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Field-theoretic formulation of the randomly diluted nonlinear resistor network
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A field-theoretic formulation is used to describe the resistive properties of a randomly diluted net-
work consisting of nonlinear conductances for which V-I'. The nonlinear resistance R(x, x') be-
tween sites x and x' is expressed in terms of an analytic continuation in an associated crossover
field. The renormalization-group recursion relations are analyzed within this analytic continuation
to order a=6—d, where d is the spatial dimension. For r near unity a perturbative calculation to
first order in (r —1) agrees with both the result obtained here for general r and with the approxi-
mate relation proposed by de Arcangelis et al. between the nonlinear conductivity and the noise
characteristics of a linear network. For arbitrary r and d a generalization of this perturbative treat-
ment gives (r +1)dg(r)/dr =t)Q(q, r)/t)q

~ ~ ~, where Plr) is the resistance crossover exponent and
@(q,r) a generalized noise crossover exponent associated with

~
t)R/t)ob ~, both quantities referred

to the nonlinear system, where o.
b is the conductance of an individual bond. For r not near unity

our results to first order in e for P(r) and P(q, r) satisfy the above relation but not that of de Ar-
cangelis et ai. For q =0, P(q, r)/v~ is the fractal dimension of the backbone, where v~ is the corre-
lation length exponent for percolation. As is known, P(0)/v~ is an exponent associated with the
chemical length, for which our result agrees with that given by Cardy and Grassberger and by
Janssen.

I. INTRODUCTION

Although much progress has been made in recent years
in understanding the critical properties of random resistor
networks, relatively little is known about nonlinear net-
works. Here we consider the model of a nonlinear net-
work as proposed by Kenkel and Straley' for which each
circuit element obeys a nonlinear generalization of
Kirchoff's Law, which can be written in either of two
equivalent ways as:

[ V(x) —V(x')]=I„„
I
I„ (l. la)

orb [ V(x) —V(x')]
~

V(x) —V(x')
~

=I „, (1 lb)

where crb (rs) is the nonlinear conductance (resistance) of
the bond b connecting sites x and x', r and s are the ex-
ponents describing the nonlinearity with s =r ', andI„„is the current in the bond flowing from site x to site
x'. We will consider a version of this model in which
each bond randomly is present (with conductance oo) with
probability p and is absent (with zero conductance) with
probability 1 —p. Such a model has also been studied re-
cently by Blumenfeld and Aharony on fractal lattices.
From an analysis of a fractal nonlinear network, de Ar-
cangelis et al. have proposed an approximate relation be-
tween exponents of the linear network which describe the
critical behavior of noise characteristics (or of the current
distribution ) and the exponent for the conductivity, X, of
the nonlinear network.

The nonlinear conductivity, X, may be defined in
terms of the current I which results from imposing a po-
tential difference AV between opposite faces of a hyper-
cube of side L in d spatial dimensions as

(1.2)

t(r) =(d —1 r')v&+r ' P(—r), (1.4)

where vz is the correlation-length exponent for percola-
tion and P(r) is a crossover exponent associated with the
scaling behavior of the two-point resistance, defined in
Eq. (1.8), below. For linear networks on percolating clus-
ters, Eq. (1.4) reduces to the familiar result, ~

t =(d —2)v~+P.
In any configuration of occupied and unoccupied bonds

we define the two-point resistance R (x,x') as follows. We
solve the circuit equations

g tr, „ [ V(y) —V(y')]~ V(y) —V(y')~' ' =I,„,(y),

when an external current I,„, is put into the network at
site x and taken out at site x':

(1.6)

Then R (x,x') is defined to be

R (X,X') = [ V(x) —V(x')]/Io. (1.7)

We may consider the average resistance between sites
known to be in the same cluster. Denoting this quantity'
by R we have

For p near the percolation threshold at p, the critical ex-
ponent associated with X is defined via

(1.3)

for a given nonlinear exponent r. It can be shown, ' using
the node-link picture, ' that
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p(r))/vpR(x,x') -(era) "
~
(x—x')/a

~

M (y, y')
(1.9)

and the results of the preceding paper' for a linear (r =1)
network may be written as

2~o(3+(y, y ) tp(q, 1)lv —d
( 1) r

P (1.10)

where I'&~'"' is a scaling function of position coordinates
and g(q, r) a crossover exponent, both quantities for the
network with nonlinear exponent r in Eq. (l. la). For
symmetric fractals de Arcangelis et al. found the rela-
tion

