin-Schrieffer model with J=—V /Ef and Q=nf

When we extend this generalized model to many sites,
or the lattice, we are able to interpret the slave-boson field
as a smeared background hole density, or in analogy with
liquid helium, as a collective backflow associated with the
motion of the electrons. Since Q is conserved, the inflow
of an f electron is always accompanied by a backflow of
the Bose field. When the bose field has a small amplitude,
the backflow is restricted and the f electrons become
highly localized. The strong correlations of the f elec-
trons are actually built into the model by the Q conserva-
tion symmetry. This is easily seen by noting that the ma-
trix element

(f"+',Q A;„~k;f") = V(k)v'(Q n)/X, —(2.6)

showing that the absorption of a band electron into the f
level depends on the occupation and becomes zero when

nf =Q. To constrain Q=Qp in the thermodynamic en-
semble, a Lagrange multiplier has been associated with Q.

So far as the mean-field theory of the generalized An-
derson model is concerned, we can actually develop the
equations governing the behavior of the broken-symmetry
state at N= ao using straightforward operator quantum
mechanics.

B. Mean-field behavior —single impurity

If we treat (b(t))/U X =b(t) as a c-number, as is ap-
propriate in the N~ oo limit, we arrive at the mean-field
Hamiltonian governing the motion of the electron for one
impurity

A *(t)= QE(k)ckmckm+ QEffmfm+A m;„(t), (2.7)
k, m

where

;„(t)=g [ck f b*(t)+f ck b(t)] .
k,

(2.8)

verts to the infinite- U Anderson model, with the identifi-
cation bt

~

0) =
~ f ) and f ~

0) =
~ f ':jm ). In fact, set-

ting

Xpp b——b, X =f f
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The dynamics of the Bose field are determined from the
equation of motion i r)b/r)t = ( [~,b(t)] ), or

exp( /3—F,rt [b,b ] ) = f N [P, P] exp( /3—F[P, g; b, b ] ) .

(2.16)

b(t.)+ —g V(k)(ck (t)f (t))
at

plus the constraint

qp= ~b(t) ~'+nf(t),

(2.9)

(2.10)

F,g is the effective free-energy functional for the Bose
fields with the fermions integrated out of the dynamics.
Since this integral is quadratic in the Fermi field, we can
evaluate it to gain

where nf =(nf ) IN Eq.uations (2.7) to (2.10) completely
describe the mean-field behavior occurring in the large-2V
limit. We see that the Bose field acts as a dynamic poten-
tial field which governs the mixing of the band and f elec-
trons.

To go beyond mean field requires a perturbation theory
about the coherent states of definite b and the path-
integral formalism becomes useful at this point. For the
moment we shall confine ourselves to a brief discussion of
how the equations of motion (2.7) to (2.10) arise as saddle
points of this path-integral formalism.

(2. 1 1)

where P= 1/k&T and

Z(k)= Tre (2.12)

In (2.11) the Fourier transform over the Lagrange multi-
plier A, constrains Q =go. Z(A, ) can be written as a path
integral over the Bose and Fermi fields

Z(X)= f u[qq]u[b b]e t'(~~' bl (2.13)

/3F[Q, Q;b, b)= f dr g Q;(r)

+b(r) b(r)+P [A],a
87

(2.14)

is the full free-energy functional. Here f; and g; denote
the Fermi fields (formally represented by Grassman vari-
ables) and b, b are the c-numbers representing the Bose
field and its complex conjugate. &[/, g] and &[b,b] are
standard Cartesian measures for Fermi and Bose path in-

tegrals. ~ is the imaginary time variable and implicit in
the functional integral are periodic boundary conditions
for the Bose fields and antiperiodic boundary conditions
for the Fermi fields, P(r+P) = —P(r) and b(r+P) =b(r)

To determine the saddle-point equations, we freeze the
Bose field at each point in time and calculate the motion
of the fermions in this external field. The path integral is
then written as

C. Mean-field behavior from path-integral formalism:
single impurity

The partition function of the Gibbs ensemble with de-
finite Q =Qo is written

a
/3F, tt[b, b]= f drab(r) +X b(r)+PF~[b, b],

/3F~[b, b] = —Tr& &In 1 +A *[b,b] (2.18)

where A [b,b] =A *(r)5(r r') and—A *(r) is the
time-dependent Hamiltonian of (2.7). The trace in (2.18)
involves a trace over imaginary time and the full Fock
space of the fermions, i.e.,

Tr~ &A = f dr Tr& &A(r, r) (2.19)

and (p, 1() denotes the trace over the Fock space. The full
partition function (2.11) can now be written

( ) f ' dA.

Xf N[b, b] expI P(F,tt[b,—b] —Ago) I .

(2.20)

If we take N~oo with Qp/N=qp finite, then the ex-
ponent of this path integral becomes extensive in X, al-

lowing us to approximate Z(gp) by its saddle-point value

Z( gp ) = exp( PI F tt[b (r) b (7)]—togo I ) (2.21)

where b(r), A, are the saddle points of Il,tt=F,tt+kgp.
Directly taking the derivatives of (2.16), we find

a +~. b(.) + g V(k )(...(.)f (r)&
1

5b(r) N

=0,
~jeff

aA,
=

f
b(r)

/
+(nf ) —go=0

(2.22)

which are Eqs. (2.9) and (2.10) expressed in imaginary
time r =it.

D. Mean field in thermal equilibrium:
Phase diagram for strong coupling

In thermal equilibrium we apply a static solution to the

Bose field (b ) I~N = b = const, from which we gain

(2.17)

where F~[b,b] is the fermion free energy for the frozen
Bose field configuration b(r).

This is expressed compactly as a trace over the Fermion
field space and imaginary time

Z(Z) = f u[b, b] exp( pF,ff[b, b]), —

where

(2.15)
Apb+ —g V(k)(ck f )b,——0,

k, m

T +nf =qp,

(2.23)
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where qo =go/N and r = b
The expectation values in these equations are then

determined self-consistently using the Hamiltonian (2.7)
with a constant b(~) =b =roe . This is a very straight-
forward task, as (2.7) is now a static one-particle Hamil-
tonian. The one-particle Careen's functions

X V(k)&Tf~«)ckm(0) ~ Gfk(r)
k

P(()—Im +(=Ef +i bq .
b.13

7T 277 I
(2.29)

(=Ef+ib =(Ef+A)+i br 0

and denoted

(2.30)

Here we have introduced the complex f-level position

and

( Tf (r)f~ (0) ) =Gf (7)

0(k)=0 —,+,
The quantity

(2.31)

are given by

Gf(ice„)=[icy„Ef 1 O—Xf(LCD„)]

Gfk(ice„) =roXf(iso„)Gf(ice„),
(2.24)

where the Careen's functions are Fourier transformed with
the convention that

Dm.
Ef ——Ef +—ln (2.32)

contains all the cutoff dependence in the mean-field
theory, and it is recognized as the leading order O(1/N)
expression for the Haldane invariant f level

and

G (r)= —P 'g G (ice„)e
Ef (N ) =Ef +—1 ——ln

1 D~
N

(2.33)

Xf(ice„)=g ~

V(k)
~

/[ice„—E(k)] .
k

(2.25)
which characterizes the high-frequency charge fluctua-
tions.

If we let T~O, (2.28) reverts to the form

—g V(k)(«.f.&=a 'g Gf.« .).-'"N k, m n

g (f f ) =13 'g Gf(ice„)e
(2.27)

For a large symmetric band of width D, where V(k)
and the density of states in the band are assumed to vary
smoothly over the scale of energies characterizing the
low-energy quasiparticle excitations, the analytic exten-
sion of Xf(ice„) is given by

Xf ( co ) = i sgn —( cu I )b r o N( cu ) +0 ( co /D, b /D ), (2.26)

where col ——Imago, b, =rrp
~

V(kF)
~

is the bare resonance
level width and p is the density of states at the Fermi en-
ergy. N(co)=p(co)/p defines the variation of the band
density of states away from the Fermi energy. This ap-
proximation is of course only appropriate for the low-
energy, long-time behavior ~&&D '. Now we can relate

—ln +(=Ef

+iraq

. (2.34)

$=2T, tanh '(1 —2q),

In the Kondo limit
~ g ~

&&b, and the logarithm (or di-
gamma) function dominates the mean-field behavior. By
setting Jp= —6/Ef, we arrive back at the mean-field ex-
pression for the Coqblin-Schrieffer model derived in the
Introduction (1.10). It is remarkable that the introduction
of charge fluctuations into the mean-field theory produces
such a simple modification to the saddle-point equations.
Read and Newns first obtained (2.34) for the case
q =1/N.

Equation (2.29) can be solved self-consistently for g.
Sample curves for r 0 ——(b, /b, ) are shown in Fig. 1. The
renormalized width 5 vanishes at T= T, given by

Carrying out these integrals by conventional contour in-
tegrations, and deforming the contour about the cut along
the real axis generated by Xf(z), in a similar calculation
to (1.8) we find

2 T&7T 1 tanh '(1 —2q )
tanh '(1 —2q )+ Re/ —+

2 7Tl

(2.35)

g V(k)(ck f ) = ReI(Ef+ib, ),
N k, m 7T

g (,f f ) = ImI(Ef+ib, ),
m

(2.28)

where A=Dr o is a renormalized resonance level width
characterizing the mean-field resonant f level as in (1.8).
Using the result (1.9) for a Lorentzian cutoff
4(co)=D /(co +D ), we find that we can write (2.22) as
one equation,

nEf*
+iqm .

Bgps g Plnf~— (2.36)

Placing h/N=gpsB, we find on reevaluating (ck f )

At T& T, the mean-field solution becomes the trivial
solution b =0, f( g ) =q corresponding to unquenched lo-
calized f electrons.

These expressions can all be modified to incorporate an
interaction with a magnetic field
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FIG. 1. (a) The mean-field phase boundary h, (T) separating
strong from weak coupling in the one-impurity model for vari-
ous filling factors. (b) Variation of r o(T) =A(T)/5 in the
mean-field theory.

FIG. 2. Comparison of Bethe-ansatz results with mean-field
theory, displaying the susceptibility P( T)2~Tosin(~/X)
=X(T)6n Tsoi nml/N)/[j(j +1)(2j+1)] for the sequences
Q/N = T, 3, 6, where at T =0, in the Kondo regime

1 1 1

g(T =0)2vrTosin(~/N) =sin(mQ/N). The curves for Q/N
= 1/2 and Q/N = —,

' are shifted upwards by 0.5 and 1.0 units,

respectively.

and ( nf ) that the mean-field equations become
1 + dc@ 1

=qo —— —i co ' 'I 1+iceN rr —~ 2' co+ i6

h —ln =Ef*+iAq,
—i co(n.Ef*/5)

X e / sinh(ncoq) (2.40)

(2.37)

where the sum over m corresponds to the 2j+1 nonde-
generate f levels. In the large-N limit we can replace the
sum by an integral to find

2&lks T I (/+h /2) Q QP+- ln ——ln
I (g+h/2) n 2m i

nf 1 +" dm sinh(m. gtv/N )=qo — . . F(tv)
N 2~ —~ i(to+i—6) N sinh(neo/N)

—ice(nE& /5)Xe (2.41)

and show that the right-hand term is nothing but the in-
version of the mean-field equations for b (Ef +id, q). At
finite degeneracy they find that

where

1 1 z/3r()= r —+
277 2 27Tl

=Ef +iraq, (2.38)

(2.39)

where the function F(to) is given by

F( tv ) — [ & ( ~ & g )] i s&( I —1 /N—)e —
~

co
~

n /N
I (1+its/N)

(2.42)

and I (z) is the gamma function. The phase transition be-
tween strong and weak coupling is field dependent, occur-
ring at T, (h ) as shown in Fig. l.

E. Comparison with Bethe ansatz

Coleman and Andrei have calculated the f occupation
of the single-impurity model using a Bethe-ansatz solu-
tion, and have explicitly taken the N~ao limit with fi-
nite q. At T=O, B=0 they find

and Ef =Ef+(1—1/N)(h/~)ln(D~/b). An important
feature of (2.41) is that it has a perturbative Taylor-series
expansion in 1/N about the N~ao limit (2.40).
lar agreement is obtained with the zero-temperature linear
specific-heat coefficient and the zero-temperature magnet-
ic susceptibility. At finite magnetic field, in the limiting
case of the Coqblin-Schrieffer model, they are able to
show that the mean-field result can be used as a precise
solution to the Bethe-ansatz integral equations in the
large-X limit. At finite T, the Bethe-ansatz equations
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b(rz)
b(r, } and

G(0)( ) P
—i y G(&)( ~

)

b(rs)

where

Gk(ice„)= [ia)„—E(k )]

Gf '(iso„)=(iso„Ef)—
Now if further we define the mixing operator

V=b(r) g ck (r}f (1 ),V(k )

k,

(2.46)

(2.47)

FIG. 3. Diagrammatic representation of the fermion loops
entering into the boson free-energy functional. The dashed lines
are unhybridized f propagators and the solid lines are conduc-
tion electron propagators.

~ (0)—1
LJ f

V G band

(2.48)

where b(r) is a c-number, then we can compactly write
the operator

have been solved numerically, for the case of the
Coqblin-Schrieffer mode, and they show clearly the
development of mean-field behavior as N~ao with q
fixed (Fig. 2). We may therefore be confident in the case
of the single impurity, that the mean-field solution
represents a smooth limiting case of the finite degeneracy
solutions.

F. Thermodynamics

The direct calculation of the mean-field free energy
QMF —0 ff(bo, ko) enables us to generate the mean field of
the large N limit, and in later sections this is employed to
calculate the renormalizations that arise from the fluctua-
tions.

From (2.17) we have

By using the identity

C
Trln C &

——TrlnB+ Tr ln(A CB 'C—), (2.49)

we are able to split F& into a band-electron and f-electron
contribution

A ] A. [p) ] A A A.
G f ——Gf —VGb, ndV .

We can write the propagator Gf(r, r') as

Gf(r, r'}=[[Gf '(r r')] '+Xf(r—,r )I

(2.51)

(2.52)

Fy =Fband —k~ T Tr 1nG f ' (2.50)

where Fb,„d———kz T Tr lnG b,„'d is the constant band-
electron contribution to F~ (henceforth omitted) and Gf
is the full f-electron propagator in the presence of the
Bose field, given by

Q,MF N(r 0 qo——)A, +F&—(b =ro} . (2.43) where

The fermion contribution to the free energy F~ can be
written down compactly in terms of the f and band-
electron propagators, enabling us to understand F&[b,b]
diagrammatically.

To do this, let us define operators corresponding to the
bare f and band-electron propagators

Xf(r, r') = b(r)Xf(r r'—)b('r )—
N

(2.53)

is the f-electron self-energy in the dynamic Bose field and

Gb.nd =

GO

a +~banda~
= Q ck (r)Gk(7 r')ck (r'), —

k, m

(2.44)

= g f (r)Gf '(r r')f (r') . —

was defined in (2.25).
The f-electron free energy (with Fb,„d omitted) can for-

mally be written as a perturbation series in V

F&[b,b] = —k~T Tr ln(G f +Xf )

= —k&TTrlnG' '

(2.45)

Here the Fermi operators are in the Heisenberg represen-
tation, and the explicit expressions for Gk(r) and Gf '(r)
are

Gjf(r) P y Gk(i~ )e

1k+T g —Tr[( XfG—f)"], —
n=1 n

(2.54)

which we recognize as a sum of all closed-loop diagrams
generated by contacting the f-and band-electron propaga-
tors in the presence of the dynamic Bose field (Fig. 3}.

We will return to this general expression in the next



5080 PIERS COLEMAN 35

section. For the moment, by setting b(7)/~N = const
=rp, the f propagator reverts to the form shown in Eq.
(2.24), allowing us to write

F&
"—— Nk—& T g In[Ef +r DXf (i co„) i co„—], (2.55)

n

where the prefactor arises from the sum over the 2j+ 1

spins. Converting (2.50) into a contour integral and dis-
torting it around the real axis gives

7,= —Im[g'(g)/vr], (2.65)

1 1 1—Im —=— T=0
7T (Q 2+E )

(2.66)

to the weak-coupling value

where f'(g) =Bg(g)/Bg. This result extrapolates smooth-
ly from the result of Read and Newns at T =0

X, =q(1 q)/k—~T, T & T, . (2.67)

Fy= —N f f(~)P(~)&(~) .

Here,

(2.56)
It is this function that was used to calculate the large-N
limit in Fig. 3. Similarly, the charge susceptibility is
given by

5(co) = tan
Ef —Cg)

(2.57)
Bnf =—Im 1+—P '(() (2.68)

is the f-channel phase shift produced by the renormalized
resonant level and P(co) is the cutoff function
P(co)=D /(co +D ). We will write

which extrapolates smoothly from the Read and Newns
result at T =0,

F~ ———N Im ln —co des
+" f(ar)P(~)

N=+—Irn I z dz (2.58)

7, =—Im (2.69)

by (1.8). Thus by (1.9)

N D
F~ ———Im 2nik~ T lnI (g) —g ln

27Tl
(2.59)

where I (z) was defined in (2.39). When we add on
N(r o qoQ, this give—s

to zero at high temperatures ( T ~ T, ).
These results will be modified when we take into ac-

count the fluctuations. From these results, we see that the
broken-symmetry state corresponds to a quenched local
moment, whereas the weak-coupling regime with b =0
corresponds to free local moments. As a final indication
of this result, we can calculate the entropy of the system,
given by

AMF=N ImA, ",
where

« E*)'—
II, "= + 2~ik~TlnI (g) —~ ln

2A 7T 27Tl

(2.60)

(2.61)

an an,= —Im
an, /ay=o

= —Nk~ Im I 2i lnl (g)+ gP[P(g) —1]I, (2.70)

and E,*=Ef*+iAqo. In a finite field we can generalize
this expression to which extrapolates between the low-temperature limit

(g E,*) 2—iks T

m

b,P
277l

(2.62)

k
S=Ny m. T

3

with y =X, ( T =0) and the high-temperature limit

(2.71)

where g =g —(m /N )h =g mg p~B. —
From 0, we can quickly rederive the saddle-point

equations from the stationary condition BF/B(=0. We
can derive the f occupation in the mth channel from

~+MF
nf —— ———Im 1'(g ) +

8 ~ gE* 17 2
(2.63)

(2.64)

where

Thus, in small fields the magnetization is

M= g(gp~ )mnf =B[—,
'

(gp~) j (j +1)(2j+1)]X, ,

P = —Nk~ [q lnq + ( 1 —q) ln( 1 —q)] (2.72)

corresponding to a proportion q of full f states, and a pro-
portion (1—q) of empty f states.

