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Anomalous time correlations in quenched systems with continuous symmetry
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We continue our exploration of the growth kinetics of the time-dependent Ginsburg-Landau model
after a rapid temperature quench in the limit of large N —the number of components of the order pa-
rameter. We focus here on time-displaced correlation functions and the approach to the linear-
response regime where the dynamics are governed by fluctuations in equilibrium. In the case where
one correlates fields at times t and t +~, with the time after the quench t small, one finds, for typical
values of the wave number, that the Fourier transform of the correlation function falls rather rapidly
to zero for sufficiently large ~ as the fields lose correlation. However, for q near and equal to zero
this decay can be extremely slow and serves as a measure of the softness of the restoring force in the
system for long times where there are well-developed Nambu-Cxoldstone modes. For q =0 these
correlations grow with a power-law dependence on ~ and the q =0 component is nonergodic.

I. INTRODUCTION

In a previous set of papers, ' we explored the growth
kinetics of the time-dependent Ginzburg-Landau (TDGL)
model for various types of quenches in the limit of large
N —the number of components of the order parameter.
Scaling behavior and growth laws were determined and
associated with the evolving dominance of a single length
in the problem, the average domain size. In the absence
of an external ordering field the analysis focused on the
correlation function C(x,x', t)=(P(x, t)P(x', t)), where

P(x, t) is the order parameter in the system and t measures
the time since the system was taken out of equilibrium.
When the system is in equilibrium C(x,x, t) will be in-
dependent of time and it is conventional to study the
time-displaced correlation functions C (x, x', t, r )

=(P(x, t)P(x', t+r)) which is independent of t In this.
paper we study the behavior of this more general quantity
in the nonequilibrium situation of a strong temperature
quench, again in the limit of large X for a nonconserved
order parameter.

In carrying out this study we hoped to understand the
approach to the equilibrium dynamics governed by
C(x,x, Dv, r). In this case the equilibrium dynamics is re-
laxational and one is interested in how long it takes before
the system is governed by its final equilibrium relaxation
rate. When do we enter the linear-response regime? Of
course, in a system with a richer dynamics, one would be
interested in how collective modes shift or are born as the
system evolves from some initial value to some final value.
Since there has been very little work on this problem, we
were also interested in the structure of the theory. What
is the interplay between the two times? Within the con-
text of the simple model we study we can answer both of
the questions posed above. As a bonus in this analysis we
have found some rather interesting behavior associated

with the soft response of the system which is manifested
for quenches to below the ordering temperature.

Consider the case of quenching to below the transition
temperature and monitoring the Fourier transform
C(q, t, r) as a function of t and r. One expects that for
large t C (q, t, r) will approach its equilibrium form
C(q, aa, r) which will be a sum of r-independent Bragg-
peak contribution and a relaxing exponential with a rate
proportional to q as a result of the existence of Nambu-
Goldstone modes in the final equilibrium state. We
indeed verify this evolution quantitatively below. Consid-
er, however, the less obvious situation where t is fixed and
~ is taken to be large. Physically this would correspond
to taking data for P(q, t) as a function of t and then com-
ing back and autocorrelating it with a time displacement

What does one expect for t fixed and ~ large? Since t
may be fixed at some relatively early time after the
quench the underlying probability at that time may be
very diFerent from that as t +~. One expects that
C(q, t, r) would fall rather rapidly to zero for sufficiently
large ~ as the fields lose correlation. For typical values of
the wave number this is true. However, for q near and
equal to zero this decay can be extremely slow and serves
as a measure of the softness of the restoring force in the
system for long times where there are well-developed
Nambu-Goldstone modes. Indeed, for q =0 these correla-
tions grow with a power-law dependence on ~. This
reflects a nonergodicity in the system at q=0 which is
driven by the Nambu-Goldstone modes in the system.

II. FORMALISM AND QUANTITIES OF INTEREST

We begin with a brief review of the model (further de-
tails and references are given in Ref. 2). We consider the
dynamics described by the time-dependent Ginzburg-
Landau model (TDGL)

35 5043 1987 The American Physical Society



MARCO ZANNETTI AND CiENE F. MAZENKO 35
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(2. 1)

where P=(P&, . . . , P&) is an ¹omponent (noncon-
served) order parameter, F is the free energy of the model

F[f]=—,
' Jd x[(VQ) +rP + u($ ) /2N], (2.2)

large-N limit obeys the equation of motion

BC(q, t, r) = ——,
' [q +g(r +r)]C (q, r, r),

where

g(t +r) = [r + uS (r +r)]

(2.12)

(2.13)

and g(x, t) is a Gaussian white noise satisfying

(q(x, r)) =0,

(g, (x, r)g, (x', r') ) =2I 5,,5(r r'),—

(2.3a)

(2.3b)

where, for a nonconserved order parameter, I is a con-
stant. It is assumed that the system is defined on an
underlying lattice which introduces large wave-number
cutoff A.