They noted that this relation would not hold for asym-
metric structures, such as we would expect to find within
percolation clusters. They speculated that such a break-
down in Eq. (1.11) would be most pronounced for d =2.
Since we now have (in Ref. 13) a controlled calculation of
sir(q, 1) within the e=6—d expansion, it is of increasing
interest to develop a similar calculation for P(r) to test the
above conjecture of de Arcangelis et al. From such a cal-
culation we could tell whether it is permissible to regard
the blobs as symmetric for d =6—e. To this end, we give
here the first e-expansion calculation for a nonlinear net-
work and the result given in Eq. (3.15), below indicates
that Eq. (1.11) is not exact, i.e., the asymmetry of the
blobs can not be neglected. Note that in the limit r ~0
the resistance between two points x and x' becomes essen-
tially equal to the length of the shortest path between the
two points. The exponent v, h for this so-called "chemical
distance" denoted r,h is defined by r,„—

~

x —x'
~

for p —p, and our result to order e is v, t, ——1+(e/28), in
agreement with e expansions obtained for v,h by Cardy
and Grassberger' and also by Janssen. ' For r~ oo,
Blumenfeld and Aharony and de Arcangelis et al. have
shown that P(r)~ l.

Xfp[(x —x')/g~],

where g~ is ge percolation correlation length, f& is some
scaling function, and a is the lattice constant, which
henceforth we take to be unity. The principle objective of
this paper is to establish a field-theoretic formulation
from which we can obtain a controlled calculation of P(r).

As we have mentioned, de Arcangelis et al. have pro-
posed that resistive properties of the nonlinear network
are qualitatively related to suitable noise characteristics of
linear (r =1) networks. The noise characteristics are ex-
pressed in terms of the distribution of moments of the
currents in individual bonds, ib. Using Cohn s
theorem, ' one can express these currents for a linear net-
work as

Since the technique that we use may not be entirely
convincing, we also give perturbative analysis for small
nonlinearity (i.e., for r —1&&1). In the limit r~l this
analysis is consistent with both our e-expansion calcula-
tion for general r and the relation Eq. (1.11) proposed by
de Arcangelis et al. However, since our calculation
disagrees with Eq. (1.11), we conclude that there is prob-
ably no simple relationship between linear and nonlinear
networks for arbitrary r. This conclusion is supported by
a generalization of the perturbative analysis, using which
we derive the following relation between the resistivity
crossover exponent and the noise exponent for systems
having the same nonlinearity exponent, r:

(r + I)dP(r)/dr =Bg(q, r) /dq
~ z (1.12)

This relation holds for arbitrary spatial dimension. Note
that our Eq. (1.12) and Eq. (1.11) become equivalent as
r~ l. In order to check that our results do indeed satisfy
Eq. (1.12) we calculated the noise exponents, g(q, r) for
the nonlinear network and these results are given in Eq.
(A9) of the Appendix. Hopefully the results presented
here can be tested via series calculations or other numeri-
cal approaches.

Briefly, this paper is organized as follows. In Sec. II we
describe the analytic continuation needed to study the
general nonlinear network. The notation and general for-
malism are the same as that in the preceding paper' and
are not described in full detail, except where differences
arise. In Sec. III a detailed analysis of the analytic con-
tinuation of the renormalization group recursion relations
to order e is presented. In Sec. IV the perturbative calcu-
lation for small deviations from linearity is given. This
calculation is rather straightforward and substantiates the
more elusive calculation of Sec. III. This treatment is
generalized in Sec. V to yield Eq. (1.12) for arbitrary
nonlinearity. In the Appendix the noise crossover ex-
ponents are calculated to order e for arbitrary nonlinearity
and are shown to satisfy Eq. (1.12). Finally, in Sec. VI,
we summarize our results.