As we might expect, the mean-field thermodynamics
are a poor approximation to the high-temperature thermo-
dynamics of the finite degeneracy system, where fluctua-
tions produce the all-important logarithmic tails in sus-
ceptibilities, leading to nontrivial high-temperature
corrections. However, in the strong-coupling regime this
simplistic approximation is qualitatively good and sums
the most important logarithmic contributions in the in-
teractions. Figure 4 shows plots of Cz/T =dS/dT de-
rived from (2.70).



35 MIXED VALENCE AS AN ALMOST BROKEN SYMMETRY 5081

1.5

o
O

II
i

~~
0.5

E

0
0

I

0.5
T/Tx

I

I

i I

1

FICy. 4. Showing [ TK /sin[n nf( T =0)] J Ci./T, where

T~ ——(Ef+6 )' . The plots are for the Kondo limit with
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;„(R;)=g [ck f (R;)b (R;)e

+f (R; )ck b (R; )e'" ], (2.75)

enabling us .to write down the many-site version of the
generalized Anderson model

A = g E(k)c k~ ck~ +g Eff ~(R;)f~(R;)
k, m R;m

+ gM;„(R;)+ QA(R, )Q(R, ),
R; R;

(2.76)

ck~(R=O) avoiding the need to ever explicitly consider
the projection (2.73). In a real lattice we need to incorpo-
rate the details of the angular momentum structure.

To develop the formalism with maximum clarity, we
shall forego a realistic angular momentum structure until
the final section where this issue is addressed more fully.
Instead we shall suppose that both the f electrons and the
band electrons have a spin degeneracy of N =2j+1. In
this case, the mixing at each site can be written

G. Many sites

The generalized Anderson model can be written down
for many impurities, or the lattice, by introducing a con-
served charge Q; for each site at position R;. Associated
with each site is an auxiliary-boson ("slave-boson" ) field
b; describing the availability of site i for hybridization.
One of the complicating problems associated with a real
mixed-valence lattice is the angular momentum structure
of the band and f electrons. In a real electron band the
electrons have spin half, whereas the f electrons in a typi-
cal mixed valence are spin-orbit coupled into a state of de-
finite j. Even excluding the effect of crystalline electric
fields, which split the (2J+ I )-fold degeneracy into small-
er multiplets, this means that hybridization at each site
occurs through those partial wave states with the same
angular momentum quantum numbers as the spin-orbit-
coupled f state. To describe this hybridization we need to
project the band-electron states onto the appropriate local
partial wave states. This is compactly accomplished with
the overcomplete set of field operators for the band elec-
trons

dQ-
ck (R)= g f e '"

CJ I'i/2 Yi' (k)ck
o =+1/2

(2.73)

where

Q(R;)= g f (R;)f (R;)+b (R;)b(R;)
m, R;

(2.77)

o(R;)= g f~(R;)ckme
k, m

The mean-field theory and the path-integral formalism
develop along parallel lines to the one-impurity model.
The partition function is written as a constrained func-
tional integral

/p pd A.(RJ )
ZMv ——f g Z(A,J. ) expp g A,JQJ

j J

(2.78)

where MV denotes mixed valence, and as before

Z(A,~) =Tre
—pF[,g, b, b]

with

(2.79)

and we associate a chemical potential A,(R;) with each
conserved charge Q(R; ). In the limit Ef &&0, this model
reverts to a lattice version of the Coqblin-Schrieffer model
with a spin interaction —( J/X)o (R;)o(R;) at each site,
where

where CJi'i/2 ——(j I ,';m ~

I, m cr;—s= —,'—,o ) is the
Clebsch-Gordon coefficient projecting into the local f
state. Typically, l =3 and j =3+ —, in mixed-valence
ions. In terms of these operators the mixing at each site is
written

/3F [P,P;b, b] = f dr g g;(r) P((r)+b; b;
— a

l

+~A, ;] (2.80)

A;„(R;)=g [ck (R;)f (R;)bt(R;)+H. c.] .

(2.74)

In the case of the one-impurity model, the full Hamiltoni-
an can be written down in terms of the local operators

The differences to the single-impurity case lie in the ex-
tended Hamiltonian, and the extended measures, which
integrate over the A,;, and the f electron and Bose fields
for each site.

As before, the saddle points of the path integral are
determined by the stationary point of the Bose-field effec-
tive action
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PQefr[b& b& A| ]= f dr g b (R t 7) +A
&

b (R& r) —g Pk tgo+PFy[b& b& ]'a (2.81)

from which we gain

p5Q, rr

5b(R;, r)

pMl, rr = ~b(R, , )~'+("~(R,, ))—g, =o.
5A, R;

+lt(R;) b( r)+ Q V(k)e ' (ck (r)f (r)) =0,1

a7- N k
(2.82)

The expectation values are determined from the motion of
the electrons in the ( c-number) dynamic Bose field

~band+ g [Ef+~(R )]nf(R; ) + g A;„(R;,r)
R,

(2.83)

where EI EI+A, ——and V(k)= V(k)ro. The Hamiltonian
can be split into two parts containing symmetric and an-
tisymmetric eigenstates of the parity operator. We shall
define symmetric (P=+) and antisymmetric (P= —)

fermion states as follows:

where

~';„(Rj,r)= g V(k)[b(R;, r)ck f (R;)
R;

X e '+ H. c.] (2.84)

f = -(f i+Pf 2),~2

(+)
Ckm

I- dQk g.R
[~+(k)]' " 4m 2

cos ck, (2.88)

and ( ) i

[m (k)]'" " 4~
k.R

km

b(R;, r) = b (R;, )r.
N

(2.85)

O=A(R;)b(R;)+ —g V(k)(ck f (R;))e

The static thermodynamics demand b(R;, r) =const, lead-
ing to the simple mean-field equations P tP'

Ifm ~fm' I =5pp'5mm' ~

P P'f
I Ckm, ek m I =5pp'5mm'5kk' i (2.89)

where ~p(k) = —,
' [1+Pjo(kpR)] and jo(x) =sinx Ix. The

antisymmetric and symmetric states are orthogonal

~

b(R;)
~

+n~(R;)=qo .
(2.86) and this enables us to write A *=gp +, A, where

To illustrate the application of these mean-field equations
we shall consider (i) the case of two impurities and (ii) a
simple lattice model. Related studies of the two-impurity
model have been made by Lavagna for the Kondo model,
using a different functional integral approach, and by
Rasul for the infinite- U Anderson model using Brillouin-
Wigner theory. ' ' We shall contrast the results obtained
here.

1. Two impurities: mean field behauior-

Suppose we have two impurities at +R/2. Since the
system is invariant under the parity operation
I':R~ —R, the ground state will preserve this symmetry,
so the mean-field calculation is simplified in advance by
placing A(R, )=A(Rz) and

~

b(Ri)
~

=
~

b(R, ) ~. Now
Q(Ri) and Q(R2) are independently conserved, so the
phases of the Bose fields at each site can be independently
modified without changing the energy, so we can choose
b(Ri) =b(R2) =ra. The mean-field Hamiltonian then be-
comes

d+Ef (nf i +nIQ)

+ g V(k)[ck (f i
e'" ~ +f2 e

' ~ )+H.c.],
k, m

(2.87)

M = g E(k)ckmckm+EgnI
k, m

+ g V (k)(ck f +H c. ) .
k, m

(2.90)

Xy '(ito„)=r op . [1+Pjo(kR)] .
tto„Ek-

lCO

(2.92)

By analytically continuing the Matsubara sums, the fer-
mionic part of the free energy can be written as the sum
of two phase shifts

Fg —— N f f (to)[5'+ '—(to) +5' '(co)], (2.93)

Here, V (k)= V (k)ro, V (k)= V(k)[2.%'p(k)]', and

EI El+A. The ——states of opposite parity are not mixed
by the static mean-field potential, enabling us to treat
these two channels as separate resonant scattering chan-
nels. Each channel can be treated at the mean-field level
in an analogous manner to the one-impurity problem, so
that the fermionic part of the free energy is

Fg "—— Nktt T g g —in[a+ Xf'(i to„) i to„], —
P =+1 iso„

(2.91)

where
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where

tan5' '(co)=1m(ln
~

Ef+Xf'(tp —i5) t—p]] . (2.94)

and interestingly enough, it would also arise if a
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction of
the form

Provided that kR does not change significantly over the
energy width of the resonance, then we can approximate
Xf '( tp i 5—) by its value at the Fermi energy Xf '(p —i 6 ).
This condition is met provided that

T

Bk
M'(k) i, =a

«1 (2.95)

This defines a "near field" around the local moments,
within which Xf'(cp) can be approximated. Now
R/uF(h/A)=t/r, where t =R/uz is the time for infor-
mation to be transmitted between the two sites, and
~, =A/6 is the typical time scale for spin fluctuations of
the local moment, so the near field is a region where con-
duction electrons travel between the impurities in a time
which is short compared with the spin fluctuation time.
This condition should be well satisfied in a typical
mixed-valence or heavy-fermion system, as discussed by
Rasul. ' In a lattice vF -cFa, where a is the lattice spac-
ing and ez is the Fermi energy, so we can rewrite this ex-
pression as R /a « cF/A. In a real system,
cF/6-100 —1000, so the "near field" of a mixed-valence
ion is a vast region of —10 —10 lattice spacings about
the ion.

In the case of the one-impurity problem, the real part of
Xf(p) can be set to zero by choosing a symmetric conduc-
tion band, and any departures from the symmetric case
can be accommodated by a redefinition of Ef* or the Kon-
do coupling constant. For two impurities, however, this is
not true, since ReXf+'&ReXf ', and only the parity-
independent real part of ReXf ' can be made to vanish by
forming a symmetric band. [Although it is worth noting
that had we chosen a one-dimensional conduction band
with linear dispersion, then the real part of Xf(p) would
actually have vanished. ] The essential approximation for
Xf'(tp) will therefore be

Xf '(cp i 5)=Pt +—i b [ 1 +Pgp(k+R )] (2.96)

where the parameter t is the parity-dependent real part of
Xf '(p), given by

~RrcKv= —g (f i~fz~fz~fim )
J(

(2.100)

has been included, which might be appropriate in the
Coqblin-Schrieffer case. Such terms are generated by the
leading O(1/N) fluctuations about mean-field theory, so
that even if they were not included originally, they would
generally appear in a renormalization process.

The total splitting of the resonances is then given by

«t "p( + &op)+ —X &f&mf&~~N
(2.101)

With the Lorentzian phase shifts, in analogous fashion
to the one-impurity case, we can integrate the free energy
to arrive at

AM"=N 2Ar+ , g Im 2ikti T in[I (g' ')]
P=+1

(p) ln(DP)
27Tl

(2.102)

r

rp+ —,
' g Im —P(g ) —ln

2
——qp,

p + ] 277 l

where b, ' '=6[1+Pjp(k~R)].
For the case of a parabolic band,

E (k) =irt k /2m, choosing V(k) = V, a constant,

2h J"D dkk 1 ' (kR)
kF 1 —(k/k~)

cos(k&R )

kFR
1+ g (kfR, kD/kp)

7T F

where

(2.104)

where g'~'=Ef' '+id, ' '. The mean-field equations can
then be obtained directly by differentiating 0 " with
respect to r and k, which leads to

a(P' —Zpi

P =+1 27T l

(2.103)

V(k)t=r pt =r pg jp(kR) .
p —E(k)

(2.97) where E (kD )=D defines the upper cutoff. The function
g (x,y) is given by

The even and odd phase shifts are then given by

g (P)
tan[5' '(tp)]=

Ef —co
(2.98)

A i, z
—— (bifi f2 b2+H. c.),~] op

N
(2.99)

with Ef ' Ef+Pt and b ——' '=b[1+Pj p(kpR)]. The
widths and positions of these two resonances are different.

The splitting of the f resonances can be thought of as
the development of dispersion in the f electrons. The
term t could equally well have been generated by an inter-
site hopping term in the original generalized Anderson
Hamiltonian.

g(x,y)=1m(e'"Ei[i(y —1)x]+e '"Ei[i(y+ 1)x]j,
(2.105)

where Ei(ix) = — ds (e "/s) is the exponential integral
X

function.
The choice of kD/kF sets the degree of conduction-

band asymmetry and this in turn determines the amount
of f-electron dispersion in the quasiparticle excitation
spectrum. t only vanishes for particular values of R;
however, for the special case that kD/kF ——1.196. . ., t
vanishes at R =0 and R = m.

Finally, we note that as in the one-impurity model, we
can take the Kondo limit, whereupon the digamma func-
tions dominate the left-hand sides of (2.103), leading to
the result
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1

2
P=+1

Re
1+P[jp(kFR) —iy(R)] p T~g

g(g ) —ln
7T 27Tl

(2.106)
1 t Tr, I3

Im —1(j(g ) —ln
77 2'ITl

=e'0

where y(R)=t/b, =t/b, =(p) 'gk jp(kR)/[p —E(k)].
We summarize this section as follows.
(a) We have found a coherent mean-field solution

characterized by a Fermi liquid involving two nondegen-
erate Kondo resonances with different widths
b —+ =5[1+sin(kFR ) /(kFR ) ] and different positions
E f '=Ef +Pt Wit.hin this Fermi liquid, intersite
propagation is related to the Chfference between the an-
tisymmetric and symmetric propagators G) (cp)
= —,[Gf (to) —Gf (co)]. Unlike the Brillouin-Wigner
treatment, multiple intrasite and intersite hopping of con-
duction electrons is included at the mean-field level.

(b) Although there are two relevant energy scales
characterizing the two-impurity model 6 —+, the crossover
to strong coupling is independent of intersite interactions
in the mean-field limit, for when rp~O, Eqs. (2.103) re-
vert to the single-impurity expression. Coherence
develops once the symmetric Bose fluctuations become
unstable and acquire a finite amplitude. In Sec. IV we
will find that below this temperature, once the finite ex-
pectation value of the symmetric Bose field is included,
there is no subsequent instability of the antisymmetric
fluctuations, as suggested by Lavagna.

(c) The amount of f dispersion in the quasiparticle
Hamiltonian is dependent on the degree of conduction-
band asymmetry. This is a new feature of the many-site
problem that is preserved by the 1/N corrections.

In Sec. IV we will return to the two-impurity model to
calculate its Fermi-liquid parameters and intersite correla-
tions.

is restricted to the first Brillouin zone. The vectors Ci are
the reciprocal-lattice vectors. As before, Ef =Ef +k and
V(k) = V(k)r p In .terms of Bloch states, the mean field is
defined by

A, rp+ —g V(k+G) ick+o f (k) ) =0,1

N ko

.—,'+ —' y &f.'(k)f. (k) & =qp .
Nk, m

(2.109)

and

Gf ( k,i to„)= [ito„Ef X—(k—i , co)]

D(k, ico„)=X(k,iso„)Gf(k,iso„),
(2.111)

X(k, iso„)=r pg ~

V(k+G)
~

/[ico„E(k+G)]—.

(2.112)

The poles of Gf(k, z) define a renormalized band with two
branches on either side of the renormalized f-level Ef
given by

We can calculate the expectation values from the Green's
functions

Gf(k, r) = ( Tf~(k, r)f~(k, O) ),
(2.110)

D(k, )r= $ V(k+G)( Tf (k, ~)ck+o (0)),
G

where, in Fourier components

e(k) =Ef +X(k, E(k) ) . (2.113)
2. Simplified lattice model

The extension of the spin j model to the lattice is
straightforward. If we normalize the Hamiltonian to the
unit cell, the mixing term for the lattice has the form

We shall assume for definiteness, that Ef =E(k) for
some k in the first zone. X(k, co) is now conveniently
separated into two terms X(k, to)=Xp(k, co)+r pt(k, co),
where

A;„=,~ g [c„ f (R)b (R)e
(n. )'" R, ),,

+H. c.], (2.107)

Xp(k, co) = V(k)

is a singular function for co-E(k) and

(2.114)

where n, is the number of sites in the lattice. In the
mean-field-limit translation symmetry implies that the
static values of A, (R) and

~

b(R)
~

=rp are constant at
every site. Defining Bloch states for the f electrons, the
renormalized Hamiltonian governing the mean-field
behavior is

E(k+G)ck+o ck+o + g Eft (k)f (k)
k, G, m k, rn

+ g V(k+G)(c~+G ~fq~+H. c.), (2.108)
k, G

where fk =1/(n, )' g f (R)e ' and the sum over k

) ~ V(k+G)
G( p) co —E(k+G) (2.115)

E(k)=Ef+r pt(k, p)+Xp(k, E(k)) . (2.116)

Without the final term, this would give rise to an f band

is a smoothly varying function for co-s(k). In general,
since V(k) and Ef are much smaller than the width of the
conduction bands, we can approximate t(k, )c=ot(k, p),
where p is the chemical potential. The eigenvalue equa-
tion now becomes
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with weak dispersion given by E/(k) =EI+ r Ot(k, p).
This is a consequence of admixture with the higher con-
duction bands. The final term introduces the hybridiza-
tion with the conduction band in the first zone, and leads
to two poles in G/(k, co), given by co=+ (a =+ 1), where

d k
Ef Ef+ gI, I

V«+G) I'
(2~)

f(e (k)) —f(e+(k+0))
s+(k+ G ) —e (k)

(2.119)

s+-(k) = —,
' (E/(k)+E(k)

+ {[E/(k) —E(k)] +4r OV(k) I'~ ) . (2.117)

V(k)(cg+K f (k)) =P ' g D(k, ice„)
k, k, m k, l Q7

(2.118)

and by contour integrations, distorting the contours
around the poles s (k), we can determine k, yielding

Note, that the mixing with the higher bands will some-
times lead to sufficient dispersion in E/(k) to eradicate
the "hybridization gap" between the lower and upper
band.

The mixing Careen's function determines the degree of
mixing between band and f electrons

where the integrations are over the first Brillouin zone.
As in the one-impurity case, the renormalization of the f
level involves excitations extending to the upper band
edge, leadjng to a dependence of Ey on the bandwidth.
We can extract this dependence by defining an invariant f
level

d kE/=E/+ g I (
V(k+0)

(

(2m. )

e( —E(k+G))
b /~ —E (k+ G)

where h=mp(eF)
~

V(kF)
~

as before. For an artificial
Lorentzian density of states with no k dependence of the
hybridization, b, (c,)=~ /(c. +D ), as assumed in the
single-impurity model, E/ =E/+ (b, /~) ln(Dn /5). In
general, the detailed cutoff dependence will of course be
more complicated. E~ contains the information about the
local high-frequency charge fluctuations which contribute
the major renormalization of E/. In terms ofEg.

f(e (k)) —f(s+(k+C ))
(2') s+(k+ Cx) —e (k)

8( —E(k+Cx))
b /~ E(k +Cx)—

(2.121)

and the integral does not depend on details of the high-
energy cutoff. The dominant contribution to the
remainder is derived from excitations near the Fermi ener-

gy, enabling us to approximate V(k) and the density of
states by their value at the Fermi energy. We can evaluate
this integral precisely, provided that the k dependence of
V(k) and the f-band dispersion t(k, p) are ignored. By
making these approximations and changing variables to
s = e —(k) in the first term of the integrand and eE (k) in
the last term then yields

G/(k, iso„)=G (k,ice„)+G (k,ice„)—GI, (k,iso„),
(2.125)

where G +—(k, ice„)= [iso„—s —+(k)] ' and

G~(k, ice„)= I ice„E(k)—
~

V(k—)
~

/[ice„—E/(k)] I

(2.126)

is the band-electron propagator in the presence of the
strong resonant scattering at each site. Carrying out
(2.124) as a contour integral then yields+" f(e)EI——Eg +— dp—oo

b, f3= Eg ——Ref(E/) —ln
2772

e( —.)

