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Branched polymers on fractal lattices

M. Knezevic' and J. Vannimenus
Groupe de Physique des Solides de l'Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

(Received 27 October 1986)

The asymptotic properties of large branched polymers placed on fractal lattices are studied using
exact recursion relations. Simple examples are given on quasilinear fractals to illustrate the general
method and explain how the critical exponents 0 and v are obtained. For more complex systems we

find that a collapse transition may occur in the presence of attractive interactions between the indi-

vidual monomers (i.e., for a polymer in a bad solvent). Above the critical temperature the polymer
has the geometry of a random lattice animal, while below T, it shrinks into a compact globule state.
The geometrical and thermal exponents at the transition are also obtained exactly and compared to
recent work on regular Euclidean lattices. For one of the lattices studied we find an essential singu-

larity in the polymer generating function, rather than a power-law singularity. This suggests that a
similar behavior may also occur in other systems lacking translational invariance, such as polymers
on randomly dilute lattices.

I. INTRODUCTION

There are two essential motivations for studying models
of branched polymers on fractal lattices. Firstly, many
results have been obtained in recent years for polymers on
periodic, Euclidean lattices, ' but the situation for disor-
dered lattices presents subtle difficulties and is not yet
clarified. Fractals may be considered as intermediate
between the two cases, as they offer a class of systems
where the consequences of the loss of translational invari-
ance may be studied in detail. This approach has been
very fruitful for random walks and diffusion and it is nat-
ural to extend it to models of polymers in dilute solution,
i.e., self-avoiding walks (SAW) for linear polymers, and
random lattice animals for branched polymers. We
present here results for the latter case, on various fractal
lattices, showing how the asymptotic properties of large
polymers are modified with respect to Euclidean lattices.
We calculate the critical exponents 0 and v exactly, by
studying the fixed points of a closed system of recursion
equations. The variables in these equations are partial
generating functions corresponding to different polymer
configurations for a given size of the fractal lattice. The
mathematical structure of the recursion system in the
neighborhood of the fixed points may be rather intricate,
and in one case we even find that the global polymer gen-
erating function has an essential singularity, rather than
the standard power-law singularity found for periodic lat-
tices.

The second motivation comes from the existence, on
some of the lattices studied, of a collapse transition for a
single isolated polymer, when effective attractive interac-
tions are introduced to model the effect of a poor solvent.
This transition is of the same nature as the collapse
phenomenon which is observed on periodic lattices ' and
in some experiments. The polymer shrinks from an ex-
tended, random-animal state to a compact, globule state
when the temperature is lowered. In the limit where the
number N of monomer units goes to infinity, the transi-

tion may be described as a critical phenomenon, analo-
gous to a tricritical point for magnetic systems, ' and the
specific heat has a singularity. For large but finite poly-
mers the average gyration radius R& behaves as Rz -N ',
where the exponent v, is intermediate between the value v
for random animals and the value v, =1/D for compact
globules, D being the fractal dimension of the lattice.

On the finitely ramified fractal lattices studied here, it is
possible to write down a closed set of recursion equations
describing the transition and to obtain the critical ex-
ponents exactly. This is of great interest because fractals
offer a whole domain where one may hope to obtain new
and deep insights into critical phenomena. This expecta-
tion has met with a serious obstacle: Either the models
are solvable but they possess no transition at finite tem-
perature (e.g. , the Ising or Potts models on finitely
ramified fractals"), or a nontrivial transition exists but the
model can be solved only approximately (e.g. , Ising spins
on infinitely ramified fractals' ). Together with a few oth-
er problems (collapse of linear polymers, ' Lee- Yang
singularity' ), the study of the collapse transition of
branched polymers is very instructive on fractals because
one can analyze the system in detail. It turns out more-
over that some of the results are in good quantitative
agreement with those for the Euclidean case. For in-
stance, the exponent v, for the Sierpinski gasket is ex-
tremely close to the value v, for the compact phase: A
similar situation was recently found numerically for the
square lattice.