II. FIELD THEORY FOR NONLINEAR NETWORKS

We wish to develop a field theory from which can be
obtained the properties of the solutions to the nonlinear
network equations of Eq. (1.5). In analogy with Stephen's
procedure for the linear network' ' ' we consider the
correlation function G(x, x';A, ):

H([ V[) ik[V(x) —V(x')]— (2.1)

where D V indicates an integration over all variables
I V(x) I and the "Hamiltonian" is

H= g crb
~

V(y) —V(y') ~'+',
b s+I (2.2)

where the ub s are arbitrary. In the limit when A. is imagi-
nary and V+' is much larger in magnitude than any of
the o's, the integrand in Eq. (2.1) becomes sharply peaked
so that the integral is dominated by contributions from
the maximum in the integrand. From the fact that
5&/5V(y) generates the left-hand side of Eq. (1.5), we see
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where R (x,x') is the nonlinear resistance between sites x
and x', a is an unimportant constant, H~~ denotes the
determinant of second derivatives at the maximum, and
we used rs =1. Fluctuation corrections to Eq. (2.3) are of
order A,o

"+', relative to the dominant term. It should be
noted that for nonintegral s it is essential to continue G to
the regime where A. is large and argA, =+~/2. Otherwise
the integral in Eq. (2.1) would be dominated by contribu-
tions from branch cuts whose relation to the solution to
the network equations is totally unclear.

To treat the random network we introduce replicas in
the usual way. We introduce an n-replicated effective
Hamiltonian Hdf given by

n

exp( H, rr) = +—exp( H( [ V )
—)

a=1 av

(2.4)

where [ ],„ indicates an average over all random configu-
rations of occupied and unoccupied bonds. Now we con-
sider the generalized correlation function

f DV exp( —H, )refxp[i A[V(x),.—V(x')]J
G(x, x';A, ) =

DV exp —H, ff

that the location of the maximum in the integrand is
determined by the solution to the nonlinear circuit equa-
tions (1.5). Thus in the asymptotic limit A. =+imp with
ko~+ oo, we have

G (x,x';A ) =a
~
H~~

~

'
exp[kp+

' R (x,x')/(r + 1)],
(2.3)

It is not generally possible to consider this G as a small
perturbation away from a critical correlation function.
This can be traced back to the fact that in order to make
the maximum dominate the integral in Eq. (2.1) we had to
continue A. to large imaginary values. However, utilizing
a point of view developed in treating the problem of
biconnectedness, ' we will overcome this difficulty with
Eq. (2.6) by evaluating it near the limit when all the com-
ponents of A, are equal. Accordingly, consider the case
when k =iApf, or all a. Then for A,phoo Eq. (2.6) be-
comes

G (x,x';A, ) = [exp [nip+ R (x,x')/(r + 1)]],„, (2.7)

A, =iAp+g

subject to the constraint

(2.8a)

g =0.
a=1

(2.8b)

Then in the regime where A.o is near the positive real axis
and

ikt i/cTp)) 1,
n

~

A,p ~

"+'/cr p && 1,

(2.9a)

(2.9b)

and

where R (x,x') is proportional to op '. More generally, we
set

(2.5)

where the vectors A, and V(x) have n components, one for
each replica and DV —=+ DV . In Eq. (2.5) the denomi-
nator becomes unity in the limit n~O, which we utilize
in the replica scheme. In the limit n~O we write the
analog of Eq. (2.3) for A=i k , p as

~ g A.p
'

~
/op && 1,

where g = g g, we have

(2.9c)

G(x, x';A, ) = exp g k' p'R (x,x')/(r + 1)
a=[ av

G( , xAx)=[exp[[nA 'p/(r+1)

—g rko ]R(x x )j l (2.10a)

p~ ca . (2.6) We interpret this as

G(x, x';A) =[v(x,x') [1+[nAp+'/(r + 1) —g rAp ']R (x,x')] ],„,
r

v(x, x') 1+R (x,x') g ( iiL )'+'l(r +1)—
av

(2.10b)

(2.10c)

where v(x, x ) is the pair connectedness indicator function
of percolation. ' The inequality (2.9a) is essential for the
saddle point evaluation as in Eqs. (2.6) and (2.7) to be
valid. Inequalities (2.9b) and (2.9c) are invoked to justify
the expansion of the exponential as in Eq. (2.10b). This
limit then becomes analogous to the limit o.o ~ oo, which
has been used' ' to connect the randomly diluted resistor
network with the percolation problem.

To carry out this program we construct H, ff in this

limit in terms of the order parameter 4~(x) defined as

%~(x) =exp[i', .V(x)] .