4/~ —c

(2.122)

&f —~o 3 &g + c~ — E k —nz 2 127
d k
(2'�)

where

which is very similar to the single-impurity result reduc-
ing to

Eg~
E~+—ln =E~~ (2.123)

nI P' g G/(k, —i—co„) .
k, lcd

(2.124)

We shall expand GI(k, ice„) as

at T =0.
The f occupation nI ——(n/) /X can be calculated from

the f propagator

(2.128)

is the polarization of the band electrons by the renormal-
ized scattering potential. By expanding n~ to leading or-
der in

~

V(k) ~, we find nz 0(b, ro/D) &——&, 1, showing
that the band electrons are essentially unpolarized by the
mixed-valence lattice (this is Anderson s compensation
theorem, generalized to the lattice). The main contribu-
tion to nI is recognized as the increase in the Fermi-
surface volume due to the renormalized scattering poten-
tial.

The two results (2.122) and (2.127) illustrate an impor-
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r p+5VFs/(27r) =qp, (2.129)

tant property of the lattice, that while the renormalized
position of the f level and hence the bulk energetics of the
lattice are determined by the local fluctuations, leading to
a similarity between the mean-field expressions for Ef,
the coherence effects of repeated scattering near the Fermi
surface lead to quite different sum rules governing the f
occupation. Equation (2.127) enables us to write the final
mean-field constraint equation nf + r o ——qo as

where g= Ef +i b (q —nf ) satisfies g'+ (b /m) ln(g'vr/b, )
—Ef +i Aq. Setting nf ——nf /X, q = 1 /N, we find that
our result reverts to the variational result Eo ——Ef —Ef.
This equivalence of the ground-state energy for the
single-impurity model was first shown by Read and
Newns.

For the case of the lattice, the mean-field treatment
that we employ is equivalent to the following coherent
state representation of the ground state

where 5VFs is the change in the Fermi-surface volume.
Martin' has emphasized the importance of the Fermi-
surface sum rules for the mixed-valence lattice, and it is
satisfying to see this feature naturally incorporated at the
mean-field level.

k, m

&&exp r pe 'b '~'
~
0&,

J
(2.136)

H. Relationship with earlier approaches

It is illuminating to examine the relationship between
this formalism and earlier approaches. Following
Anderson's suggestion of using 1/N as an expansion pa-
rameter in mixed valence, Ramakrishnan showed using
a Brillouin-Wigner perturbation theory for the infinite- U
Anderson model, that a perturbation expansion can be
made in powers of 1/N. Gunnarson and Schonhammer
subsequently showed that at zero temperature, this is
equivalent to using the Varma- Yafet (VY) variational
wave function

where
~

0& is the empty vacuum. The projection of this
state onto a state of definite Q = 1 is

(2.137)

which when expanded is identical to the variational state
considered by Brandow. The derivation of the leading
order ground-state energy is much simpler in the coherent
state representation. We note in passing, that a similar
approach enables the Gutzwiller ground state to be simply
rederived for the Hubbard model.

~ gvv& = 1+ g a(k)f ck
~
0&,

k, m

(2.130)
III. 1/N FLUCTUATIONS

A. Relationship between zero modes and strong coupling

where
~

0& is the unperturbed Fermi sea. The ground-
state energy yielded from this variational wave function is

Eo ——Ef —E
where

(2.131)

E~E+—ln =Ef* . (2.132)

If we had derived our mean-field theory using a varia-
tional wave function, we would have used the coherent
state

~8&= + 1+ +~(k)e"f ck exp(«' b') lo& .
rn k

The Q = 1 projection of
~

0 & is

(2.133)

J 2
' ' l~&= "b + X~(k)fuck~

k, m

(2.134)

1
Ep =N q (Ef—Ef )+Ef rtf tan(7Tnf )

7T
(2.135)

which has the same form as the VY wave function, once
we have made the identification b

~

0 & —=
~ f & and

f ~
0& =

~

f"I &. Now clearly
~

8& involves a range of
different Q, such that the average (Q & =qN. Despite this
distribution of Q, we find that the ground-state energy is
given by

T

Our mean-field saddle-point equations furnish the start-
ing point for a controlled 1/X expansion. In carrying out
this 1/N expansion it is helpful to regard the large-N lim-
it as a quasiclassical limit of the model, where 1/X plays
the role of Planck's constant and the mean-field equations
describe the classical trajectory. Fluctuations about this
path can be viewed as quantum fluctuations, and exactly
as in a conventional classical limit, the expansion about
the classical trajectory is carried out by means of a loop
expansion in 1/N (:fi). In this la—rge-N limit, the fer-
rnion bilinear operators

0 J(t) =(1/N) g E( . .
l [P; (t)PJ (t)]

and the rescaled Bose field b(t)=b(t)/~N behave as
classical variables, ' defining a classical field theory.

The Bose field in our model describes the collective
electronic motions of the heavy Fermi liquid. At finite
degeneracy, the Bose field is not rigid as in the mean-field
limit, and it undergoes small fluctuations about the classi-
cal trajectory. These fluctuations contain much of the
physics of the Fermi liquid. For instance, motions of the
quasiparticles generate additional fluctuations which
create interactions between quasiparticles. We will calcu-
late the Fermj-liquid parameters by calculating the linear
response of the Bose field to the quasiparticles.

We emphasize earlier how the zero-mode fluctuations
of the Bose condensate are responsible for the divergence
of the interactions in strong coupling. As in any theory
with a continuous symmetry, care is required in treating
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these fluctuations, and the calculation is simplified by
respecting the underlying symmetry in one's coordinate
system.

The problem of dealing with the zero modes has been
elegantly solved by Read and Newns, who have shown
how the infrared divergences associated with strong cou-
pling in the Kondo problem are controlled by expressing
the fluctuations in terms of the amplitude r and phase
velocity 88/8~=8 associated with the Bose field b =re' .
Our ability to express the dynamics entirely in these Bose
coordinates arises because of the Q conservation symme-
try which ensures that static phase shifts in the Bose field
do not affect the dynamics. (The Hamiltonian and La-
grangian are invariant under the symmetry operation
babe', fife' . )

Read and Newns exploit this symmetry to carry out a
simple gauge transformation on the fields, in which the
phase associated with the Bose field is factored out of
both the Bose and f-electron fields

b (r) =r (v)e'

f (r)=f' (~)e' ".
(3.1)

By factoring out the phase fluctuations the divergences
are removed and one obtains an equivalent description of
the dynamics which is appropriate to the Fermi liquid.
Whereas the untransformed fields have divergent strong-
coupling interactions at low energies, the transformed
Fermi fields have well behaved and finite interactions at
low energies. Read and Newns interpret the redefined f
electron fields as the quasiparticles of the strongly cou-
pled Fermi liquid, calling the new coordinate system the
"quasiparticle gauge. "

The relationship between the bare f electrons and the
quasiparticles is illustrated by the full f propagator

(7 ) = ( TXO~(r)X~O(0) )
= ( Tb (v)f (w)f (0)b (0)),

which is expressed as

(r) = ( Tr (r)f (r)f (0)r (0) )

(3.2)

(3.3)

in the transformed fields. A key feature to emerge in the
calculation of the correlations is that at long times and
low frequencies the dynamic correlations between the
transformed Bose and Fermi fields become weak leading
to well-defined quasiparticle excitations. In fact, at long
times

lim Sf (r) =ro( Tf (~)f (0)), (3.4)

7p=Zf2 (3.5)

as the quasiparticle pole strength of the f electrons. At
the mean-field level ro=Q nf, whic—h exemplifies why
the wave-function renormalization factor becomes small-
est in the Kondo regime, where nf becomes close to Q,

where ro=lim, (r(r)r(0)) and (f (r)f (0)) is
essentially the f propagator of the mean-field limit with
renollllalizations to Ef and b, caused by high-frequency
zero-point fluctuations. This enables us to interpret

and there are very few "holes" present in the ground state
into which conduction electrons can hop.

This switch to polar coordinates clarifies the almost-
broken-symmetry character of the strong-coupling regime.
Phase fluctuations ensure that in the original coordinate
system

( b (&)bt(0) ) (e !8(r)e —i8(0) ) 0 (3.6)

as ~~ ao so there is no true broken symmetry. However,
in the polar coordinates

lim (r(~)r(0)) =ro
7 ~ 00

(3.7)

and the almost broken symmetry is characterized by the
development of low-frequency radial fluctuations in
strong coupling. We will now proceed to demonstrate
these features, illustrating the calculations using the one-
and two-impurity models.

B. Strong-coupling dynamics

in terms of small fluctuations b (r) =bo+5b (v ) about the
saddle point. In weak coupling, this is very straightfor-
ward, for the equilibrium value of the Bose field is zero.
Strong coupling presents a problem because zero-mode
fluctuations lead to unbounded phase fluctuations, so that
(58 ) is divergent. If one attempts to expand about the
broken-symmetry state using the current description of
the fields, these infrared divergences require special regu-
lation, although of course, in physical quantities the diver-
gences all cancel.

Rather than following this path we shall employ Newns
and Read's transformation to polar coordinates, which we
now examine in detail. The factorization contained in this
simple gauge transformation leads to new dynamics for
the transformed fields. Two aspects of the transformation
must be considered: (i) the changes in measure which
must be introduced into the path integral and (ii) the
modified Lagrangian.

The Jacobian associated with the transformation of the
Fermi fields involves a product of phase factors and is
therefore 1, leaving the fermion part of the measure un-
changed. The new measure for the transformed Bose
fields is now

du (~)d8(~)
u 8 = I I 72' (3.9)

where u(r)=r (~).
In deriving this measure we have to formally go

through the process of transforming first to
"momentum-space" coordinates (p, q) whose correspond-
ing operators are defined by p+i q =b, in terms of which
we have a real measure for the path integral + dpdq/m.
We then can define the functions r(r) and 8(w) by

Extending our calculations entails expanding the effec-
tive free-energy functional

P
Pfl fef[b, b, A )= J dr[b (r)b (r) —Qo]A, +PF@[b,b, A ]

(3.8)
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p(r)+iq(r)=r(r)e' ' to derive the new measure. We
shall write of b(r)=r(r)e'@ ' as a shorthand for this se-
quence of transformations, bearing in mind that strictly
b(r) and b(r) are independent functions, not complex

conjugates.
The transformed Lagrangian contains a new interaction

term i 9(Q —Qp) coming from the derivative terms in the
free-energy functional:

f fm(r) fm(r)+b(r) b(r) = f dr f 'm(r) f~(r)+ig(r)[Q(r) —Qo]
8 a ~ —, a

(3 r 8 r o &(r)
(3.10)

where 9=i)9(r)/Br. The periodic boundary conditions in
the Bose field ensure that we can remove the total deriva-
tive term r(r)Br/Br(r) and add —i 9(r)gp into the func-
tional.

We now have to carefully consider the integration about
the broken-symmetry state. When we integrate over 0 we
must be careful to allow for paths where 0 changes by
multiples of 2~, and the most general path has the form

9~(r)=(k2iT)' g g„e " +m (2rrktiT)r+gp . (3.11)
n&0

When we integrate over 0, we will factor out the integra-
tion over the constant phase, writing

II = 2 II bp'f d 9()
2~ =- 2~ . 2~

so if we define 9 '(r) =9+Do, then the new function

9 '(r) =(Ap+ 2wkti Tm ) +(kg T) g 9 e " (3.19)

has a static value A0+27Tkg T7tl that runs from —ce to
oo, allowing us to write

[g] ~ II dg (r)p
277

=~[9'], (3.20)

where V=+„o(piv„) ' is the normalization factor.
Thus, by including paths with any winding number, we
are able to incorporate the constraint naturally as part of
the dynamics. We shall now suppress the prime on 0' in
subsequent expressions.

The partition function in the transformed fields is then
written

—27Tm (3.12)
(3.21)

P
ZM, = f &[r,g]&[/, g]exp —f dry( T)'

Physical variables commute with Q and are therefore in-
dependent of 00 enabling us to remove the average over
00. In Fourier coordinates this becomes

where W(r) is the transformed Lagrangian, given by

0 +K'[0 0 r 9]+~o[r'«) Qol—
7

u[9]=g II dg„,
m n (&0)

(3.13)
(3.22)

9(r) =2~k2i Tm + ( k~ T)' ' + g„e (3.14)

where the sum is over the paths of different winding num-
ber m. As in (3.11) we can expand the angular velocity as

and

H '= g E(k)ck~ck~+g Eff~f~+K;„,
k, m

(3.23)

(ks T)'
&[9]=g II . dg„.

0) 2m vn
(3.15)

We note that the integral over the chemical potential

f 20+2nik& 7" dip
A 0 27TI

(3.16)

where k0 is the static chemical potential determined by
the saddle point, can be written

2 rpdIIpP
2' (3.17)

where A, =iA0+A, 0. But in the Lagrangian, A0 and 6j

enter in the same way

[~o+i[IIo+9(r)] }[Q(r) —Qo], (3.18)

where only integral multiples of 2vr/P are allowed as the
constant term. In terms of 9 the measure &[9] is

with

K;„,=r(7) y (Ck~f~+f Ck~)+ig(r)(g —gp),V(k)
X

(3.24)

where f (r) refers to the gauge transformed f electron
field and

&[r,g] = II dr (r) II (3.25)

defines the measure over the Bose fields.
In the transformed coordinates the Fermion part of the

Lagrangian no longer contains the explicit Q conservation
symmetry babe', fife', and now the integral over 9
imposes Q conservation on the dynamics.

Our derivation is essentially that of Read and Newns,
with two formal differences: it extends their result to ar-
bitrary Qp enabling a true large-X limit to be found, and
it carefully shows that it is unnecessary to promote the
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chemical potential to a dynamical variable if one incorpo-
rates all paths with multiple winding number.

As in the Cartesian system, we can integrate over the
Fermi fields for a fixed Bose-field configuration, defining
a Bose effective free-energy functional

PQ err[a, O] = J dr[& (r) —Qp ][Ap+ 8(r)] +PFy

(3.26)

where the Fermion part F+ is given in shorthand notation
as

PF& ——Trln[(G f ') '+i 8(r)nf+r(r)Xf(r r'—)r(r')] .

(3.27)

We can actually relate this result to the perturbative ex-
pression for F@ (3.27) in the Cartesian gauge, which we
shall expand as

PFq [b,b] = —Trln[(Gf ') ']+ $ —J P d~, +,dr, Xf(r, +, r, +—, )b(r, +, )Gf' '(r, +& rj )b—(r, ),
n=1 n 0 r= 1

j=2r —1

(3.28)

b(r')Gf' '(r' r)b(r) —.
To leading order in the fluctuations we can write

(3.29)

b(r')Gf' '(r' —r)b(r) =r(r')Gf' (r' r)r(T)—
—irpG (r —~)(0)

x [58(r)—58(0)] . (3.30)

where the subscripts on the r are evaluated mod(2n). In
(3.28) each propagator Gf '(r) is sandwiched between
Bose fields

where M is the appropriate normalization constant. Go-
ing beyond the Gaussian fluctuations to calculate the
O(1/N ) effects requires working with the full measure
and restricting the radial fluctuations to being solely posi-
tive, a task which is beyond the work presented here.
Nevertheless, inclusion of the small Gaussian fluctuations
provides a theory which contains much of the important
physics of strong coupling. This provides us with a
"semic1assical" theory of mixed valence.

When we expand the Lagrangian about the saddle point
we find

The first term is merely the contraction of Gf (r —r')
with the radial interaction term, while expanding the
second term in frequency space gives

—iGf '(r' r) [58(r)——58(r')]
—'~ "m+ n '—

m
'~

2 ~ L l COm, l V~ /e
n, m

where A "[g,P] is the mean-field Hamiltonian and

A;„,=g V(k)(f ck~+ckmf~)5r(r)+iOnf
k, m

+N[A5r(r) +2irp5F(T)8(r)] .

(3.34)

(3.35)

(3.31)
All linear terms in the fields vanish by the saddle point
condition.

We shall introduce the nomenclature
where

I (ice~&iv„) = iv„O„GI—'(ice„+~co~ )G' '(ice~ ) . (3.32) r(r) = (5r(r),ir pO(r) ), (3.36)

This can be recognized as the contraction of the f propa-
gator fields with the angular fluctuation fields. The
power of the path integral is in confirming that the two
expressions for Fq„(3.27) and (3.28), are equivalent to all
orders.

where v N5r=r(r) rp(r) and —v NFp=rp are rescaled
fields. Then to second order

PArr PQp 1

N N
+ — drj(r) r(r)

C. Craussian approximation

&[r,O] =~+dr(r)dO(r), (3.33)

For small fluctuations about our mean-field limit, the
Bose measure can be approximated as locally Cartesian

+ 2 2 T2 —T[ r 7[, 3.37

where a source term has been added to enable us to gen-
erate the Bose propagator from the partition function.
Carrying out the path integral over the Gaussian fluctua-
tions, we find

—P(QO+QI ) P T 1ZMv6] exp
2N

dr&dr2j (r2)1 (rz —r~) j (7, ) (3.38)
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where

A,p 1

r("(r)=2
1 () 5(r) (3.41)

is the bare Bose contribution to the Gaussian terms and H
is the self-energy of the Bose field generated from the
random-phase approximation (RPA) polarization graphs
formed by contracting two mean-field Fermion propaga-
tors with H;„, (Fig. 5).

We can interpret

(3.42)

as the bare propagator for the Bose field, and
(1/N)I '(r) as the renormalized propagator due to the
interaction with the electrons. The bare propagator (3.42)
gives rise to a static interaction

fr —p Ugf f f f
m, n

+ g yk [(5~~ —n/~ )ckm f~ +H. c. ] (3.43)
m, m', k

between the electrons where U =Ao/(¹o) and

yk ——V(k)/(¹o). The Gaussian fluctuations are simply
equivalent to summing the RPA diagrams generated by
this interaction (with the Hartree terms already included
through the mean-field terms). Apart from the additional
mixing term on the right-hand side, this effective interac-

where fl~ ———,k~T Trln(NI ). From (3.38) we can read
off the Bose propagator as

5'in(ZMv [j])
(T5r(r)5r(0)) = =—I '(r), (3.39)

5j(~)5j(0) j=o N

and from (3.26) and (3.27) we see that I (r) is divided into
two parts,

(3.40)

tion bears a great resemblence to the Anderson model
with finite U. The interaction term coupling f occupation
to hybridization was actually considered by Blandin, and
more recently by Varma ' in the context of large- U An-
derson models.