The static properties of the model in the large-N limit
are well known. For a fixed and positive u there is a criti-
cal value of r given by r, = —uS„where

d q 1

(2m) q
(2.4)

In the disordered phase (r & r, ) the Fourier transform of
the order-parameter correlation function is given by

S(r+r)=(P,'(x, r+r)) . (2. 14)

Equation (2.12) is written in dimensionless form measur-
ing lengths in units A ', where A is the wave-number
cutoff, and time in units 2I A .

Integrating Eq. (2.12) with the equal time condition

C(q, r, r=0)=C(q, r)

we find

(2.15)

C(q, r, r) =C(q, r)exp —J dr'[q'+g(t +r')]/2, g 16)

where C(q, t) is the Fourier transform of the equal-time
correlation function (P;(x, t)P;(x', t)) and the quantity
S(t) defined in Eq. (2. 14) is given by

C(q)= 1

q +E
where the inverse correlation length E is defined by

K =r +uS,

(2.5)

(2.6)

S(r)= J C(q, t) . (2.17)
(2~)

This quantity and C(q, t) were studied in great detail in
Ref. 2 (hereafter referred to as I) and the results will be
summarized in Sec. III.

S= J C(V) .
(2~)

(2.7)

Cr —r
m (2.8)

The order-parameter correlation function splits into the
longitudinal contribution

1
Cii(q) =

q +2(r, —r)
(2.9)

and the transverse contribution

1
C~(q) = (2.10)

rejecting the existence of the Nambu-Goldstone modes in
the transverse directions.

In the following we consider the time development of
the system when it is initially prepared in an equilibrium
state above the critical point (rz &r, ) and, at some time
instant to, is suddenly quenched to a lower value of
(rF &r~). The quantity of interest is the time-displaced
correlation function

C(x —x', t, r) = (P;(x, t)P;(x', t +r) ) (2. 11)

with t ) to and ~) 0, whose Fourier transform in the

In the ordered phase (r & r, ) the continuous 0 (N)
symmetry is broken with the spontaneous magnetization
given by

III. RESULTS

In this section we analyze the behavior of C (q, t, r ) for
various types of quenches. In all cases we take rz ——+ oo.
The large value of rz, as Eqs. (2.5) and (2.6) show, reduces
the order parameter fluctuations to zero in the initial
state, i.e., C(q, to) =S(to)=0.

A. r~&re

When the final equilibrium state is in the disordered
phase, the equal-time correlation function C(q, t), as was
shown in I, evolves toward the equilibrium form (2.5).
Correspondingly the quantity S(t), which gives a measure
of the order-parameter fluctuations, grows from the initial
zero value to the final equilibrium value given by (2.7)
which we denote by S ( oo ). The behavior of S (t) is
characterized by an initial fast transient followed by a
slow approach to the asymptotic value S( oo ).

Let us now consider the behavior of C(q, t, r). If the in-
itial time of observation t is chosen very far away in the
asymptotic region, then to a good approximation in Eq.
(2.15) we can substitute for C(q, t) and S(t+r) their
time-independent equilibrium values obtaining

—[g +PF + MS ( a& )]T/2 (3.1)

This gives the expected exponential decay of the equilibri-
um correlations.

The behavior is qualitatively similar when t is chosen in
the region of the fast transient, namely very close to the
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t & I zero through negative values as ~ grows. As we show in
the following, this produces the unexpected result of the
growth of correlations at q =O.

The simplest case is obtained taking t so large that the
system can be considered very close to equilibrium, then
from Eqs. (2.15) and (3.2) we have

C (q, t, r) =C(q)e (3.3)

0.2 04 0.6 0.8 1.0

Again we have exponential decay of correlations, except
at q =O. This peculiar behavior is more clearly under-
stood through the evolution of C(q, t, r) when t is chosen
in the region of the fast transient. Initially (v=0) we have
g(t) &0. Therefore modes with q & 1$(t)

1
exhibit a de-

caying behavior, while correlations tend to grow with
for modes with q & 1$(t) 1. However, as the fluctuations
increase through the development of instability, g(t +~)
tends to zero and eventually there will be a decay of
correlations at all wave vectors, except q =O. This type of
behavior is illustrated in Fig. 2 which exhibits the initial
increase and subsequent decay of correlations at q & 0 and
the monotonous growth of the peak at q =O.