From the definition of H, ff we find that

H, rr = —g Q Bg+g(x)% g(x'),
(x,x')

(2.11)

(2.12)

where the sum over ( x, x' ) is carried over pairs of nearest
neighboring sites. Here
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(2.13)
|xj lo.o

Fi(ik,o)= f exp —
~

Vi'+'+ A,oV dV (2.15a)
00 s+1

where F is given as

QO lo-0
F((&)= f exp —

~

V~'+' iA—V dV.
oo s+1 (2.14)

We now obtain an asymptotic expansion of Fi(ik,o) for 1

finite and A,o large and near the positive real axis such that
Eq. (2.9a) holds, in which case

lo.o—J exp — V'+ +A,oV dV,s+1 (2.15b)

where the integral in Eq. (2.15b) is dominated by the con-
tribution from the region near the maximum of the in-
tegrand at V =(Ao/loo)"—= Vo. We therefore set
V = Vo+x Ao" " /(1 0o)" so that

q (r —1)/2 q r+1
A,p A,p

Fi(i Ao) — . dx exp
(lcro)" (r +1)(lao)"

s 2 s(s —1) & s(s —1)(s —2) 2 4X
2 3I 4t

PX P X (2.16)

where the expansion parameter p is

p =(lcro)"/A, o+' « 1 . (2.17)

q (,r —1)/2
A,p

Fi(iso) —c
gr+ 1

0
exp

op (r +1)(ic o)'
(2.18)

We now consider the evaluation of B~ for A, as in Eq.
(2.8). Then we find that Bx is of the form

The condition p « 1 is equivalent to Eq. (2.9a). Thus we
have

III. e EXPANSION FOR THE NONLINEAR NETWORK

dr(A, ) = (2—g~)r(A, ) —gX(A, ), (3.1)

In this section we will study the analytic continuation
needed to generate the two-point resistance. To obtain the
correlation function required in Eq. (2.5) it suffices to ob-
tain the propagator in the replicated field theory for the
randomly diluted network. The recursion relation' ' for
the inverse propagator r(A, ) has been used in several cal-
culations' ' ' and for convenience we start our analysis
from Eqs. (4.1) and (4.2) of the preceding paper, ' which
we write as

Bx -Bo —g ~k
k=1 a

(2.19) where gz is the exponent describing critical correlations at
the percolation threshold, g is a coupling constant whose
fixed point value is e/7, and X(A, ) is given as

ro(&) = ro(0) awk —g ( i A)"+'— ,

k=1 a
(2.20)

with coefficients ak, which we do not evaluate.
The percolation critical point occurs for a critical value

of Bo, denoted Bo „oforder' 1/z, where z is the coordi-
nation number of the lattice. In order to obtain the resis-
tive behavior from the properties of this critical point, we
should arrange for Bx to differ only perturbatively from
Bo. To satisfy this condition we restrict A, to be in the re-
gime of Eq. (2.9). In the field-theoretic formula-
tion' ' ' ' the inverse propagator r(A)has a ba, re value
ro(A, ) —(zBx) ' —1. From Eq. (2.19) we see that near
criticality we have

X(A ) = —2G(A, )G(0)+ g G (A, —~)G (v. ),

—= —2G (A, )G (0)+X(A, ),

(3.2)

(3.3)

where G (A, ) is the propagator which we take in the form

G(A) '=1+r(0)+6r(A, ) . (3.4)

5r(A, )= —wi g( —iA, )'+' (3.5)

For notational convenience we will set ro r(0). In view-—
of the discussion in Sec. II, we will consider the analytic
continuation of this recursion relation for A. of the form
of Eq. (2.8) in the regime described by Eq. (2.9). As men-
tioned after Eq. (2.20), to determine P(r) we may set

where the wk's are constants. By comparison with Eq.
(2.10c) we see that the crossover exponent associated with
w i —oo "is identified as P(r) of Eq. (1.8).

The evaluation of X in Eq. (3.2b) now is carried out
along the lines of the Appendix in the preceding paper. '

We start by expressing Eq. (3.2) as

Dr exp[ —u5r( —,
'

A, +~)—v5r( —,
'

A, —r)],
X(A)= f du f du f Dr exp[ —uG '( —,'A, +r) —UG '( —,'A. —~)]

= f du f du exp[ —(u +U)(l+ro)] f
(3.6a)

(3.6b)
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where Dr=+, dr . One should recall that we are in-
terested in A, of the form of Eqs. (2.8) and (2.9). Then we
may use Eq. (3.5) with appropriate arguments to evaluate
5r( —,

'
A, +r), so that

ll ( —2 ll, +lro) =U( —
2 lk, —lro)

so that

7.
O
———,

'
A, [u' —U']/[u'+U'] .