One interesting feature of (3.43) is the absence of any
bare Kondo spin exchange J*gk k, , ck f f ck
term between the f electrons and conduction electrons.
We see that by making Newns and Read's gauge transfor-
mation we have transformed away the bare Kondo in-
teraction that gives rise to infrared difficulties.

A=GO+0& can be intepreted analogously in terms of
Feynman diagrams. Qo is the sum of all closed-loop dia-
grams created by the contraction of the fermion lines with
the (renormalized) hybridization H';„and A~ is the sum
of one-loop Bose propagator lines formed by contracting
the bare propagator (1/N)r' ' ' with the polarization
graphs NII (Fig. 6). Each Bose propagator carries a fac-
tor 1/N, while each polarization graph is O(N) due to the
sum over N angular momentum channels. Thus Qp is
O(N) while 0& is O(1).

From the RPA diagrams we find that

11 „(T) = [2GIk ( r )GIk ( r) + Gb (—r )GI ( —r )

+GI(r)Gb( —r)],

(» 0 )[Gfk(r)Gf( r)+Gf(7 )Gfk( &)1 (3.44)

IIaa(r)=(r)o GI(r)G/(r),

(
+ 0 ~ ~

(b)

(c)

+ ~ ~ ~

)=
FICx. 5. The mean-field free energy PIIo and the leading

Csaussian correction pQ, to the free energy, represented in dia-
grams. The single-dotted lines are the unhybridized f propaga-
tors, the oscillating lines represent the bare-boson propagator
[NI (0)(iv„)] ' of (3.42) and the loops with arrows in pA, are
the RPA boson self-energies H (iv„).

FIG. 6. RPA diagrams for the one-impurity model. A solid
line denotes a conduction electron propagator, while a double-
dotted line represents an f propagator with hybridization inser-
tions. (a) II,„, (b) II -, and (c) II&&.
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where

G/k(r) =gk V(k)( Tf~ (r)ck~(0) ),
GI(r) = & Tf~(r)f~(o) &,

and

Gi, (r) = g V(k) V(k')( Tck~ (r)ck ~ (0) ) .
k, k'

Defining II(r) =P 'Q„ II(iv„)e " and inserting

GI(i co„)= [ico„EI —r OXf (i lo„)]

G/k(ico ) —roof(ico„)G/(iso„),
and

Gb(ico„)=X/(iso„)+r o[X/(iso„)] G/(iso„)

for the mean-field propagators (see Sec. II C) we find

H,„(iv„)=P QG/(i co„+iv„)G/(i co„)

)&[a(iso„,iv„)] +I (iv„),

H„,(iv„)=2 ReW(iv„)1

g(i v„)

+—Ref(g) —ln
DP

7T 2m

H„e(i v„)=2 ImW(i v„)—2,1

vn

g(i v„)
H&e(iv„)= —2 z ReW(iv„) (n ~0),

vn

where II(iv„)=H'( iv„—) for n &0 and

l V~
g(i v„)=

iv„+2ih
W(i v„)=6/rr[g(/+i v„)—itl(g)]+iv„,

where itl(z) =p( —, +zp/2iri ) as before. This becomes

(+i v„
W(iv„) =—ln +iv„

7T

(3.47)

(3.48)

(3.49)

H (i v„)= (pr )g G/(i'co„+i v„)G/(i lo„)

Xa(i lo„,i v„),

H&e(iv„)=(pr )
' g G/(iso„+iv„)GI(l'lo„),

where a(ico„,iv„)=ro[X/(iso„)+X/(iso„+i v„)] and

I (iv„)=P g GI(iso„)[X/(iso„+i v„)

(3.45)

I (iv„)=2
ReW(iv„)1

g 'vn

1 ImW(iv„)

1 ImW(i v„)

g(i v„)—
ReW(iv„)

vn

A, +—Reit'( g) —ln
DP

7T 2n

in the T~O limit. Summing I ' ' and H together now
gives

—X (Il c„o—l v„)] (3.46)

Using the large bandwidth approximation introduced in
Sec. I, we find (Appendix A)

(3.50)+2 0 0 r

where the second term vanishes at the saddle point. In-
verting this expression yields

I '(iv„)=R(iv„)= 1

2W(i v„)W*(iv„)

g (i v„)ReW(i v„)
v„ImW(i v„)

v„1m'(iv„)
—[v„/g (i v„)]ReW (i v„)

(3.51)

Appendix (B) shows how equivalent results can be obtained using the Cartesian-Bose coordinates, where one finds
(choosing ho=ro, 5b =b„+iby )

(b„(iv„)b„( i v„))—
i (by(iv„)b ( iv„))—

i ( b, (i v„—)by ( i v„))—
( by (i v„)by ( iv„)—

R,„(iv„)

R e(iv„)

lVn

—1 R e(iv„)
l Vn

1

2 Remi(iv„)
vn

(3.52)

The frequency denominator present in
(by(i v„)by( i v„)) is t—he zero-mode divergence associat-
ed with the low-frequency spin fluctuations.

In the Kondo regime, the first term in W(iv„) dom-
inates and provided one is interested in properties at fre-
quencies v &&6, the linear frequency term can be neglect-
ed. We can analytically extend these results to the real
axis, for instance the radial propagator is given by

(5r(v+i 5)5r(v+i 5) ) = 1 1 + 1

4Ng(v) ~(v) W*(v)

(3.53)

~*(v)=—[g(v —g) —P( —g*)]—v .

We shall show that this quantity is proportional to the
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I I I I I III[ I I I I I ill[ I I I I I ill] I I I I I III[ I I I I I III We shall later use the renormalized free energy to calcu-
late the effect of the fluctuations on the saddle point.

0.8—

0.6—
E

0.4—

D. Dynamic susceptibilities

The collective properties of the Fermi liquid are related
to the Bose fluctuations. In this section we relate the
dynamic correlations in the spin, charge, and
q(r) =Q(r)/N to the Gaussian fluctuations.

To determine the collective spin and charge fluctuations
of the f electrons we associate a source term with the f
occupations which we add to the free-energy functional:

0
0.0001 0.001 0.01 0.1

v/6

p
PF, [P ]= g J dr) (r)nf (r), (3.55)

FIG. 7. The imaginary parts of the spin and charge suscepti-
bilities, plotted on a logarithmic axis for Ef /6= —1.47 and
g/N = 6. The y axis scale is arbitrary, and adjusted to give the

1

same peak heights. Spin fluctuations are concentrated at ener-
gies around the Kondo temperature, whilst charge fluctuations
span a broad range of frequencies and are peaked at the energy
Eq defined in Sec. III F.

Qi ——ksTRe g ln
n&0

2W(i v„)
LVn

= J [n(v)+ —, ]Im ln . (3.54)
+~ dv W(v)

dynamic charge susceptibility X,(v), which is plotted in
Fig. 7. The bulk of the radial oscillations occur at a much
higher frequency -Ef than the renormalized resonant
level width h. We shall see that we can associate these
fluctuations with the high-frequency charge fluctuations.
At low temperature the quasiparticles move in the average
field of the Boson, and we fail to see these high-frequency
fluctuations.

From I (iv„) we can also determine the shift in the free
energy due to zero-point and thermal fluctuations

Diagrammatically this is simply the RPA susceptibility.
With the source term (3.55), Fq, now takes the form

pF~[r, p ]=/ Trln[Gf '(r —r')+r(r)Xf(r r')r(r')—
m

+ [t'8(r)+ P (r)]nf (r) j (3.57)

and the source current enters identically to the angular
velocity. Thus to second order the effective free energy is
given by

PQ, rr =POO+ —r I r(0)—

+ —,
' g(r+p ) H(r+p )+(j.r), (3.58)

where we have used a shorthand notation for the time in-
tegrations (j.r) = f dr j(r) r(r) and set p =(O, rop ).
The Gaussian integral over the Bose fields then yields

which enables the determination of the dynamic suscepti-
bility of the f electrons from a functional derivative of the
full free energy

6 lnZMv[4]
X (r) = ( T6nf (r)6nf (0) ) =

6 r)6(t (0
(3.56)

T

ln(Z [j,P ])=—P(&o+& )+ j+HgP I J+HgQ2N
—g y.'Hy. , (3.59)

so that

X =r,' —(Hr-IH) —6 .H
N

(3.60)

0

where 88 denotes the (ir08, iro8) element of the matrix
operator. In frequency space with

X (r) =P 'g;„X (iv„)e

X,(r) = ( TM, (r)M, (0)),
X, (r) = {T6nf (r)6nf (0)), (3.62}

where M, =gf mnf . Setting X, =g m X, and

7, =N7, we find

I

It is now straightforward to derive the spin and charge
susceptibilities

we write

X (iv„)=r o
—II(iv„)1" '(iv„)II(iv„)n 0

—6 II(iv„) (3.61)

X, (iv„)=r [H(r v„)I (iv„)H'(iv„) —H{iv„)]&&

=r ,'[r" ( vI„i)r-'(i-v„)r"1(tv„)],,
=N[4r 0{6r(iv„)6r(iv„))]

=2r(g(iv„)Re[W(i v„) '), (3.63)



35 MIXED VALENCE AS AN ALMOST BROKEN SYMMETRY 5093

while

g, (i v„)= —r o[II(iv„)]ag

2 2

(v„+25,)v„
ReW(i v„) (3.64)

X, (0)=—Re 1+—g '(g)
'jT

X,(0)= —Im —g '(g)

(3.65)

which is plotted in Figs. 7 and 8. Taking iv„~O we find
that the static susceptibilities are

1.6

1.4

1.2

1
E

7 0.8

0.6
X

0.4

0.2

v/TK
which are the results obtained more directly in Sec. II.
Analytically extending the spin susceptibility to the real
axis, we find

X,(v+i 5) = —[P(g+v)+ g(v —g)
(v+2ih)v ~

FICz. 8. Dynamic spin susceptibility Im+{v)/v for the cases

q = 2, 4, and 6, in the Kondo regime nf /Q =0.95.

—1
X,(v+i 5)=

(v+2ib, )v ~

Taking the v~O limit, we find

X,(v+ i5)
lim Im
v~p m(Ef+b, )

which at zero temperature yields

(3.66)

(g+ v)(g* —v)

(3.67)

2

=~[X,(0, T=0)]

(3.68)

5 PQ, rr[r]

50(r)M(0)

X,(r)=N(5r (r)5r (0)) .

X,(r)=
(3.69)

The relationship between the spin susceptibility and angu-
lar stiffness is one we expect to be preserved when
higher-order corrections are added to the polarization dia-
grams. The second relationship links the charge fluctua-
tions to the radial fluctuations and is a consequence of the
Q conservation.

From (3.59) we can also calculate the correlation be-
tween the radial fluctuations and the charge fluctuations

This is the Korringa relation derived by Shiba for the
infinite- U Anderson model. The satisfaction of this
equality in our leading fluctuations is an indication that
our approximation is conserving the Ward identities asso-
ciated with spin conservation. Earlier work found diffi-
culties' in eliminating infrared divergences at zero fre-
quency and failed to satisfy this relationship.

From the relations (3.63) and (3.64) we note that we can
write the spin and charge susceptibilities in an alternate
form

5 InZ[j, g ]
( T5r(r)5nf (0) ) =

= —2ro(5r(r)5r(0) ),
—

2ro ( T5nf(r)5r(0) ) = ( T5nf 5nf (0)), (3.70)

where nf ——nf/N, from which we see they are anticorre-
lated. We can sum all these fluctuations to determine the
fluctuations in q(r).

( T5q(r)5q(0) ) =4r o(5r(r)5r(0) ) +2ro(5r(r)5nf(0) ) +2ro(5nf(r)5r(0) ) + (5nf(r)5nf(0) ) =0, (3.71)

and we see that the anticorrelations between the Bose and
f-electron fields lead to a vanishing correlation function.
This is a crucial result, for it explicitly shows that we are
consistently maintaining q conservation at all times to
leading order in the Gaussian fluctuations. We note that
the way our constraint is built in derives from the under-
lying symmetry of the dynamics (see Appendix C), rather
than a careful selection of time-ordered Goldstone dia-
grams as in perturbative schemes.

E. Fermi-liquid properties

The low-energy static Fermi liquid properties are
directly related to the Bose propagators (Fig. 9). Thus the

electron part of the quasiparticle interactions is given by

~int = T~ U * g fm frn 'fm 'fm

m, m'

where

(3.72)

U* = —(i 0(v =0)i 9(v =0)= —
2 Res(v=O)

Nrp

1=—m.hIm mr oN
1

p N
(3.73)

is the renormalized interaction strength. By summing up
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1
6g . (3.74)

'7Tp

We can write this term as 5EO ——Im [5E,( g) ], where
5E,(g)= (np) —'in(g). Now using the results of Sec. II
we can write the total energy of the system as
ED=1m[RE, (g)+5E, (g)] where

( E,*)—c (3.75)
2A m.

5EO ———

E,(g)=

We can calculate the shift dg in g from its saddle point
value by reminimizing E, +5E, with respect to g. This
yields

dg=
Xp

(3.76)

from which we deduce that the shift in the scattering
phase shift at the Fermi energy due to the presence of the
additional quasiparticle is

d5y 1
Im g 1+

6n ~ Xp
m&m' . (3.77)

If we expand 5(E) about the Fermi energy we find

5f(e)=5O+mPfE+ g 4571
m(&m')

where

(3.78)

the interaction terms generated from each component of
R(0) (Fig. 10) we can determine the net interactions be-
tween the quasiparticles. This is most simply done in the
following more physical fashion. Suppose we add an ad-
ditional quasiparticle to a conduction band state at the
Fermi energy. This particle has energy p —AEk(5/m. ),
where b ck is the spacing of conduction band states and

5f ——tan '(b, /Ef ) is the scattering phase shift at the Fer-
mi surface. The second term is the depression of the con-
duction electron energy due to the impurity. Setting
(b,ek) '=p, the conduction band density of states, then
by adding the quasiparticle we increase the free energy of
the system by the infinitesimal amount

FICx. 9. Showing the interactions that are propagated by the
Bose fluctuations.

F. High- and low-energy behavior of fluctuations

In this section we wish to show how the fluctuations at
high frequencies reproduce the known weak coupling
properties of the infinite-U Anderson model, and also
study how, in the conventional picture, the Kondo in-
teraction scales to strong coupling. To carry out this dis-
cussion, we will consider the normal Bose propagator
( Tb(r) b (0) ), reintroducing the zero mode, by
transforming the results we have already obtained to the
Cartesian gauge.

Our interest in the Bose propagator stems from the fact
that if we integrate out the Bose fluctuations, this gives
rise to an interaction between the electrons of the form

PH; = ——I dr'a (r)J(r r')o'(r')+0—1

N'

where cr(r) =gk ck (r)f (r) as before and

(3.80)

freedom prevent us from deducing the Fermi-liquid prop-
erties from qualitative arguments.

1

77 (Q2 E2)
J(~)= V ( Tb(r)b (0) ) (3.81)

X4p = —spy, (3.79)

which is the Nozieres-Fermi liquid identity written to
leading order in 1/X.

For the single impurity this calculation merely serves as
an exercise in demonstrating the consistency of our calcu-
lational procedure with the known Fermi-liquid picture.
Its full value will emerge when we extend this calculation
to more than one impurity where the additional degrees of

and the condition m&m' arises from the cancellation of
direct exchange terms in the interaction for the case of
identical spins. This leading order result has the same
form as the Nozieres-Fermi liquid picture of a Kondo im-
purity. We can actually take the Kondo limit by taking
b, && b, , leading to @=(I /Xz)lmg, so that in this limit

( Tb(r)b (0)) =(Tr(r)e' ' 'r(0)e ' ' ') . (3.82)

The high-frequency components of the fluctuatians are
small, enabling us to make the linear approximation
re's=roe +5r+iro58, so at high energies 1v„1
»141

(b(iv„)b (iv„))= R,„(iv„)— R„s(iv„)
lV~

1

2 Rso(iv„)
&n

(3.83)

should be considered as a time-dependent Kondo interac-
tion. We shall now compute the frequency behavior of
this interaction at low and high energies. Quite generally,
we can write the Bose propagator in polar coordinates as
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7r(b(t )b'(t ))
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1
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1000 10000

FIG. 10. The effective Kondo coupling constant,
V

~
(b (v)b {v)}t, as given by Eq. (3.83). This exhibits the

qualitative properties of the Kondo interaction, namely the sud-
den growth at the charge fluctuation energy E, —

~

Ef* ~, fol-
lowed by a slow logarithmic rise as the Kondo temperature is
reached, and a divergence to strong coupling at lower energies.

is reduced, such a way as to keep the high energy invari-
ant Ef' (and hence the low-energy physics) constant. This
leads to a rescaled f' level, given by Ef(D')
=Ef+ (1—1/X)(b, /n)ln(D. /D'). When D' =Eq the
lower band edge becomes equal to the f-level energy
Ef(Eq) = —

~ Eq ~

and when the cutoff is reduced below
the crossover energy, charge fluctuations become entirely
virtual and they are integrated out of the rescaled Hamil-
tonian by a Schrieffer-Wolffe transformation to give an
effective Kondo model that describes the subsequent
lower-energy physics. This feature appears naturally in
our semiclassical treatment of fluctuations.

At the lowest frequencies, we reach a strong coupling
regime where the linear approximation to b =re' fails be-
cause the long-time phase fluctuations are divergent. To
calculate the very-long-time, low-frequency behavior of
the interaction, we employ the approximation

( T ( ) i()( )r(0) i8(0—) } 2 ( T i8(T) —is(0) } (3.87)

which determines the asymptotic behavior because the in-
frared divergence of the zero mode dominates the low-
frequency behavior. '

The exponent in (3.87) can be expanded as a sum of
Gaussian variables

which is plotted in Fig. 10. Inserting the results obtained
in (3.50), we find that for

~

v
~

&& ( g ~, g(iv„)~1 so that
the high-frequency fluctuations have the simple form

8(i v„)
8(r) 8(0)=v T g— (e " —1)

( i v„)— (3.88)

( b(iv„)b (iv„)}= 1

W(i v„)' (3.84)

There are actually two energy regimes at high energies,
separated by the crossover energy Fq, where Eq
+(b, /n. )ln(Eqn. /5)=

~ Ef ~.
In the "charge-fluctuation regime, "v & Eq, ( Tb(r)b (0) }-r()exp[ ——,

' ( [8(r)—8(0)] }) . (3.89)

and for a sum of Gaussian distributed variables
(exp(Q, .A;) }=exp[ ——,

' ((X;A;) }] using the Gaussian
approximation to evaluate this correlation function, we
find that

pJ(v)— (3.85)
Now we can relate the exponent to the angular velocity
fluctuations

where J(~)= P'Q„J(i—v„)e " . At lower energies

Eq & v &
~ g ~

in the spin-fluctuation regime.