In order to extract the growth law at q =0, we have
plotted in Fig. 3 the behavior of C(q =O, t, r) for t= 1 and
rF —10. Whe——n t +r is in the scaling region (for
t +r & 200), to a very good approximation, we have

FIG. 1 . Decay of C ( q, t, ~) with growing values of ~ for a
quench above the critical point. t = 1; rF ——0.5; r, = —0.05 1.

onset of the quench. In this case, g'(t+r) grows through
positive values from the initial value [rF+uS(t)], to the
asymptotic value [rF+uS(oo )], yielding again the decay
of the correlation, as illustrated in Fig. 1 .

9. rF & r,

When the system is quenched below the critical point,
the dynamics is quite different and more interesting since
it contains the time development of the spontaneous mag-
netization. The process of ordering is well described by
the equal-time structure factor C(q, t) which, as discussed
in I, displays the growth of the central Bragg peak associ-
ated with the build up of the magnetization, and the
growth of the 1/q behavior associated to the Nambu-
Cxoldstone modes in the transverse directions. The corre-
sponding behavior of S(t) is qualitatively similar to the
previous case (rF & r, ), with an initial fast transient fol-
lowed by a slow approach to the asymptotic value
S( oo )=m +S, . In the latter, time region domains or-
dered in all directions are formed and the characteristic
size of the domains becomes the dominant length in the
system, producing scaling of the structure factor.

The main difference with respect to the previous case is
that rF is negative and that

10

0.2 0.4 0.6 0.8 1.0

rF+ uS( oo )=0 (3.2)

as follows from Eq. (2.8). Consequently, g(t+r) goes «
FICx. 2. Evolution of C (q, t, ~) for a quench below the critical

point. t= 1; rF ———10; r, =0.05 1.
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FIG. 3. Growth of the peak at q=O in the quench below the
critical point. t= 1; rF ———10.

C(q =O, t, r)=545. 66(t+r)'~' . (3.4)
200 4OO r 600 800

The explanation of this kind of behavior is in the gap-
less nature of the Nambu-Goldstone modes, which build

up as the system evolves toward equilibrium. In fact, the
quantity q +g(t +r) acts as a restoring force, which at
the onset of the quench is negative for the unstable modes.
However, the system reacts to the growth of fluctuations
induced by the instability, by gradually building up the
positive restoring force. As the system equilibrates, it also
attempts to break the continuous symmetry. In this pro-
cess, as order grows, transverse Nambu-Goldstone modes
developed. In the case studied here the dominant contri-
bution to the self-consistent restoring force is precisely
due to the transverse modes, which, as a consequence of
the gapless nature of the Nambu-Goldstone modes, fail to
equilibrate the system at q=O.

C. rp ——r,

Finally, we comment on the case of the critical quench
(rF =r, ). Since r, &0, one again has that g(t+r) tends to
zero and the qualitative behavior is of the type above dis-
cussed for the quench below the critical point. Namely
there is no restoring force to equilibrate the instability at
q=O and the corresponding structure factor grows with
the time separation. In Fig. 4 we have plotted the behav-
ior of C(q =O, t, r), which for r & 200 is well fitted by the
power law C(q =O, r, r)=0.42(r +r)

IV. COMMENTS

In this paper we began to explore the behavior of the
two-time correlation functions which naturally enter into

FIG. 4. Growth of the peak at q=0 in the critical quench.
t=1; r~ ——r, = —0.051.

quench problems when one attempts to develop a
perturbation-theory approach. We have found, even at
the leading order in 1/X, that these quantities have in-
teresting nontrivial behavior when there is a broken con-
tinuous symmetry in the system. In particular, this sug-
gests that one can gain information about the soft-mode
structure in a system by doing a time-domain-quenched
experiment as opposed to the traditional frequency
analysis associated with scattering experiments. The soft-
mode structure discussed here should be present in all
systems N&1 unless there is some defect structure, not
present for X~ co, which changes the growth kinetics.
Investigation of the role of these defects is an interesting
but quite challenging task.

This work also sets up a natural extension of the previ-
ous work to consider the O(l/X) corrections. This is a
technically complicated calculation, and one does expect
many of the results of Refs. 1 and 2 to survive, but there
may be some interesting new eA'ects not captured in the
leading 0( l ) calculation.
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