(3.9a)

(3.9b)
n

X(X)= f"du f dv exp[ —(u+v)(1+r )] gI(A, ),
a=1

(3.7)

where

For wl
~

Xo
'

~

—
~

ko+'
~
/oo && 1, we may neglect

higher-than quadratic fluctuations about the saddle-point,
so that

I(A}=[r(r+1}wl(uv)' '( —lA)" '/[2lr(u'+v')" ]I
I(A, )= f dr exp[wlu ( —,'i A+i—r.)"+' X exp[w, ( —i A, )'+'uv /(u'+ v')'] . (3.10)

+wlv( —T~lk, —lr) ] (3.8a)

d~exp H ~ (3.8b)

Since wlAo+" is large, we evaluate I(A, ) by steepest des-
cents. The saddle point in the integral is at ~=~o deter-
mined by H'(r) =0 or

When this result is substituted into Eq. (3.7), the dom-
inant terms come from the exponential and are of order
I(A, )" —1+nwlko+'. The contributions from the prefac-
tor to the exponential in Eq. (3.10) lead to terms in Eq.
(3.7) of order ning, o which we neglect. In addition, we
neglect terms of order ro. Thus we have

n

X= f du f dv exp[ —(u+v)]exp wl g ( iA—)'+',uv/[u'+v']"
a=l

(3.1 1)

Therefore we obtain I 4(0)/v
rch — x —x (3.17)

X- 1+ wl g ( iA)—"+' . c(r),
a=1

where

(3.12)
and Eq. (3.15) gives P(0}=1+(e/28). This result agrees
with the previous work of Cardy and Grassberger' and of
Janssen. '6 Finally, Eq. (3.15) gives the limit P(oo)=1, as
expected. '

(3.13)

—:P(r)
Vp

(3.14)

(1—g')c(r) = —,
' d

l [( I +g)llr+(1 g)l/r]r

From Eq. (3.12) we write the recursion relation for wl as

IV. PERTURBATIVE TREATMENT OF THE
ALMOST LINEAR NETWORK

We now study the circuit equations in the form

g o„„[V(x) —V(x')]
~

V(x) —V(x') =I,„,(x),
X

(4.1)

Inserting the fixed point value g =e/7 we have

P(r)=1+ c(r) .
14

(3.15)

P(r) =1+ 1—e 76
42 12

From P(r} one obtains the scaling of the two-point resis-
tance as in Eq. (1.8) and the conductivity exponent as in
Eq. (1.4).

Several special cases of this result may be noted. In or-
der to check this result we perform, in the next section, a
perturbative calculation of P(r) for r near 1, i.e. for the
nearly linear network. For r = 1+6 with 6 « 1, Eq.
(3.15) gives

which we write as

g o„„[V(x) —V(x') ]=J(x), (4.3)

where

where s =(1—5). To calculate R (y, y') we take the
source terms to be I,„,(x)=I(5„„—5„„). We consider
the case 6«1 so that r =1+6. Note, however, that
throughout this section the spatial dimension, d, is arbi-
trary. We have, correct to first order in 6:

g o„„[V(x) —V(x')][1—51n
~

V(x) —V(x')
~ ]=I,„,(x),

X

(4.2)

A more general test of this type is discussed in Eq. (5.12),
below. Also, we note that for r~0, the resistance be-
tween two points, x and x', becomes equal to the "chemi-
cal distance" or length of the shortest path, r,h, between
the two points. Thus we write

J(x)=I,„,(x)+5+o„„[V(x) —V(x')]

Xln
~

V(x) —V(x')
~

.

For 6=0 we have the usual solution denoted V' ':

(4.4)
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V' '(x)=[G(x,y) —G(x, y')]I, (4.5) V(x)= g G(x, x')J' '(x'), (4.6)

where G(x, x') is the Cyreen's function for the circuit
equations. A solution to Eq. (4.3) correct to first order in
5 is obtained by iteration:

where J' '(x) is the value of J(x) for V= V' '.
In this way we obtain

V(y) —V(y') =R' '(y, y')I+ —,5 g cr„„I[G(y, x) —G(y', x) —G(y, x')+G(y', x')]
X, X

X ln[
~
G(y, x) —G(y', x) —G(y, x')+G(y', x')

~
I], (4.7)

where 8' ', the two-point resistance in the linear network, is

R' '(y, y') =[G(y, y) —G (y', y) —G(y, y')+G(y', y')] .