(8(iv„)e( i v„)}—
—,
' ([8(r)—8(O)]'}= —T y

n ~n

1
p J(v+i5)

ln(v/g' )
(3.86)

where

X(e " —1), (3.90)

which is the classic "asymptotically free" logarithmic de-
cay of the Kondo coupling constant at high frequencies.

The crossover energy Eq was actually discovered by
Haldane in his renormalization group treatment of the
single impurity model. Haldane scaling is equivalent to
rescaling the f level position E-f(D') as the bandwidth D'

( 8(i v„)e( i v„)}=—— R &&(i v„) .1

Nr0
(3.91)

Inserting (3.91) into (3.90) and carrying out the contour
integral on the Matsubara sum then yields

—VT

—,
' ([8(r)—8(0)] }=—f [n(v)+1] ImR (v+i6)

V T0

(3.92)
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where the zero-temperature limit has been taken in the fi-
nal equation. At low frequencies v && 6, Im 1/
rrRee r——oav where, by direct calculation from (3.50)

~eea=lim = Re
o rrvr o ~+~&

2

(3.93)

Consequently, at long times, at zero temperature

(3.94)

where C is a constant that can be determined. This leads
to a power-law decay of the Kondo interaction at long
times

a/N

lim J(r)= V ro—2 C
(3.95)

We can simply interpret the exponent of (3.95) in terms of
the x-ray effect, using arguments given at the beginning of
this paper by noting, from the mean-field equations that

dnf =Re (3.96)
dQ

so that if 6Q=1, 6nf/N=(l/N)dnfldQ and there is a
change in the scattering phase shift of A6/~
=(I/N)dnf/dQ in each channel. Thus the x-ray ex-
ponent is N(b, 5/vr) =a/N as expected. In the case of
Q =1, or finite N, the change in occupation per channel
is no longer an infinitesimal proportion of the occupancy,
so that the full x-ray coefficient is o./N
=N[nf(Q) nf(Q —1—)], from x-ray arguments. This re-
sult reverts to the above expression in the large N limit.
In the special case of Q = 1, Read has found
a/N=nf/N for Q= 1 by taking the large N limit using a
different procedure, and these results are consistent with
those above.

We would like to close this section by discussing the
scaling properties of the interaction at low energies.
Clearly, putting (b(v)b (v)) =D(v), our results imply the
scaling equation

low frequencies near threshold. Instead, the Bose propa-
gator scales as D(kv)=A, "(A, ')D(v), where d=a/2N,
indicating that the Bose field has acquired an anomalous
dimension d=a/2N due to the fluctuations. Now on
quite general grounds, by examining the scale dependence
of the Bose propagator, we expect it to satisfy a Callin-
Simanzik scaling equation of the form

v —P( V) +.[1—2d( V)] D(v; V) =0, (3.99)
av aV

where P( V) is the P function for the Bose-fermion vertex
V and d( =a/N) is the anomalous dimension of the slave
boson, (defined by d = ——,

' 81nZ&(D)ld lnD where Zb is
the wave-function renormalization constant of the Bose
field and D is an ultraviolet cutoff). If P( V) were
nonzero, then the coupling constant V would rescale
under scale transformation, and the propagator would
satisfy a scaling law of the form

D(iv; V)=A, 'exp J d Inkd[V(A, )] D[v, V(A, )] .

Pure power-law scaling, with no additional logarithms can
only be reconciled with P( V) =0 in strong coupling. In
other words, the interaction between the slave boson and
electrons does not scale to strong coupling.

The anomalous scaling of the Bose propagator arises
from the infrared divergences about the broken symmetry
starting point, and when we go to the radial gauge, the
anomalous divergences are removed. The residual interac-
tion then scales as -v, so it is constant at long times.—1

It is exactly this feature that gives rise to the almost-
broken-symmetry feature of the Kondo ground state, for
the effect of our broken-symmetry ansatz is to induce
time invariant interactions that generate the heavy Fermi
liquid for the general many-site case.

From this point of view, the strong-coupling effects in
the original Kondo problem can be attributed to the zero
mode of the Bose field. Once this zero mode is correctly
taken into account by our broken-symmetry ansatz, the
residual interactions are necessarily finite [P( V) =0].

v +(1—alN) D(v) =0 .
cj

Bv
(3.97) G. Full f-Cxreen's function

Up to order O(1/N), the Kondo interaction is given by
J(v) = —V D(v)+O(1/N), so this implies a /3 function

The full f-electron Green's function

9'f (r) = ( TXo (~)X o(0) ) (3.100)

P( J)= = —J+, J )) 1
BJ(v) 1

Blnv N' (3.98)

but note that it is incorrect to include the additional a/N
into this scaling relation, due to the O(1/N) terms ig-
nored. There are actually no further corrections, as we
will now discuss.

The anomalous scaling behavior of the Bose propagator
can be understood as follows. In the original Lagrangian,
dimensional power counting arguments show that the
slave boson is dimensionless. Assuming pure scaling of
the Bose field, this would lead to a Bose propagator
(b(v)b (v)) =D(v) that satisfies D(kv)=k 'D(v), at

contains information about both the low- and the high-
frequency charge fluctuations. Sf determines the t ma-
trix for scattering band electrons

tkk (cu) = —V(k) V(k') 8f(co)
1 (3.101)

In the notation of the generalized Anderson model

Sf(~)=(Tb (r)f (r)f (0)b(0))
= ( Tr(r)f (r)f (0)r(0) ) (3.102)

in the two gauges. To leading order in the fluctuations we
then find
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9'f (r) =r 0( Tf (r)f (0) ) +ro[ ( T5r(r)f (r)f (0) ) + ( Tf (r)f (0)5r(0) ) ]+( T5r(r)5r(0)f~ (r)f (0) )

(3.103)

The easiest way of computing the various contributions is
diagramatically. As we are only interested in the leading
effects of the Gaussian fluctuations, no more than one
(fully clothed) Bose propagator (1/N)R appears in a
graph, avoiding vertex corrections. Nevertheless, this cal-
culation is different in a most important fashion from
more conventional perturbation schemes, ' for although
both do not involve vertex corrections, this scheme in-
corporates the singular behavior of the fluctuations at low
temperature by including the broken-symmetry hybridiza-
tion terms. The infrared divergences associated with the
zero mode have been factored away and there is no singu-
lar behavior associated with any of the gauge transformed
propagators.

The Bose propagators are symmetric in time enabling
so that the second and third terms in (3.103) are equal.
To leading order in the fluctuations we can factorize the
fourth term in (3.103) giving

N
Sf(r)=r 0( Tf (r)f (0) )

+2ro( T5r(r)f~(r)f~(0) )

+ (5r(r)5r(0) ) ( Tf (r)f (0) ) . (3.104)

To leading order in 1/N, the last term is
(1/N)R (r)Gf' '(r), where Gf '(r) is the quasiparticle f
propagator evaluated in mean-field theory.

The first two terms in (3.104) are simplified by an ob-
servation that provided the charge fluctuation scale
—

~

Ef'
~

is much greater than spin fluctuation tempera-
ture Tr, ——(b, +Ef)', phase fluctuations dominate the
high-energy scattering of the quasiparticles. This can be
seen as follows. These terms involve frequency convolu-
tions with fluctuation propagators R p( v) where the dom-
inant contributions come from high-energy fluctuations
with frequencies

~

v
~

—
~
Ef

~

&&Tz. For the amplitude
fluctuations 5r, the vertex for coupling to f-electron lines
involves an intermediate conduction electron propagator,
and is -sgnv„A/rp for v„»A. Phase velocity fluctua-
tions iro8 couple to the f-electron line with coupling
1./rz, and since each time derivative associated with the
phase velocity contributes a factor iv„, the overall cou-
pling of a transverse fluctuation ir056 to an f-electron
line is O(iv„/ro). The typical frequency of the high-
energy contribution is

~

v
~

-O(Ef ), thus scattering from
high-frequency phase fluctuations is 0(

~ Ef
~

/b, ) larger
than the corresponding amplitude fluctuations. This en-
ables us to make the approximations

ro(Tf (r)f (0)); =r OGf' '(ice„)+ [Gf' '(i—co„)] Xss(ice„)+0
1

N
I Ef I

' N'

ro(T5r(r)f (r)f (0)); = Gf '(ice„)X—„s(ice„)+0
N " NiEf

i
N

Here (1/N )X p(iso„) denotes a self-energy for scattering off fluctuations, given by

X~p(ice„)=—g R~p(iv„)GI '(ico„iv„) .—

(3.105)

(3.106)

We can summarize these results by writing

$(ice„)=(¹0)Gf' (ico„)+[[Gf'(i co&)] Xgj(l'ci)&)+2Gf' '(lci)„)Xs (lcd„)+X&„(let)&)I (3.107)

X p(co)=J,ImX p(co i5), —dc' 1

77 (co —co )
(3.108)

where

ImX p(co i 5) = f [I+—n(v) f(~ v)]- —

+ III1Gf (CO —v —l 5)

XlmR p(v+i5) . (3.109)

The first term is merely the quasiparticle resonance, with
renormalization constant Zf ——¹0while the second
terms come from fluctuations in the renormalized poten-
tial that scatters conduction electrons.

Carrying out the Matsubara frequency sum in (3.106)
gives

Now the fluctuations in the Bose field are spread over a
much broader energy range than the Kondo resonance,
and at zero temperature this enables us to approximate
this integral by

ImX p(cu —i5)=[5(co)/ir nf)ImR p(co—+i5)
(

i
co

i
& T), (3.110)

where 5(co) =tan '[b, /(Ef —co)] is the energy-dependent
phase shift of the Kondo resonance referred to in preced-
ing sections.

Provided that we are not interested in the fine structure
of the Kondo resonance, then we can approximate the
imaginary part of Sf(co) by ignoring the real parts of
X p, which enables us to write down a closed form expres-
sion for the full f-electron Green's function at T =0,
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ImÃf (rp —i6)=¹p
(rp E—f) +b,

+ —([6(rp) —6(0)]IImR„„(ro+i6)+2ReGf '(ro)ImR &(ro+i6)+Re[Gf '(co)] ImR
0&( uc+i6) )) .

(3.111)

We show an example curve of this result in Fig. 11.
Extending this result to finite temperature requires a more
careful evaluation of the self-energies X &. What is in-
teresting about this result is that by including the fluctua-
tions about the mean-field theory we have recovered the
high-frequency spectral weight of the f state. The calcu-
lation has not entailed any numerical techniques, nor does
it suffer from awkward low-energy anomalies in the spec-
tral function. '

A=N ImA, (g),
(3.112)

Q, (g) =0, (g)+ —f [n(v)+ —,
' ]ln

where fl, "(g) is the mean-field free-energy function
determined in (2.56). Now by taking the derivative with
respect to g we find that the renormalized saddle-point
condition can be written as

H. Renormalization of fluctuations and transition
to weak coupling

bPEf +——p(g) —ln
7T 2' l

+ g '(g)@(g, T) =0,
N~

(3.113)

Having computed the fluctuations about mean-field
theory, it is of particular interest to examine how the sad-
dle point position is modified when we include the
0( 1 /N) zero point and thermal fluctuations into the
free-energy functional. Read ' has examined these renor-
malization effects for the single-impurity-Kondo and gen-
eralized Anderson model at zero temperature, placing
Q= 1/N before commencing the 1/N expansion. We
wish to extend his analysis to finite temperature and all
values of Q /N, to examine the full structure of the
theory.

Returning to (3.54), we see that we can combine it with
the mean-field free-energy function to write a full free-
energy function

0.2

Im G,(~)/rr

where we have defined

@(g,T) =b, f [n(v)+ —,
'

] —1 W '(v) .
g '(g)

(3.114)

At high frequencies, governed by charge fluctuations,
W(v)-v, and consequently, the high-frequency charge
fluctuations contribute a term (4z —O((b, /rr)lna) to N,
where D is the cutoff. There is also a large, cutoff in-
dependent imaginary contribution to N, coming from the
charge fluctuations occurring on energy scales comparable
with the charge-fluctuation scale Eq. In practice, even if
we use a finite cutoff D, both terms are large and have to
be canceled, by absorbing them into a redefinition of the
invarient f-level Ef and the f-electron wave-function re-
normalization constant.

To carry out this procedure, we write the f-electron and
boson parts of the Lagrangian as

3 0.1
C3

1.5
3
u 1

6
0.5

0
-0.05 0 0.05

~/h
0.1

I

&(r) =f (r)Bf (r)+b(r)&b(r)

+ [i 0(r)+ A p+Ef ]Q(r)

Efb(r)b(r) —[iO(—r)+kp]Qp . (3.115)

The third term is an interaction term between Q(r) and
the fluctuating field A.(r)=i8+Ap+Ef Let us consider.
the f-electron self-energy at T =0 and define

0
—3

Xf =Xf(0),
BXf(co )

Zf ' ——1—
BQ)

(3.116)

FIG. 11. The full f electron Green's function Im&f(co —i6)
as given in (3.109), for T =0, N =6, Ef /5= —0.656, nf/N
=0.15, and Q/N= 6. Inset shows the asymmetric nature of
the Kondo resonance.

This enables us to define a renormalized f-electron field
by f~ =(Zf)' f' . In terms of the rescaled field, the La-
grangian becomes



35 MIXED VALENCE AS AN ALMOST BROKEN SYMMETRY 5099

W(v') =f ' (w)Bf' (w)+b(r)Bb(r)

+[i8(~)+Ef]f' (r)f' (r)

Efb ( r)b (r) —[i 8( r)kp]Qp

+2'ct(r),
where

Ef ——Ef +A, +Sf
is the renorrnalized f-electron energy and

~ t(r) =(Zf —1)f ' (r)Bf' (~)—Xff ' (r)f ' (r)

+ (Zf —1)k(r)f ' (r)f ' (r)

(3.117)

(3.118)

(3.119)

Since the charge Q is conserved, a useful Ward identity
comes to our aid,

BXf(0) P (0 0)
Bco

(3.121)

The quantity Zq ' ——1+I ~f(0,0), defines the vertex renor-
malization, and because of the above identity Z~ ——Zf.
This means that the coupling of A, (r ) to the renormalized
f electrons is unchanged, and the counterterm
(Zf —1)A,(r)f f is precisely the term required to cancel
vertex corrections (I qf Zf )A(r)f f

When we proceed to recompute the free energy with the
counterterms, the first two terms of W„ introduce the in-
teraction

are the counterterms that will cancel all the unwanted
high-energy terms. We shall now drop the primes on the
renormalized fields. The first two terms are corrections
to the f propagator, whilst the last term is associated with
the renormalization of coupling between A.(r) and the f
electron. One of the effects of the fluctuations is to intro-
duce a vertex correction to the coupling between the A,

field and the f electron given by

[—iv„Xf(0)—Xf(0)]f (iv„)f (iv„) (3.122)

Ef ——Ef +Sf, (3.123)

to the f-electron lines, and when we insert these into the
saddle-point equations, it is equivalent to replacing g by

(Xf Xf to the Fermionic part of the saddle-point
equation. Finally, we note from (3.118) that
A, =E~ Ef —Xp, —so we can put A, +i A(r —qp):—g—(Ef *+ib q p ), where

Agf ( v, co ) = 1 + I gf ( v, cp ) (3.120) leading to the renormalized saddle-point equation

bP b,
Ef, +——Q(g) —ln

2 + g '(g')[@(g, T)—Xf —gXf) =0,
7T 2~'i

(3.124)

where Ef,*——Ef *+iAqo.
At this point it is unnecessary to laboriously compute

Xf and Xf, for all we require are their dominate high-
energy parts. We can extract these contributions by re-
quiring that at T=O,

4(g, T=0) $Xj —Xf ——0 . —
Since both Xf and Xf are real, this implies

(3.125)

Xj.——Im+p p/6,

Xf—Re@T —p (Ef /+ )Im@T—p

(3.126)

The subtraction terms so defined do not precisely corre-
spond to the definitions (3.115), but contain small cutoff
independent corrections that slightly redefine the renor-
malization procedure.

To leading order in O(1/N), the shift in the saddle
point is then

1 DE'*=E +—1 ——ln
N g(g)

(3.128)

nf 8 1m',
N BEf

=q —Im (3.129)

where g(g) is a cutoff independent function of g. We
recognize this as the Haldane invariant f-level ' posi-
tion, expressed to order O(1/N) . The shift in the
saddle-point variable g can be thought of as the inclusion
of a counterterm to the mean-field Hamiltonian that can-
cels the logarithmic divergences of the f-electron self-
energy.

We are now in a position to return to (3.112) and com-
pute the O(1/N) corrections to the thermodynamics. Let
us first compute the f occupation by taking the derivative
of the unrenormalized free energy with respect to Ef,
then replacing g by g —gXf —XF to renormalize the final
expression. This gives

8=4—kMFv

[&P(g, T) Xf—gXj] . —
1+(b/rr)q'(g)'

Let us briefly examine the change in the valence resulting
from the fluctuations, in the Kondo limit (

~ g ~

&&b, ), at
T =0, for which

(3.127)

If we look at the cutoff dependence of Ef * we see that it
can be written as

dv
5nf = — J sgn(v)Im

vW '(v)
v+g

—rfr o'

(3.130)
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The high-frequency parts in the integral are identical to
those appearing in the mean-squared radial fluctuations
(5r ) = —P 'X„R„„(iv„),so we can identify this term as
coming from the high-frequency fluctuations about the
mean-field theory, which tend to reduce the valence. The
second term in (3.130) is the adjustment coming from our
renormalization procedure, which adjusts the definition of
the quasiparticle, so that at T=0, the renormalized f oc-
cupation is still equal to 5(p)/sr=tan '6/E/ per chan-
nel, satisfying the Friedel sum rule.