Cohn's theorem' in this notation is

aR'"(y, y') = —[G (y, x) —G (y', x) —G (y, x')+ G (y', x')],
~~X x'

so that we have

az'" az")
V( ) —V( ')=R' '(, ')I ——g „„'Il — ' I

(4.8)

(4.9)

(4.10)

If the conductances crab of every bond b are incremented by the same fraction, the effect on the two-point resistance is ob-
tained by linearity. Thus

gR (0)(
R(0)(y y ) g y, y

b BC7b

aR'"(y y') I2
a-,

1+(5/2)BR' '(y, y')

B&b

V(y) —V(y ) = —g ob 1 + —,61n
b

Ob
b

In view of this relation we write Eq. (4.10) as

BR' '(y, y')

BOb

(4.1 1)

(4.12a)

(4.12b)

where we used g„„,=2+&. In accord with Eq. (1.7)
we have the nonlinear resistance as

P(q) = 1+e/[7(2q + 1)(q + 1)]. Combining Eqs. (4.13)
and (4.14) we have

R (y, y') —gob'
b

1+(5/2)
BR '(y, y')

BC7b
(4.13)

/[1+($/2) ]/v
[v(y, y')«y, y') l.,/&p(y y') —kp (4.15)

From the accompanying paper' we have the scaling
behavior

Since we also identify the left-hand side of this equation
p(r =1+5)/v

as gz ~, we have the nonlinear resistive cross-over
exponent to first order in the nonlinearity 6 and e as

M' '( ')
v(y, y') "'" P', (y, y')l

t 'aU

[P&e)»~ —d j [&) rF~' (4.14)

P(r =1+6)-Q(1+—,5)

=1+ 1 — 6
E 7

42 12

(4.16a)

(4.16b)

where X~(y, y')—= [v(y, y')],„ is the susceptibility function
for percolation, F a scaling function of the spatial coordi-
nates, and g(q) a crossover exponent for the linear net-
work calculated' to first order in e =6—d as

This result agrees with that, Eq. (3.16) found via the e ex-
pansion.

The importance of the above analysis is that it shows
that our procedure of analytic continuation of the recur-
sion relations can be substantiated to first order in r —1.
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V. GENERAL RELATION BETWEEN NONLINEARITY
AND RESISTANCE EXPONENTS

In this section we obtain a general relation between the
resistance crossover exponent ct)(r) and the generalized
noise exponent, 1t(q, r) for a system with nonlinear ex-
ponent r. In the Appendix we show that our e-expansion
results satisfy this relation.

We calculate the nonlinear resistance between sites I

and x' for the nonlinearity exponent s of Eq. (1.5) assum-
ing the value s +hs. To do this we write the circuit equa-
tions as

g cr„„[V(y) —V(y')]
i

V(y) —V(y') i' '+ =l,„,(y),

(5.1)

where I,„,(y) is given by Eq. (1.6). For small M we have

go„„[V(y)—V(y')]
~

V(y) —V(y') i' '[1+csin
~

V(y) —V(y') ]=I,„,(y) .

y

(5.2)

Using Eq. (1.7) for M =0, we obtain

V(x) —V(x') =Ip R (s;x,x')+ —, g ()R(s,x,x')

y, y any, y

cr„„bs ln
t

V(y) —V(y')
~

(5.3)

where the first argument in R is the value of the nonlinear exponent, s and the factor —, is included to count each bond
y, y once. For a given configuration, the Lagrangian corresponding to Eq. (2. 1) is

g cr„,, i
V(y) —V(y')

~

'+' —g I,„,(y) V(y) .
2 s+1 (5.4)

When this Lagrangian is evaluated at the maximum of the integrand in Eq. (2.1), i.e. when the circuit equations are
solved, then we have

R (s,x,x')Ip+s+1 (5.5)

We now differentiate L with respect to oy y In so doing, we should, in principle, take account of the fact that the volt-
ages are implicit functions of crz z. However, the resulting terms vanish due to the fact that dL /c) V(y) =0 is equivalent
to the circuit equations. From Eqs. (5.4) and (5.5) we find that

t
s+) Ir+) c)R»xix

dcrs y'

We substitute this position dependence of V(y) into Eq. (5.3) to get
r

+ c}R(s x x') (~„,„' s
1

c)R(sxx )
0

(5.6)

(5.7)

Homogeneity gives

c)R (s,x,x') 1
crb = ——R (s,x, x ),

BCXb S
(5.&)

so that

V(x) —V(x')= Ip g . —
b

c)R(s,x, x')
Ob S

Bob

As lnIp— c)R(s,x, x')
s+1 s+1 Bob

(5.9)

To order Ls we write this as
1 —M/s(s+1)

R(S +As X X )=—[V(X)—V(X )]Ip " " = gcrb —S(„+a„) BR(s;X,X')

b 0CTb
(5.10)

[v(x,x')R (s,x,x')],„I[v(x,x')],„]
q

c)R (s,x,x')
V X,X

Bob

(5.1 la)

I f(q, s)/~ —d ]
I [v(x,x') ],„] (5.11b)

where 6»= —M/s .
From Eq (5.10) we. can determine the way R (s +AS) scales with distance and thereby identify P(s +hs ). The depen-

dence of these quantities on distance [in the sense of Eq. (4.14)] in the nonlinear system is

P(s)/v—kp
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so that Eq. (5.10) gives P(s+M)=g(1 —M/s(s+1), s).
Since P(s) =P( l,s), we have

dP(r) Bg(q, r)
dr Bq

(6.1)

s (s +1)dg(s)/ds = —Bf(q,s)/Bq
~

(5.12a)

In terms of the variable r this relation takes the form

(r +1)dg(r)/dr = dg(q, r)/dq
~ q (5.12b)

This relation seems to be more plausible than that of de
Arcangelis et al. After all, there seems to be no reason
why noise properties of one system should be related to
resistance properties of another with a very different value
of r. In the Appendix we calculate g(q, r) and show that
our results satisfy Eq. (5.12b).

As discussed in Ref. 13 for the linear (r =1) case,
p(O, r) measures whether or not R (x,x') depends on ob
Thus for q =0 the left-hand side of Eq. (5.11b) is unity if
ob affects R (x,x') and is zero otherwise, i.e. when the
bond b is in the backbone. Thus g(O, r)/ ~vmay be identi-
fied as the fractal dimension of the backbone. This argu-
ment is independent of the value of r, so we conclude that
P(O, r) should be independent of r Qu.r result in Eq. (A9)
of the Appendix for g(q, r) satisfies this requirement.

VI. CONCLUSIONS

We may summarize our work as follows:
(1) We have calculated the crossover exponent P(r) for

the critical behavior of the resistance in a randomly dilut-
ed nonlinear ( V —I') network. The result to first order in
e is given in Eq. (3.15).

(2) For r~O, P(r) is the crossover exponent for the
critical behavior [see Eq. (3.17)] of the chemical length
(shortest path via occupied bonds) between two sites. To
first order in @=6—d we find P(0)= 1+(e/28), in agree-
ment with previous results. ' ' For r~oo, we obtain
P(r)~1, as expected.

(3) We have calculated the above-mentioned crossover
exponent P(q, r) associated with

~

BR (y, y')/Bo„„~ 'i which
partially characterizes the noise characteristics of the sys-
tem, and the result is given in Eq. (A9) in the Appendix.

(4) We obtain a relation valid for arbitrary spatial di-
mension and r between P(r) and the crossover exponent
P(q, r):

Our e-expansion results satisfy this relation. At least for
d near 6 this relation indicates that P(r) is a decreasing
function of r.

(5) For q =0, P(q, r) is independent of r. Also
P(O, r)/vz is the fractal dimension of the backbone whose
value is in agreement with known results. '

(6) Although our calculations satisfy several nontrivial
self-consistency checks and do reproduce known results
for r ~0 and for r~ oo, they do involve an analytic con-
tinuation whose status is not beyond question. Accord-
ingly, calculations either to second order in e or of the ex-
ponent associated with wz in Eq. (2.20) would be useful to
further test the method of analytic continuation used here.
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APPENDIX. e EXPANSION CALCULATION
OF THE NOISE EXPONENTS FOR ARBITRARY

NONLINEARITY

To see if our calculations are consistent with Eq. (5.12)
we need to generalize to the nonlinear case the calcula-
tions of the preceding paper for the noise sensitivity cross-
over, exponent P(q), utilizing the two replica averaging
scheme. We treat the Hamiltonian of Eq. (2.2) of the
present paper when each o.

b is independently averaged
over f(ob). However, to study the crossover associated
with (BR/Bo.b), it suffices, in view of Eq. (5.2) of Ref.
13, to include only the qth cumulant of the bond conduc-
tance denoted Aq. Accordingly, we write the effective
Hamiltonian [cf. Eq. (3.12) of Ref. 13] as

Oo n m

H,rf= —g ln 1 —p+p exp — g g ~
V~~(x) —V p(x') ~'+'