In the presence of a field, we must replace P(g+v) in
W(v) by I/NX g(g +v) where g =g gps—mB To.

leading order in B

I /NX P(g +v) =Q(g+ v)

+ —, (gp~ )'j(j+ I )B'g '(g+ v),

the magnetic susceptibility can be determined by differen-
tiating 0, with respect to B . Expressing

=X,= —,
' j(j+1)(2j+I A',

then gives (after making the replacement g~Xf+$Xf)

X, (T)=X, (T)=—1m[X, "'(T)],
(3.131)

At T=O,

~flu(0) 6 I f ~ dv
[ ( )

&

]
1/(p+v) —I/p

7T o 7T ~(v)
and X, "=—1m[1/(mg)] as before. The entropy is given by

(x/+gxj )

J

(3.132)

S
N

0 ImA,
aT

SM" 1 - dvvP'——Im f n( v)[1 +n(v)]lnW(v)+(1 —gP ')P(Xf +graf )

&P &v
[ ( )

i

]
(g'+v)g ((+v) gP (g)

q (g)y0
7T oo 7T W(v)

(3.133)

We can now extract the linear coefficient y of the specific
heat at T=O, either by taking the T~O limit of dS/dT,
or by computing —2BIl/B(T ) at T=0 directly. Either
method gives y= , N(kerr) y wi—th

y = I', (0)+—X,"'(0)

a
lim [ImlnW ( v) ],~N v odv (3.134)

where we have identified the first two terms with corre-
sponding terms in (3.105), and the last term comes from
the Bose function in the fluctuation correction to A, .
Directly calculating this term we find that

1 1 1
y =Y, (0)— Im — 1—

N~ g 1+6/~g
(3.135)

Using (3.65), to leading order in O(1/N), the second term
in (3.135) is equal to the difference between the linear
specific-heat coefficient and the charge susceptibility
(I/N)[y —X,(0)] in the ground state, so combining
(3.134) and (3.132) we find that

y = X, + +O(1/N'),
N

(3.136)

which is the Yamada- Yosida thermodynamic identity for
the generalized Anderson model. In the limit that charge
fluctuations vanish, this leads to the Wilson ratio
X,/y =N/(N —1).

In our treatment we have carried out a very elementary
regularization procedure. Read and Newns note that it is
possible to carry out a more complete renormalization
process where wave- function renormalization counter-
terms are included into the Lagrangian. In such a treat-
ment, the fluctuation term 7""' becomes absorbed into
the renormalizations. We have avoided this approach
here because it is cumbersome to compute the quasiparti-
cle self-energies.

We have numerically computed the leading 1/N correc-
tions and plotted an example of the thermodynamic func-
tions in Fig. 12. We find that they are not singular, even
as we approach the mean-field phase transition.

To extend the calculations to high temperatures we
have found that there are serious technical difficulties at
the crossover. The second-order phase transition present
in mean-field theory implies a discontinuity in
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1.5

0.5
c„(T)/T q=1/6

potential for radial fluctuations becomes very flat.
In conclusion to this section, whilst we are able to com-

pute the leading corrections to the saddle point in the
strongly coupled Fermi-liquid regime of the model, the
crossover to weak coupling cannot be dealt with using just
the Gaussian fluctuations. This remains a challenging
problem for future work.

IV. TWO IMPURITIES

A. Nonlocal charge and spin fluctuations

1.5—
x(T)

FIG. 12. Leading 1/N corrections to the susceptibility and

specific heat for the case Q/N = 6, in the Kondo limit. The

mean-field parameters have been adjusted so that P is constant
and the curves are normalized with respect to their value at
T =0, N = ao. Note how the Wilson ratio rises as the spin de-

generacy increases.

C&/T= —d 0/dT at the crossover, and clearly the 1/N
expansion is singular at the crossover in the large-N limit.
This is a common drawback of large N expansions, and it
comes about because one has taken the macroscopic limit
of the system, leading to an arbitrarily sharp crossover.
We can attempt to analytically extend our results through
the crossover by using the effective action evaluated with
the Gaussian fluctuations included, and evaluate the
saddle-point condition (3.124) self-consistently. However,
the results will not contain the discontinuity as N~ oo.

It is possible to carry out an analysis around the weak
coupling saddle point at b =0, using the Cartesian Bose
coordinates. Such an analysis shows that the 1/N correc-
tions are divergent at the crossover, in contrast to the
strong coupling side, where the expansion is not singular
but is probably missing nonperturbative terms. Similar
behavior has been well documented in simple matrix
models, where the corrections to mean field have dif-
ferent forms in weak and strong coupling.

It seems very likely that as in many other crossover
phenomenon, (such as the crossover to high temperatures
in one-dimensional spin chains and the metal-insulator
transition), there are terms which affect the crossover re-
gion that cannot be expanded perturbatively. In our
strong coupling treatment these come from the need to re-
strict radial fluctuations to being positive, and initial
analysis of the corrections arising from the "hard-core
repulsion" that this adds to the effective potential indicate
that there are new terms of the form e entering into
the effective potential ~ These terms are not important un-
til one reaches the crossover regime where the effective

As our second example we shall calculate the nonlocal
correlations and interactions in the two impurity model.
In our model the presence of nonlocal fluctuations is sig-
naled by two independent nondegenerate modes of oscilla-
tion in the Bose field which arise from spin and charge
fluctuations which are either symmetric or antisymmetric
with respect to reflection in the plane separating the two
ions. Since there are now two conserved charges, both
modes contain a low-energy zero mode, which means that
intersite and intrasite couplings between the electrons in
the Cartesian gauge contain a strong coupling divergence.
Had we attempted to treat the two-impurity model in a
renormalization-group picture, we would expect to find
two corresponding relevant operators with a strong cou-
pling fixed point at low temperatures.

We shall deal with the zero modes exactly as before us-
ing the radial gauge of Newns and Read. The analysis
carried out explicitly in Sec. III B can be repeated for an
arbitrary number of mixed valence ions by considering the
Bose-field integrations for each site separately. In the
two-impurity model this means integrating over the am-
plitude and phase velocity fluctuations at two sites, so the
full partition function becomes

ZMv = r1 1 r2 62 (4.1)

where W(r) now contains an interaction term for each
site

g [ck f (R~)e
N

+H. c. ]r)(r) (4.2)

in terms of which the interaction Lagrangian takes the
form

Now in our mean-field solution of Sec. IIE the static
value of r/v N =ro is the same at both sites. When we
expand the Lagrangian in small fluctuations it is con-
venient to define antisymmetric and symmetric fluctua-
tion modes

5r-(r) = [5r t(r)+6r~(r)],1

2
(4.3)

8-+(r) = [Ot(r)+Oq(r)],
2
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W;„,(z)= i 8++ nf+6r+(r) g V (k)[ck~+f' '+H. c. ]
p p, m, k

+ i8 g f+' 'f' '+6r (r) g V~(k)[ck+ 'f '+H. c.]
1

p, m p, m, k

(4.4)

showing that the total parity is conserved: even-parity
fluctuations conserve the parity of electrons they interact
with; odd-parity fluctuations flip the parity of the states
they interact with. This is the two-impurity version of
lattice momentum conservation. In the corresponding
Feynman diagrams, we make sure that parity is always
conserved at interaction vertices.

When we expand the effective free-energy functional
about the mean-field value, parity conservation ensures
that it is diagonal "in the even- and odd-parity Gaussian
fluctuations

1
P~Ieff=nIIO+ y f—«,«,r (r2) I ~(72 'r) ) r —(ri)

2 p=+]

The calculation of these polarization diagrams is re-
peated exactly as for the one-impurity model assuming a
large bandwidth cutoff, and we can actually derive analyt-
ic results provided we make the near field assumption dis-
cussed in II E assuming that Tz «UFA/6, enabling us to
treat the two channels as nondegenerate Lorentzian reso-
nances. The simple symmetries apparent in the one im-
purity expressions are now lost and we find the following
results for the symmetric RPA diagrams

I „+„= g Re WI'(iv„) +t 1 z+&,
g~(i v„)

I +e(iv„)= g Im[W~(iv„)+iv„]
p=+] n

where

IIO ——g g f
m p=+1

(~) 6 (co), 5 (co) = tan
+fm

(4.5) ptg~(i v„)
Vn

g~(iv„)
I q+q(iv„)= g —Re

~
WJ'(iv„)

p=+] Vn

(4.g)

(4 6) where

is the mean-field free energy, r"=(5r&,iro8t'), and 1 (r)
has the same form as before, W~(i v„)= [P(@+iv„)—g(P)],

(4.9)
rP= r'"+ IIP . (4.7) Vn

g~(iv„) =
v„+2'

The RPA polarization graphs entering into M are similar
to the one-impurity model, excepting that two values of
parity must be summed over in the Fermion loops. For
II+ the internal electron lines have the same parity, while
for II the internal electron lines have opposite parity
(Fig. 13).

with P=Ef+pt(R)+ihi', b&=Apr 0, t(R)=r Ot(R), and
b~=b[1+pjo(kFR)] as before. For the antisymmetric
RPA diagrams we find

1 „„(iv„)=g Re [W~~(iv„) psW~z(iv—„)]
h~(i v„)

I a(iv„)= g Im[W~(iv„) ps'~~(iv„)—+iv„],rg n

p=+] n

(4.10)

P

I as(iv„) = —g Re[W~i(i v„)—W~z(i v„)],
26v

where

P=kl

FIG. 13. Antisymmetric ( —) and symmetric (+ ) RPA self-
energies for the two-impurity model, showing just the parities of
the fermion propagators. (See Fig. 5 for the coupling between
the propagators and the fluctuations. )

l Vn
[P(P+t v„)—g(g )*],—(4.11)

iv„+(P—g* ~) tr

~ Vn
h~(iv„) =

iv„+(P—g t')+2ib,

with s=jo(kFR), b, =pro, and y=tlb, =tlb, as before.
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Corresponding to the I ~ are the symmetric and antisym-
metric Bose propagators, given by

(?r ~(iv„)r~( i v—„))
1 R—~(iv )fl

=—[r~(iv )]-1

X (0) =Re ln
n.(bs —it }

QPx+(0)=
2n + /P/2

(4.15)

1x
(R~oo) 7T Q 2+~ 2f

(4.16)

In the limit of large separations 6+ and 6 ~A, while
t(R)~0 so that

1 1

N [r„„r,,—(r, }'] (4.12) which is exactly the single impurity result. We can calcu-
late the intersite spin susceptibility as

Lavagna has suggested the interesting possibility of an
instability in the antisymmetric fluctuations at a lower
temperature than the mean-field instability in the sym-
metric fluctuations, but restricts her analysis to the case
when ro ——0. To check this hypothesis, one needs to take
the mean field ro of the symmetric fluctuations into ac-
count. The appearance of such an instability would be
signaled by a singularity in the antisymmetric propagators
we have derived above. However, these propagators are
not singular provided ra&0. In other words the develop-
ment of a symmetric mean field rules out any subsequent
instability of the antisymmetric fluctuations.

We will relate these functions to the spin and charge
susceptibilities. Note that intrasite and intersite correla-
tions are determined by

( ri(iv„)ri( i v„) ) =——,[R (iv„)+R (iv„)],

( ri(iv„}rz( i v„))—= —,[R (iv„)—R (i v„)] .
(4.13)

B. Charge and spin susceptibilities

Since the Gaussian effective free energy is diagonal in
the even and odd fluctuations, the derivations of Sec.
III D can be repeated for each boson mode. We can write
down the even- and odd-parity susceptibilities directly, as

=g m [ roII~gs(r)]—,

where

5n ~= —g f~+f~—1
m m

m

M~=+ mf~+f~

We can directly calculate the static spin susceptibilities
by taking the zero-frequency limits of X~(iv„)=

roH~&e(i v„), w—hereupon we find (for T=0)

X~
(r) = ( T5n f(r)5n f (0) ) =4r o( T5r ~(r)5r ~(0)),

N
(4.14)

5 Q,ttp
X,(r) = ( TM~(r)M~(0) ) =g m-

& XWp(r)5i}(0)

1 1 Zi' 1 g+—Re ln
~ P ~

' ~[as —it(R)]

(4.17)

x+=o—1

R

1=0 ln
R

(4.18)

for small R. We shall call this regime the "weakly
quenched regime".

We have solved the saddle-point equations (2.101) nu-

merically, and plotted 7+ and X in Fig. 14. The posi-
tion of the nodes where gi2 ———,

' (g+ —7 ) vanishes is
found to depend on the band symmetry kD/kF. One of
the most interesting features to emerge is the appearance

There are two competing terms in this susceptibility of
opposite sign.

The size and magnitude of the intersite hopping param-
eter t dramatically affects the size and sign of the intersite
spin correlations. If we set this parameter to zero, then
the intersite spin correlations oscillate without changing
sign as the separation of the ions is changed. If we allow
a more realistic variation of t(R) with separation, such as
that generated by a parabolic band, then oscillatory inter-
site spin correlations reminiscent of the RKKY interac-
tion are exhibited.

For small separations of the ions, the spin correlations
are dramatically dependent on the degree of filling of the

f states. As R ~0, the antisymmetric quasiparticle reso-
nance width tends to zero, whilst the splitting of the reso-
nances r Ot(R) tends to a constant. Depending on the size
of t (0), and the filling factor of the f states

nf [nf(R, )+——nf(Rq)]/2(2j+ 1), the antisymmetric reso-
nance is either partially full, leading to an unquenched
moment at R=0, or it is completely full or empty,
leading to a quenched groundstate at R =0. The
latter condition occurs if nf 6 (f,f+ —, ), where

f= I/~an '[b,l t(R =0)]I, and f—or small R we shall
call this occupation regime the "strongly quenched re-
gime". If the filling is between f and f+ —,, the antisym-
metric resonance is partially filled, in which case the f
level becomes pinned to the Fermi level and the suscepti-
bilities diverge as R ~0. Direct calculation shows that in
the limit R~0
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FICi. 14. (a) Showing for q =
6 and kD/kF ——1.196 (i) the deviation of the Wilson Ratio 8'=P/y from its one impurity value

N/(N —1) in the Kondo limit and (ii) the symmetric P {R)and antisyrnmetric P (R) susceptibilities as a function of R in the Kon-
do limit. The ground state is fully quenched for all R, and the correlations are intrinsically antiferrornagnetic, with a reduced Wilson
ratio. (b) Showing for q =

2 and kD/kz ——1.196 (i) the deviation of the Wilson Ratio 8 =P/y from its one-impurity value
N/(N —1) in the Kondo limit and (ii) the symmetric P (R) and antisymmetric P (R) susceptibilities as a function of R in the Kon-
do limit. Here the ground-state f moments are weakly quenched at small separations and the correlations are ferromagnetic, with an
increased Wilson ratio.

of a ferromagnetic intersite spin correlation in the weakly
quenched regime. In the strongly quenched regime the in-
tersite susceptibility becomes antiferromagnetic. This is
reminiscent of the strong dependence of intersite spin
correlations on filling factor and intersite hopping in the
Alexander-Anderson model for two magnetic impuri-
ties, although at small R we see that the intersite
spin correlation is ferromagnetic at half filling, instead of
antiferromagnetic in the case of direct f-f hopping.

In the following section we shall see how this feature is
reflected in the interactions.

Extrapolating our results to finite degeneracy, we ex-
pect to see similar dramatic effects upon changing the fill-
ing factor. Thus, if we take nf ——1 at each site, then
changing the spin degeneracy from two to four should
change the sign of the intersite spin correlations at short
distances.

Figure 15 shows the dynamical spin susceptibilities for
the corresponding cases, clearly displaying that the even
and odd modes on~i split their degeneracy at low energies
comparable with 6, where there is considerable intersite
hopping of the heavy quasiparticles. By contrast, since
most of the charge fluctuations occur at energies much
greater than the spin-fluctuation scale, the symmetric and
antisymmetric charge fluctuations are essentially degen-
erate in the Kondo limit so that charge fluctuations are
local.

1.5

8
II

Q 5

Re y', (v)
kFR=7T/2

-0.5
0

I I

2 3
v/TK

FIG. 15. Showing the antisymmetric and symmetric dynami-
cal spin susceptibilities for the case q =

6 and kFR =n./2. The

antisymmetric susceptibility is largest at low frequency, leading
to antiferromagnetic spin correlations between sites.

Finally, we note that as in the one-impurity case we
find, on repeating the analysis of Sec. III D that the even
and odd Gaussian fluctuations in q are identically zero.
Rather than presenting a specific analysis, we refer the
reader to the general proof given in Appendix C that q
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fluctuations are conserved in the Gaussian fluctuation for
an arbitrary number of magnetic scatterers.

C. Interactions in the two-impurity model

In this section we examine the nature of the electronic
interactions in the large-X limit of the generalized Ander-
son model, discussing the high- and low-energy behavior.

l. Influence of zero modes on the RKKY interaction

Using the controlled results for fluctuations in the radi-
al gauge, the fluctuations in the Cartesian gauge can be
derived. This enables us to make contact with the weak
coupling perturbative picture of the two-impurity model.
As in the two-impurity model, the presence of zero modes

PH; = ——J drdr'cr;(r)J(r r'—)o;(r'),1
(4.19)

ik R
where o.; =X~ f ci, e ' as before, and J(r)
= V (, Tb;(r)b; ). Of particular interest however, is the
spin-dependent intersite interaction between the f elec-
trons that is generated by the fluctuations. This has the
form

drives the interactions to strong coupling at low frequen-
cies, and from the low-frequency spectrum of the phase
fluctuations, we can determine the scaling of the interac-
tions in strong coupling.

The fluctuations of the slave boson field lead to an ef-
fective on-site interaction which has the same form as in
the one-impurity model,

PHiz —— + dr I, (r„r'„r,r')[f (l, r, )f (2,r )f (l, r', )f (2,r')], (4.20)

where

I (izrrii'rz 1 z) = ( T[d (Ri, r', )d (Rz, rz)d (Ri, ri)d (Rz, rz)] ) (m&m') (4.21)

and the shorthand

lim (bj(r)bj (0) ) =ra(e ' ' )
T~ OO

—1/2(68 (wj )=roe (4.22)

in the Gaussian approximation. In the two-impurity
problem, there are two zero modes, corresponding to the
antisymmetric and symmetric phase fluctuations. A sim-
ple extension of the one impurity derivation gives

-'(5e (r)') =—1 +++a
N 2 C

(4.23)

d (R),r) =Xi ci, (r)b (Ri, r)e

is used. In (4.21) m&m' to exclude the spin-independent
part of the intersite interaction. At frequencies below the
charge fluctuation scale Eq, this is an interaction between
the spin degrees of freedom at the neighboring sites, and
will be referred to as an "RKKY" interaction.

At high energies the on-site interaction becomes identi-
cal to the one-impurity problem, discussed in Sec. IIIF.
However, at low energies the zero mode is modified by in-
tersite coherence. As before, we have

approximate I ]2 as a product of a boson and a conduction
electron vertex I &2

——I &2
""I]2"", where the singular

behavior at low frequencies is contained in the Bose part.
This then gives an approximation containing the impor-
tant amomalous singular properties at low energies, and
the leading 0(1/N ) contribution to the perturbative
RKKY interaction at high energies. In this approxima-
tion we shall include no self-energy or vertex corrections
to the conduction-electron lines, (other than the mean-
field corrections) so that

I i'z
' "= ( Tc~ ( 1,r'i )c~ (2, rz ) ) MF

X ( Tc (2, rz)c ( l, ri) )MF (4.25)

I iz' "——( Tb( l, ri )b ( l, ri ) ) ( Tb(2, rz)b (2, rz) ) . (4.27)

where the conduction propagators are evaluated in the
mean field theory. The boson vertex,

I, ' "=(Tb(l,r', )b(2, r')b (2,r )b (l, r, )) (4.26)

will now be studied carefully.
At high frequencies and short times, intersite correla-

tions of the boson fluctuations are weak, enabling further
factorization

where

ap
=lim Im

v O

pR ee(v)
vr Om

(4.24)

Infrared divergences are also present in the intersite in-
teraction, as we shall now show. The singular behavior in
I iz arises from the changes in Qi and Qz, resulting from
the bose operators. The conduction electrons do not carry
the charges Q;, so that self-energy and vertex insertions to
the conduction-electron part of I &2 will not modify the in-
frared singularities of the full vertex. This enables us to

Provided that the time scales of interest are larger than
the characteristic charge fluctuation time I /Ee, but much
shorter than 1/Tz, then we can approximate the high-
frequency contribution to the Bose propagator by

( Tb(r) b (0) ) -e ~ —(1/Ez )5(r). The intersite interac-
tion is then approximately

y4

+2 I iz-[5(ri —r' l5( irrzz)J /N ]

X g Gi, (ri —rz)Gi, (rz —ri)e ' "', (4.28)
k, k'
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with J=V /Eq. Evaluation of the summation at equal
times gives the conventional perturbative RKKY interac-
tion.

At low energies however, we cannot factorize the Bose
vertex, and the divergent zero modes dominate the in-
frared behavior of the interaction, leading to

r'„"'"=r (expi[8, (r', )+82(T2) —8,(r, ) —82(72)]) . (4.29)

Using the Gaussian fluctuations this function is given by

r'„-'"=roexp ——,
' ([8&(r&)+82(rz)

Putting 8~ ———,(8++8 ) and 82 ———,(8+ —8 ), and ex-

panding the exponent in symmetric and antisymmetric
modes then gives

I &z""-roexp —[C+(r~,r~,'rq, rz)+C (r&,rj;rz, rz)],
(4.31)

where

C (r~, rl, r2, r2) =
8 ( I Y(r~) —8((71)

+p[8"(r~)—8 (r~)]]') . (4.32)

—8i(ri) —82(rp)]') . (4.30)
In the long-time approximation, when 7&, 7] 72, and 72 are
well separated,

C (71 71 r2 r2)= In Ir'y ri
I I

r2 +21

r

7] 72 72

7] 72 7] 72
(4.33)

Similar Green's functions appear in the x-ray edge solu-
tion of Nozieres and de Dominicis, ' and although the
techniques employed are quite different, the power-law re-
laxation appearing here has a similar origin. From (4.31),
it follows that

lim ( Tb, (r)b2(r)b )(0)bq(0) ) -(r)

this case, so that

'2
dn+f
dQ+

2
dnf

d +

(4.34)
lim ( Tb &(r)b2(r)b~(0)b2(0) ) —(r)
T~ oo

The operators b &b2 and b &bq increase Q = —,(Q~+pQ2)p 1

by one, respectively, and the ap/N are the corresponding
x-ray exponents. In this case, increasing Qt' by one
changes the phase shift in both even- and odd-parity
channels. For the symmetric exponent, the action of b &bz

preserves the reflection symmetry of the state, so we ex-
pect Nozieres-de Dominicis x-ray-type arguments hold for

I

a relation which has been confirmed by to hold precisely
in numerical calculations of the symmetric fluctuations,
but as yet algebraic proof is lacking. For the antisym-
metric exponent, the final state no longer has reflection
symmetry, and it is unclear whether single impurity
Nozieres —de Dominicis arguments work in detail.

From the above results, we deduce that there are two
independent singularities in the RKKY interaction at low
energies:

(i) Electron electron chan-nel,

(4.35)

—4ro
V-(r r')- g [f~(1 r)f~ (2 r)fm (1 r')fm(2 r')],

1.—.' I'+

where the additional power of 2 comes from the intersite electron propagators (c (l, r)c (2,0)) 1/r, and is a term
present in the conventional RKKY interaction. This singularity leads to terms of the form v '+' ', upon Fourier
transforming, and therefore introduces no strong coupling divergence of the interaction.

(ii) Electron-hale channel,

V,„(r,r')—
—4ro $ [f (2,r)f (l, r)f (2,r')f (l, r')] .

7 7rnm (4.36)

This term generates a singularity of the form v '+'
which scales to strong coupling at low energies. Develop-
ment of the singularity in this channel is consistent with
the treatment of (f (2,r)f ( l, r) ) as a semiclassical vari-
able describing the development of intersite coherence,
and it is this singularity that will lead to an RKKY con-
tribution to the splitting of degeneracy between the sym-
metric and antisymmetric resonances, as shown in (2.99).

We have calculated the exponents ap as a function of
separation of the two ions, and find that whereas the

behavior of the symmetric exponent is similar in the
strongly quenched and weakly quenched regimes, the
behavior of a is markedly different in the two regimes.
Figure 16 shows the behavior of these two exponents in
the Kondo limit. At large separations, the ap are degen-
erate. At small separations a+~2 which is consistent
with only the symmetric channel coupling to fluctuations,
experiencing a phase shift change of 2~/N per channel
after the operation of b ]b 2. However, n ~0 in the
strongly quenched regime, whilst a ~ao in the weakly
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impurity Kondo model, suggests that the RKKY interac-
tion could scale to strong coupling. This result is partly
consistent with the arguments advanced here. There is
however an important difference, for the strong coupling
divergence derived here does not give rise to any addition-
al logarithms in the weak coupling scaling of the RKKY
interaction and it is strictly a strong coupling effect re-
sulting from the interference of the two quenched mo-
ments. (In other words, there is no additional crossover
temperature. ) Nevertheless, it is very likely that in a total-
ly analogous fashion to the one-impurity problem, a
resonant-level picture of the two-impurity problem can
also be gained from consideration of a strong coupling ex-
pansion of an appropriate spin model involving strong in-
tersite spin interactions.

We shall now see how the ground-state spin correlations
can be understood in terms of the Fermi-liquid properties.

2. Fermi-liquid properties

q=1/2 n, /N=0. 475

ko/ks=1. 196

0.5
kFR/2n

To calculate the Fermi-liquid properties we return to
the radial gauge. The calculation is analogous to Sec.
III D. We need to calculate how the mean-field scattering
potential is modified when we add a quasiparticle of spin
m, parity p to the system. Rather than repeat the mean-
field calculations in the presence of an additional quasi-
particle, we shall extract this information from the Bose
propagators.

The low-energy interactions between the quasiparticles
are determined by the static Bose propagators Rp. For in-
stance, the phase velocity fluctuations ir 0 couple to
f pf ", and thereby -induce an interaction

Hff —— ps, , (0)f+Pf +P fP sfPs

p, s=+m, m' r O

FICs. 16. (a) a+(R) and a (R) for the case q = 6. (b) a+(R)
and a (R ) for the case q = —,. The divergence of o. (R ) at

small separations suggests that the Fermi-liquid picture used
here becomes inappropriate for small distances.

quenched regime as R~O. The largeness of a in the
weakly quenched regime indicates that antisymmetric
correlations die away rapidly with time. This presumably
is why the symmetric spin susceptibility is greater than
the antisymmetric susceptibility, leading to a ferrornag-
netic susceptibility in this regime. It also implies that at
short distance, the mean-field picture must break down,
possibly because the RKKY interaction becomes compar-
able with the spin-fluctuation temperature.

In our arguments above we have not discussed more
general intersite interactions that mix the conduction and
f-electron spins. In general, for filling factors away from
—, , these terms will also be important, and they are subject
to the same infrared effects as the RKKY interaction. It
is these additional terms which are responsible for the
dependence of the intersite spin correlations on filling fac-
tor. We mill introduce these additional interactions in the
following section.

Recent work by Abrahams and Varma on the two-

(4.37)

T

~p, s „-—lf tpfsp y Irp(k)( tpfps+f &psP'
k

(4.38)

through the interaction XXP r'(r) g p'(w) Upon in-.

tegrating out the Bose fluctuations, the zero frequency
components of the Bose propagators mediate the follow-
ing interaction

0
2N s,p,p'=+rn, m'

g P'.R'(0)g P " (4.39)

where u orders the fermion operators to eliminate any
potential scattering,

~[t(W.0b)(4.A) ]=4.1t.fdgb . (4.40)

When we introduce a quasiparticle of parity p, spin m
we modify the static value of (g p'+) causing a shift in

This is a repulsive interaction, because ( I /r 0)8 as(0)
——b, as verified from the one-impurity results (3.73).
To remain general we shall also consider the interactions
that mix f and conduction electrons. The full fluctuation
r'=(5r ', irO') (s = + ) couples to the Fermion bilinear
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the saddle point and a change in the mean-field scattering
potential. We shall denote these changes in the f occupa-
tion and mixing by the vector

(4.41)

where

[4E E R"'
pp f f rr¹pP

This vector acts as a source current which couples to the
Bose field, inducing a change in the mean-field values.

Now the change in the ground-state energy per addi-
tional quasiparticle with energy label E (the energy of the
corresponding scattering state in the absence of the local
scattering potential) near the Fermi energy is given by the
scattering phase shift

—2(E Pf +E Pf )R s +R s's ] . (4.48)

The total energy change up to second order in 6np is then
given by 6E =X&6E~+6E,„,. Following Nozieres, we
shall summarize these results by writing the shift in the
ground state energy in terms of an occupation dependent
phase shift, given by

5Eqpp —— E — 5p(E) 5n p (E) .
1

7'
(4.42)

6E
6n p (E)

1
"r/'(E, n ~ ), (4.49)

The expectation values of the two components of (+p'+ )
(mixing and f occupation, respectively) are given by the
derivative of the ground-state energy with respect to r o Ef
and r respectively, so the current jp is determined by the
corresponding derivative of 6Eq~z,

where

5 (co, np )=5 (co)+
(p', m')&(p, m )

( —) ( —p)
Cp pnm

(+) p'
Ppp nm'

(4.50)

jm=p
6EqPp —— ( 2E Pf, 1—)5n P,

pro'yo aEf
"

Pro

(4.43)

5E(+) $ jP .R(+)(0).jP
(p, m )&(p', m')

(4.44)

Terms involving equal parity and spin do not appear be-
cause the direct contribution is exactly cancelled by the
exchange. The second interaction term is mediated by the
antisymmetric fluctuations. These do not couple directly
to jp, but they do couple via the exchange or Fock term,
giving a contribution

6E';„, = —$ jP R' )(0).j
(p, m)

(4.45)

Only states of equal spin couple in the exchange term.
Finally, inserting (4.45) into (4.24) and (4.45) yields

where we have substituted 5p= tan '(b, /E f ) for the
phase shift in order to carry out the differential.
p"=(rr) 'b. pl[(b, p) +(Epf) ] is the quasiparticle density
of states in the channel with parity p.

We now wish to calculate the energy of interaction be-
tween quasiparticles. To do this we require the correction
to the ground-state energy that is second order in 6nP.
The interaction energy is computed using the interaction
(4.39) to calculate the Hartree-Fock correction to the
ground-state energy caused by the change in the f occupa-
tion and mixing.

There are two contributions to the interaction energy.
The first is mediated by the symmetric fluctuations, and
is given by

where n is the number of additional quasiparticles of
spin m, parity p. In the limit R~ao, N(+) —4( —)~0
and this reverts to the one impurity Nozieres result.

The quasiparticle interactions corresponding to this
Fermi-liquid relation are

(p, m )&(p', m')
(4.51)

N (e(++) —4(+-) )p8= 1+(~ 1) [6~r(+)(0)+6~ ( —)(0)]
(4.52)

The departure from the one impurity value is plotted in
Fig. 15.

where I =[P/P P" vr]C&p—p and nP are the number of
quasiparticles of parity p, spin m, energy E (close to the
Fermi energy). I+ and I are the direct and exchange
interactions between the quasiparticles. The spatial extent
of the Fermi liquid now splits the degeneracy between the
direct and exchange terms. Figure (14) plots these in-
teractions for two cases. For the weakly quenched regime
we find I —I+ &0 corresponding to a "ferromagnetic"
or attractive triplet interaction between the quasiparticle
states of opposite parity. For the strongly quenched case
we find that I —I+ ~0, or antiferromagnetic intersite
interactions. This result is fully consistent with the sign
of the intersite susceptibilities calculated in these two
cases.

We note finally, that in the Kondo regime the Wilson
ratio 8'=P/y is modified by the exchange interaction. It
is straightforward to show that quite generally, indepen-
dent of our mean field theory, the Wilson ratio is given by

5E;„+, ' = (~p)—
(p, m )~(p', m')

5E,'„, '=(rrP) ' g Np p5nP 6n
p, m

(4.46)

(4.47)

V. STRONG COUPLING IN THE LATTICE

Extension of our analysis of fluctuations to a lattice
model involves no new forrnal complications. Unlike the
approaches which explicitly constrain fluctuations in Q
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via the Abrikosov trick, or via Keiter Kimball perturba-
tion theory, ' " the broken symmetry approach does
not get more and more complicated as one adds additional
ions, and provides a well defined prescription for model-
ing the lattice. In the fluctuations, the Q conservation
symmetry insures that

are diagonal in this momentum representation of the fluc-
tuations,

pII ff—pII p+N g 5r (q, i v„)l (q, i v„)5r(q, i v„),T
(2m. )

(Sq(R, , r)Sq(R„O) & =O . (5.l) (5.3)

Now of course, the analysis is aided by defining Bose fluc-
tuations with a definite wavelength

5r(q, r)=, g 6r(R), r)e
(&.t-)'" RJ

where, now,

kp 1

I (q, iv„)=2
I O

+ II(q, iv„)
J

(5.4)

8(q, r)=, g 9(R),r)e
(+sites )'" RJ

(5.2)

Lattice momentum is conserved in the interactions, and
the quadratic terms in the effective free-energy functional

and the polarization graphs involve a sum over the wave
vectors and frequencies of the internal electron lines.
Once we have determined the mean-field propagators, we
can determine the RPA polarization diagrams,

H„„(q,r)=r p 3 [2G»(k+q, r)G»(k, r)+G—b(k+q, r)Gf(k, r)+G—f(k+q, r)Gb(k, —r)],
(2n. )

H e(q, r)=r p [Gfb(k+q, ~)Gf(k, r)+Gf(—k+q, r)Gfb(k, —7)],d q
(2m. )

d3
H& (qe, )r=r p I 3 [Gf(k+q, r)Gf(k, —r)],

(2m )

where

(5.5)

Gf(k, r) = ( Tf~(k, r)f m(k, O) ),
G»(k, r) = g V( k+Cx)( Tf~ ( ,k)rc ~(k +Cr, )r),

k

Gt, (k, r) = $ V(k+ 6)V(k+ 6') ( Tc (k+6, r)c (k+ G', r) ),
k, G, G'

(5.6)

and the sum is over reciprocal lattice vectors G. Deter-
mination of correlations and interactions in the strong
coupling regime hinges on the determination of the matrix
II(q, iv„). In a similar fashion to the two impurity model
the high-frequency behavior of I (q, v) will be independent
of wave vector q due to the local character of the high
frequency fluctuations. However, the interesting physics
of the lattice problem lies in the low-frequency fluctua-
tions, and these have momentum dependences that reflect
the lattice symmetry.

In the Cartesian gauge we know that the Q conserva-
tion symmetry will lead to a zero mode at each wave vec-
tor. This feature spells disaster for any attempt to use a
renormalization-group analysis to study strong coupling
features of the lattice, for this would require keeping track
of at least one relevant It ondo coupling constant J(k) for
each rnomenturn k.

The outlook for an accurate numerical treatment of the
Bose fluctuations in the lattice is optimistic, and some ini-
tial studies are underway. As in the two-impurity
model, the hybridization with higher bands will affect re-
sults quite dramatically through the f-band dispersion,
and the inclusion of this dispersion is an important part of

the calculation.
Evidently, once we have determined the polarization

matrix, we can immediately determine the spin and the
charge susceptibilities. The momentum-dependent
dynamic spin susceptibility is determined from

X(q, cp) = —
2 Hee(q, cp) .

rp
(5.7)

If we integrate over the q dependence of H(q, v), this
theory will predict a spin susceptibility rather similar to
the one-impurity result, with a quasielastic peak for filling
factors less than half and a Lorentzian peak for a filling
factor q = —,'.

Particularly interesting however, will be the momentum
dependence of the spin susceptibility which we expect to
be quite marked at temperatures T «b and frequencies
co « 5, with the interesting possibility of spin correlations
being strongly dependent on filling factor, as in the two-
impurity model.

The second aspect of heavy fermion systems where we
expect this approach to be useful is in the modeling of
Fermi-liquid properties. Given R(q, co=0) we can deter-
mine the low energy interactions between electrons. For
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instance the direct f fi-nteraction between quasiparticles
will be

Hff —Q——I(q) g f (4+q)f (k')f (k' —q)f (k),
2

q k, k'
m, m'

(5.8)
where I(q)= —(1/¹o)R&s(q,co=0), with two other in-

teraction terms coupling to the mixing matrix elements.
From these interaction terms one extracts the A„' interac-
tion parameters of the Fermi liquid. The momentum
dependence of R(q) is of particular interest to any calcu-
lation of the triplet interaction strength between quasipar-
ticles, which depends on a dipole component of R(q). As
in the two-impurity case, filling factor will play a crucial
role in the sign of these interactions.

Various authors have compared heavy Fermion
systems with the Brinkman-Rice picture of He, with al-
most localized quasiparticles. It is clear that in our model
the interactions will be weakly momentum dependent be-
cause of the very weak momentum dependence of the
quasiparticle dispersion, and it is therefore correct to
think of these quasiparticles as almost localized. Howev-
er, the two-band structure with interactions propagating
through both amplitude (hybridization) and phase fluctua-
tions (f-level position) in the mean-field potential indicate
that we are dealing with more degrees of freedom than in
a simple one-band picture, and close analogies between
He and heavy fermion systems may be misleading.

Whilst the leading interactions contain a O(1/N) pre-
factor, we should not attach too much significance to this
prefactor. We are not attempting to gain a quantitatively
accurate model of real systems from the leading Gaussian
fluctuations, but rather by organizing our calculation as a
1/N expansion about a broken symmetry limit we are
provided with a consistent model with many of the prop-
erties we associate with mixed-valence systems. Thus we
should not regard the leading interactions as small, but
rather, as providing a guide to the qualitative properties
of the interactions, and their dependence on physically
important quantities (such as the filling factor q) in the fi-
nite degeneracy system. Of course some systems do have
large spin degeneracies in their ground states, (such as
YbCuA1, CePd3), and in these cases we have some hope of
gaining quantitative accuracy. In other systems, such as
those with twofold ground-state degeneracies, we aim to
gain a guide to the strong-coupling properties from this
model.