(x,x') + a=lP=1

( 1)9Q9
X +exp g ~

V p(x) —V p(x') ~'+'
q!(s + 1)q

q

(Al)

where o'0 is the average of o'b over f(ob). The resulting generalization of Eqs. (2.11)—(2.14) of the present paper consists
mainly in replacing A, by 7,. Using Eq. (Al) we see that in the presence of noise characterized by 6, Eq. (2.14) of the
present paper becomes

F~(A~)= g g . . . g (b, V)"exp i g A. PU ~—exp (A2)
U» U2 Unp a=1

where A,p denotes the vector (A. &p, k,zp, , k.„~) and b V is the mesh size used in the discrete version of the field
theory. ' ' ' In evaluating F~ we can treat 6 perturbatively, i.e., we can ignore it in determining the maximum in the
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integrand for large imaginary A, p. This maximum occurs at U ~= [ —iX ~/(loo)] . We now consider 8& for
p= iA op +g p, with Lop large and near the positive real axis and with

~ g & ~

much smaller than
~

A 0& ~

. In this regime
we have

q

(A3}

a" —b~ is an unimportant constant. Correspondingly, 5r(k) in Eq. (3.5) now becomes

q
5r(A. )= —w g( i A—p)'+. '+w'g g [ —iX p]'+'

aP P a
(A4)

where w'-b. ~. Then the analog of Eq. (3.7) is

m

2 = f du f dv exp[ (u +—v)( 1 + r )]Q I(&~),0 0 P=l

where I (A, ) is given by

I(A)= f Drexp w g [u( —,'i A+—ir. )" '+v( ——,
'

iA, —ir )"+']

(A5)

n

Xexp w u $ ( —, iA+—ir ,)"+ +w v
a=1

( —, iA, i—r )"+-'
a=1

(A6}

We now evaluate I(A. ) for large A,o by steepest descents treating w' perturbatively. Thus we may determine the location
of the saddle at r =r 0 setting w' =0. As in Eq. (3.9) we find

r 0= —,A. (u' —v')/(u'+v') . (A7)

Recalling the developments after Eq. (3.10), we see that only the value of the integrand at the saddle was relevant. The
prefactor in Eq. (3.10) did not contribute to leading order in A,o, and this will also be the case here. Thus we finally get

2= f du f dv exp[ —(u+v)(1+ro)]exp g w( —iA, &)'+'uv/(v'+u')
0 0

aP

q

&& 1 —2w'u g g[ ik p]"—+'
P a +U

q(r+1)

(A8)

P( q, r) = 1+eI (q, s = 1/r, r)/14, (A9)

This result implies that the recursion relation for w' is
'/8& =P(q, r)w'/v~ with

Eq. (A9) satisfies this relation. Also, for r = 1 we recover
the result for the linear network of the accompanying pa-
per, ' viz. g(q, 1)= 1+v/[7(q +1)(2q + 1)]. Finally, we
check that our results do satisfy Eq. (5.12). Since
P(r) =P(l, r), we wish to verify that

where I(q, s, r) is given by

I(q, s, r) = (1+ )
(1—g')'

[( 1 —g)'+ (1+g)']

q(r+1)
or

(r + 1)BP(1,r)/dr = Bg(q, r)/Bq
~

(Al la)

(A 10) aI(q, s, r)r+1
Br

dI(q, s, r) r}I(q,s, r)
r20s Qq

For the nonlinear system the value of P(q, r) determines
the scaling behavior of (BR/Bcrb)~ as indicated in Eq.
(5.11b) and also various noise scaling exponents as dis-
cussed in the preceding paper. '

This result satisfies several checks. Firstly, from Eq.
(5.8) we see that P(l, r) should equal P(r) and our result in

for q =rs = 1. (Allb)

To facilitate the derivation of Eq. (All) we have artifi-
cially expressed I(q, s, r) as a function of both r and s. In
view of the dependence of I(q, s, r) on the variable
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q(r +1) one sees that

r)I ( l, s, r)r+1
Br

dI(q, s, r)
Bq q=1

(A12)

One can also show that the derivative with respect to s of
the integrand in Eq. (A10) is an odd function of g' for

q =1, so that

BI( i,s, r)IBs =0 . (A13)

Combining Eqs. (A12) and (A13) yields Eq. (Al lb). Thus
Eq. (Alla) is satisfied by our result, Eq. (A9), for the
noise sensitivity exponent i)'j(q, r) of the nonlinear network.
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