In the lattice there will be a close relationship between
the Bose fluctuations and the transport properties. In our
semiclassical picture of mixed valence, as we raise the
temperature, the electrons involved in conduction sample
an increasing amount of the high-frequency fluctuations,
which will inelastically scatter the electrons and lead to a
rapid rise in the resistivity from zero in the Fermi-liquid

regime. Investigations into the inelastic scattering gen-
erated by the fluctuations are now in progress.

Another aspect of mixed valence properties which this
approach lends itself to is the introduction of phonons.
One of the controversial issues about heavy-fermion sys-
tems is the question of whether phonons are involved in
the mediation of heavy-fermion superconductivity. Fulde,
Razamafimandimby, and Grewe ' have proposed
models of phonon-mediated superconductivity in heavy-
fermion systems, but little detailed thought has been put
into the interplay between Coulomb and phonon interac-
tions in these systems. Very clearly, the small charge sus-
ceptibility of the f electrons makes direct coupling to the
f electrons a very unlikely contender for a pairing mecha-
nism, for if the bare coupling to a local phonon, P, has the
form

H =gpnf, (5.9)

then at the mean-field level, we deduce the renormalized
coupling to be

V(k)H =gPX, nf g —(cq f +H. c. )

km 0
(5.10)

where

Im 1+— —(b, /b, )=r 0,

which is tiny when the system is in the Kondo regime. If
we were dealing with a one-band system this would rule
out phonon mediated superconductivity when the band
structure is very narrow. However, this does not rule out
coupling to the band electrons, which at the mean-field
level is unrenormalized, or coupling to the hybridization
matrix element, which is only weakly renormalized. It
seems an interesting question to see how the Fermi-liquid
properties are modified by introducing such couplings,
leading to a dynamical interplay between the phonon and
"slave-boson" fluctuations. This is particularly interest-
ing when the phonon frequencies are comparable with the
heavy bandwidth.

A. Introduction of a realistic
angular momentum structure

A wide variety of experiments show the Fermi-liquid
properties of narrow band f-electron systems to be highly
anisotropic, and clearly, the use of a realistic lattice struc-
ture and realistic angular momentum structure is needed
to model these properties. Our quasiclassical treatment of
mixed valence readily generalizes to incorporate both of
these features. When we have spin-half-band electrons
hybridizing with spin-orbit coupled, large degeneracy f
electrons, the hybridization takes the form

o=+—,R, k, m
1

[cg f (R)b (R)e '"'
&( (k)(jl—,';m

~
l, m cr;s = —,',—o)+H.c.], (5.1 1)

where 1 (=3 typically) is the orbital angular momentum of the f state and j (=3+—,
'

typically) is the total angular
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momentum of the spin-orbit coupled f state. When we compute the saddle-point equations the mean-field behavior is
determined by a hybridization term of the form

H;„=g V(k)[c~ f (R)e '"'
Yi (k)(jl—,';m

~
l, m —cr; —,

' o)+H.c.], (5.12)

where V(k)= V(k)r~ is the renormalized hybridization. Using this mixing we compute Ef Ef——+A. self-consistently
from

Ef =Ef—
2 g V(k+G)(ci+o~f (k)) Y~~ ~(k)(jl z, m

~

l, m —o; z cr)
Nr o ),o, m

(5.13)

and

(5.14)

N~ oo with q =QIN finite, we find a meanfield broken
symmetry solution. At T =0 the mean-field equations
are simply

These self-consistency conditions can be built into a KKR
band-structure calculation in a very straightforward
fashion. Given the renormalized band structure from
such a calculation, it is straightforward to determine the
polarizabilities H(q, iv„) from which the dynamic suscep-
tibilities and the Fermi-liquid properties can be evaluated
in the Gaussian approximation. Crystal-field splitting of
the f levels into multiplets can also be simply added to the
model, and its effect on the mean-field properties is close-
ly akin to a magnetic field. Local crystal fields strongly
effect the effective ground-state spin degeneracy, modify-
ing the magnetic moments and Sommerfeld ratio of the
Fermi liquid.

B. Further generalizations

Our approach of treating the strong-coupling regime of
an electronic system as an almost broken symmetry can be
further generalized. The simplest generalization is made
by introducing one extra boson field a (per site) to model
high-frequency charge fluctuations into a doubly occupied
state with energy 2Ef + U. The additional terms

H; = g V(k)(ci~f~a +af~ci~)+(2Ef+ U)a a (5.15)
k, m

are then added to the Hamiltonian.
The formally correct way to add a second boson would

be to use the coupling to gi, V(k)((ci, f a+H. c. ),
since destruction of the doubly occupied state leads to for-
mation of two fermions. This version was proposed by
Barnes a decade ago ' for modeling the symmetric An-
derson model. Unfortunately, any attempt to treat this
boson model in a mean field leads to anomalous "pairing"
terms which destroy fermion conservation at the mean-
field level and introduce a spurious gap into the excitation
spectrum.

The coupling (5.15) avoids this problem, but is only
valid when the "a" boson amplitude is very small, corre-
sponding to occasional virtual scattering into the doubly
occupied state. This extension is therefore a method of
introducing the leading spin-fluctuation corrections of
large but finite U. The conserved quantity Q is now given
by Q =a a+b b+nf and the corresponding symmetry is
given by fife', babe', a~ac' . The second Bose
field represents the charge degree of freedom associated
with doubly occupied state of energy 2Ef+ U. If we take

Ef+ U
Ef ——Ef*+— ln

Ef+Ef+ U (E 2 +g 2)1/2f

a +b +—tan
E

=qo (5.16)

a =[(Ef Ef )I(Ef+—Ef+ U)]b,

where b, =b [a +b ) and a = (a ) IV N, b = (b ) Iv N.
In the Kondo limit where Ef &&b, we find Ef +id
=Tze ', where Tz ——De ' ~ and

Jp= Ef+ U Ef
(5.17)

is the well-known Schrieffer-Wolffe expression for the
Kondo coupling constant.

Another generalization can be made by applying this
approach to the infinite- U Hubbard model, writing

H= g t j[(bc; cz b& )+(ac; cj a& )]+ QIa; a;
l, J& m

(5.18)

which for N =2,Q =1 is equivalent to the infinite-U
Hubbard model. The Bose fields used here are dynamical,
unlike those employed in a conventional Hubbard-
Stratonovich transformation. Unfortunately, as in the
Anderson model, we run into problems with fermion con-
servation at the mean-field level when we try to model
double occupation and finite U by a second boson, and so
far as is known, more than two Bose fields are required.

VI. SUMMARY

We have attempted to present, in as much detail as pos-
sible, a new approach for modeling strong coupling in
mixed-valence and Kondo systems. The essence of our
approach has been to incorporate the strong correlations
intrinsic to strong coupling as an underlying symmetry.
The large degeneracy limit of the model can then be
solved exactly, and yields a broken-symmetry mean-field
solution at low temperatures which contains crucial non-
perturbative effects of strong coupling, including the for-
mation of narrow extended heavy Fermion bands. By car-
rying out a semiclassical expansion in the fluctuations
about this broken-symmetry state we are able to con-
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sistently model the strong-coupling behavior in a way
which preserves the symmetries associated with the con-
straint. The singular properties of the strong coupling re-
gime are incorporated through the broken symmetry, and
strong coupling in mixed valence and the Kondo problem
is viewed as arising from critical zero-mode fluctuations
about an almost-broken-symmetry state.
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where

a(iso„,i v„)=rp[Xf(ice„)+Xf(ice„+iv„)],

I (i v„)=p g Gf (l Cl) )[Xf(l CO —l v )

+Xf(lCO +Iv )]

=2Re P ' g Gf(ice„)Xf(ice„iv—„)
n

(A2)

and the propagators are defined as in Sec. II C. To evalu-
ate these sums we convert them to a contour integral
around the poles of the Fermi function f(co). In the
large-bandwidth limit,

APPENDIX A: CALCULATION OF RPA
DIAGRAMS IN SINGLE-IMPURITY MODEL

We wish to evaluate the Matsubara sums

Gf(z) = 1/[z Ef+i —sgn(zI)b, ],
where zi ——Imz and for v„&0 we have

(A3)

II„„=P ' g Gf(ice„+iv„)Gf(ice„)
n

X [a(i co„,i v„)] + I ( iv„),
II„&——(Pro) g Gf(in„+i v„)Gf(icy„)a(ice„,iv„), (Al)

n

IIss (pr 0)——' g Gf(ice„+i v„)Gf(ice„),

—2E7 pA& Imz )0

a(z, iv„)= 0, —v„& Imz &0

2irpb, , Imz & —v„.
(A4)

Deforming the contour integral around the two branch
cuts at Imz =0 and —v„ then gives

and

P g Gf(ice„+iv„)Gf(ice„)[a(ice„,iv„)] = g f f(x)ImIGf(x i5)Gf—(x+Piv„)[a(x i5,Piv„)]-
p +~ ~ 7T

(A5)

I (iv„)=2 f f(x)bRe[Gf(x+iv„) —Gf(x —i5)] . (A6)

By using the result

f P(x/D)f(x) =—P(z) —ln
77 X —z 77 27Tl

(A7)

for a Lorentzian band cutoff P(x) =(1+x )
' of width D, we then arrive at the result

Re [f(j+iv„)—g—(g)] 1+(iv„),
Vn '7T

11 = Im —[tit(/+i v„)—f(g)],
&n

(AS)

IIas —— Re [Q(/+i v„—) —Q(g) ],
v„(v„+26,)

where

I (i v„)=2 Re [P(/+i v„)—f—(g)]+ P(g) —ln
7T 2' (A9)

For v„&0 the result is obtained from the complex conjugate of these results. These are the results quoted in (3.47).
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APPENDIX B: EVALUATION OF
FLUCTUATIONS IN THE CARTESIAN GAUGE

Here we show the equivalence of the Gaussian fluctuations in the Cartesian-Bose coordinates to the fluctuations al-
ready determined in the radial coordinate systems for the Bose field. In the Cartesian coordinates, the Gaussian correc-
tion to the free energy is

pFg Ng——b(i v„)b(iv„)[A, i—v„+IIp(i v„)]+—g [b(i v„)b( i v„—)+b(i v„)b( i v—„)]H~(i v„),
EV EV

where II (iv„) is the ' normal" Bose self-energy and II"(iv„) is the anomalous self-energy generated by the finite ampli-
tude of the Bose field. The expressions for these self-energies are then

H (iv„)=(P) 'QGf(ice„+iv„)[Xf(ice„)+r Xf(leo )Gf(t co„)']
EV

~2
H (l v ) = g Gf (leo +l v )Gf(l v )Xf (leo )Xf(Lcd„+Iv )

EV

(B2)

and by carrying out the Matsubara frequency sums we find

Hp(iv„) = [g—(/+i v„)—P(g))

b.(b, +v„)
H&(iv„)= 2Re—[g(g+iv„) —P(g)] .

v„(v„+5)

2h DPRe [P—(/+i v„)—ti (g) ]+—Re P(g) — ln
v„(v„+26, ) 77 2&l

(B3)

Now if we write b„(iv„)=b„(iv„)+iby(iv„) where b„and by are real fields, then writing s(iv„)=(b„(iv„),iby(iv„)),
we discover that

PFg [b (i v„),by(i v„)]= g s (i v„)I c,„(iv„)s(iv„)
EV

(B4)

where s (iv„)=[s (iv„)] =(b "(iv„), iby*(iv—„)) and the matrix I c„,(iv„) is given by

k+ II g (i v„)+ReH p(i v„) i v„+i 1mIIp(i v—„)
i v„+i ImH—p(iv„) A, —II& (i v„)+ReHp(i v„) (B5)

I c,„(iv„)=
ReW(i v„)

1

g 'vn

i 1m'(i v„)—
i ImW(—i v„)

g (i v„)ReW(i )v

(B6)

In the two diagonal terms of I c,„we can use the saddle-
point condition A. +b /vr Re[/(g) In(D p/2vri )]=0—to
eliminate the explicit dependence on A, . Inserting the re-
sults (B4) yields

APPENDIX C: IMPOSITION OF CONSTRAINT
FOR AN ARRAY OF MAGNETIC SITES

Consider an array of magnetic sites at positions Rz. To
generate the correlation functions for Q;(r), nf(R;, r) and
r; (r) the source term

13

pF, = g f dr[(;(r)[Q;(r) —Qp]+p;(r)nf(R;, r)

+j;(r)r; (r) I + f dr g J (r)O (r)

—iv In rg

—iv In rg

( —iv„) I as
(B7)

where g (i v„) and W(i v„) were defined in (3.48). Had we
taken the result from radial coordinates and recognized
that 5by(r) = rp58(r) so that ( —i v„)i 6by (i v„)=irp8(i v„),
then by putting

is added to the free-energy functional, where the currents
g; (r), p;(r),j;(r), and J (~), are external sources. The ad-
ditional source terms coupling to the operators 0 allow
us to discuss cross correlations with other variables of in-
terest. %'e are working in the radial gauge of Newns and
Read.

The effective thermodynamic potential A,ff, determined
by

and using (3.50) we obtain identical results to (B6) above,
showing the equivalence of leading fluctuations in the
two-coordinate systems for the one-impurity model.

(C2)

then generates correlation functions of interest, for in-
stance,
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5 PQ, ff
( T5Q;(r)5n~(RJ, O)) =—

5;(r 5$J 0)
(C3)

the measure is unchanged, whilst the source currents g;(r)
are entirely absorbed into the constraint. The source term
now becomes

n —1

(T5Q, (r) g 5O.(r.))= g pII „g;(r) 5J (r)

8;(7 ) =8;(r) —i [g;(r) +P;(r)], (C4)

where the prefix 5 denotes fluctuation from the mean, for
instance, 5Q;(r) =Q;(r) —Qp.

In the radial gauge, the constraint on Q;(r) is imposed
through the terms i8;(r)[Q;(r) —Qp] in the free-energy
functional. Now in the path integral, the measure for an-
gular velocity fluctuations is linear W [8]= II+8(r).

Under the translation in 0,

PF,'= g f dr[j;(r) P—;(r)]r; (r)

P—Qp f d&gP. (&) (C5)
l

Consequently, Il,ff is independent of g;(~) and all correla-
tion functions (C3) involving fluctuations in Q;(r) vanish.

These statements remain true when the path integral
over r and 0 is approximated by the leading Gaussian
corrections to mean-field theory, as will be shown below.
In general, after integrating out the Fermions in the path
integral, the Gaussian approximation to the bose effective
action is

pF fr =N g [rz( i v„)+—g I( iv„)]—I Jk(iv„)[rk(i v„)+g k(iv„)]+N g rJ( iv„—)S J( r)(iv„)
l,J, l Vn

+N g [j;(iv„)(r; )+P;(iv„)(nJ(R;))];„
J

J, lV

(C6)

where RJ(iv„)= [5rj (i v„) irpj8J (i v„)](rp, = (r~ )MFT is the mean field value of rj and the currents shown are

gj(iv„)=[PJ(iv„)+(z(iv„)](0,—ir pj ),
SJ(iv„)=[jz(iv„)+gj(iv„)](2rp&,0) .

The additional source terms coupling to 0 have been temporarily omitted.
The gaussian integral runs from —cc to ~ in rJ and Oj with linear measures in both variables,

e '"=e ™~ dR iv„do i „e

(C7)

(Cg)

At this stage we note that without further approximation, the linear translation of Oj can be carried out, preserving the
gaussian form of the free energy. Writing this translation of variables in Fourier transformed variables

i 8J(i v„)=i 8&(i v„)+ I gj(i v„)+P~(i v„) I

then yields

pF,ff=N g r&( —iv„)I Jk(iv„)rk(iv„)+N g 2rpj5r~( iv„)[j;—(iv„)—p;(iv„)]

(C9)

j,k, iv„

+N g [jz (iv„) (t).z(i v„)];„pr—p&

J

J, lV

(C10)

l

the f occupation and Bose fluctuations are precisely an-
ticorrelated,

(
n

TS \ ) ft 0 ( ) = —T5 (R, ) ff 50()) . , ,
a=1 a=1

(Cl 1)

We wish to dwell on this result for the particularly in-
teresting case when the source terms couple directly to
Fermi fields. Consider the general fermion source term

I3

PFy. = g «[ra~«Wa~(&)+Pa~(r)num(r)]
a, m

where the ga and yam are conjugate Csrassman vari-
ables. When the fermion fields are integrated away, this
adds the additional term

So even within the gaussian approximation, the path in-
tegral is independent of source terms coupling to the
charges Q~. .

If we reintroduce the additional couplings J (r)O (r)
to the original free-energy functional, then at the Cxauss-
ian level, this adds additional linear and quadratic terms
to the free-energy functional, but, providing that none of
the 0 depend on Oj, then these additional source terms
do not introduce any dependence on gj. This means that
the full generating functional computed to Gaussian order
0 ff[g;,j;,p,'J ] is independent of gj' so that the correla-
tions involving fluctuations in Qi(r) identically vanish.
So quite generally, the constraint is imposed consistently
in the leading Csaussian fluctuations.

Furthermore, the dependence on j;(iv„) and pz (iv„}.
only enters in the combination j;(iv„) p;(iv„), so—that
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13

PF~fr= f drdr tl«(r)G~p(1& T';'5r()tip~(r') (C13)

to i3F,fr, where G~p(r, r';5r;)=(Tg (r)g~ (r')) is the propagator for electrons moving in the field of the bosons. To
Gaussian order in the fluctuations,

P
G p(r, r', 5r)=G~&(r r')—+ dr, G r(r ~, )[A~&„5rj(r~)]G„Jt(r~ r—')

P+ f dr, d~2G~r(r r,—)[A r„.5rj(r, )]G„(r& ~2)[A ~„5rj(rz)]G„p(r2 r')—, (C14)

where the A ~It are the vertices coupling the electrons to the Bose field at site i and the Green's functions G~&(r —r') are
the mean-field propagators for the fermions. The important point is that there is no new gj dependence introduced by
the Fermion source terms. This means in particular, that when we do the final Gaussian integral over the Bose fields,
the final generating functional Q,rr[g;, Tl;, tl;] is independent of g;, so that by differentiating with respect to source
currents we find that

(C15)

The corollary to this result, first shown by Read in the case of one impurity, is that for any two states of quasiparti-
cles

~

a) and
~
P),

=0 (C16)

where
~

0) is the ground state. This nontrivial result within the Gaussian approximation is consistent with the expecta-
tion that the quasiparticles do not carry the "charges" Q, and further evidence that the constraint is consistently imposed
at the gaussian level of approximation. In the Kondo limit Q =nf, so in this limit the quasiparticles do not carry f
charge nf, even though the quasiparticle band forms from resonances in the f channel.
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