The paper is organized as follows. In Sec. II the gen-
eral formalism is presented and illustrated by two simple
examples, the "T fractal, " a treelike lattice we introduce,
and a modified Koch curve with loops on all scales. Then
we study in detail the properties of branched animals on
the two- and three-dimensional Sierpinski gaskets, obtain-
ing the phase diagram as a function of the effective in-
teraction strength between monomers. In particular, we
analyze the collapse transition occurring on these lattices.
In Sec. IV we consider a modified gasket, for which the
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II. GENERAL FQRMALISM
AND SIMPLE EXAMPLES

A. Lattice models of branched polymers

In the following we use the standard statistical ap-
proach to branched polymers and model them by con-
nected graphs of N links embedded in a lattice (L), each
link representing a monomer unit. The existence of loops
in the graphs will be explicitly shown to be irrelevant as
far as large-scale properties are concerned. If the only im-
portant interaction is the excluded volume effect between
monomers, the problem reduces to the animal" problem,
where a weight factor x is associated with each link of a
graph and all possible configurations of N links have the
same weight. The generating function is then

G(x)= g 0~x
Ã=0

where Q& is the number of different configurations per
site of an animal having N bonds, averaged over all lattice
sites. If one assumes that for large N this number has the
same type of behavior as on periodic lattices

Q~-p NN —8

then one finds that G (x) has a power-law singularity'

(2)

critical behavior turns out to be very different and the
generating function has an essential singularity, in con-
trast with the power-law singularity found in the previous
cases.

and we have checked explicitly on several problems of
polymers on fractals that this exponent is the same as v
defined in Eq. (4).

B. Polymers on the T fractal lattice

We derive now exact results for two quasilinear lattices
which provide good pedagogical examples. The simplest
fractal lattice on which a nontrivial branched polymer
problem may be defined is the treelike T fractal (Fig. 1),
whose fractal dimension is D =ln3/ln2. A closed set of
recursion equations is obtained with only two restricted
generating functions A„and B„described in Fig. 2. The
renormalization transformation consists in summing over
the internal configurations of the polymer on the rth-order
T fractal that are consistent with the nature of the gen-
erating functions at iteration order (r+1). One easily
finds

A„+i ——A„(A„+B„),

B„+i B„(1+——A„B„+A„),
with the initial values

1=x2+x3 81=1+x+x2
(equivalently Ao ——x, Bo——1, with the meaning that at or-
der zero either the single link is occupied —case 3, weight
x—or it is empty —case B, weight x ).

The global generating function "„(x)for the whole rth-
order T fractal can also be constructed recursively:

:"„(x)=3:-„ i(x)+( A„ i+B„ i) (3+ A„ i+B„ i) .

G (x)-(1—px) ' (x 1/p) . (3)

Here p=1/x, is the lattice-dependent connectivity con-
stant and 0 is the "magnetic" critical exponent for the
lattice-animal problem. The geometrical critical exponent
v is defined by the relation

Iterating this relation one obtains for the generating func-
tion per site

G(x)=x+x +x /3

(R~ ) -N (4)
+ g 3 "(A„+B„)(3+ A„+B„).

r=i
for large N, where R& is the gyration radius and the aver-
age is taken over all animals. The corresponding generat-
ing function is

R'(x) —lim X-' y R'(A)x~'"
(&)

where R (A) is the gyration radius of the random-animal
A, having N(A) bonds, and the summation extends over
all animals that can be drawn on the finite lattice (L) of N

sites. For large N, R (x) behaves as'

R (x)—(1—px)

A more convenient way to obtain the exponent v is to
use standard renormalization techniques. For the animal
problem on finitely ramified lattices, ' one may obtain a
closed set of recursion relations between a finite number
of coupling constants. By linearizing these recursion rela-
tions around the appropriate fixed point we determine the
"thermal" eigenvalues of the transformation matrix. The
largest eigenvalue gives the correlation length exponent,

If the value of the fugacity x is less than
x, =p

' =0.46922311. . . , then under successive itera-
tions A„(x) decreases to zero while B,(x) and G(x) tend
to certain constants. If x is larger than p ', A„(x) and
B„(x) tend to infinity for large r and G (x) is infinite (Fig.
3). At the random-animal fixed point x =x, the asymp-
totic behavior of the partial generating functions is

FIG. 1. First four stages in the iterative construction of the
T fractal. The final object has a fracta1 dimension D =ln3/1n2
and is nonoverlapping in the plane. Note that it is very di8'erent
from a Cayley tree, which has an infinite eff'ective dimension.
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controlling the average linear size of the polymer [Eq. (4)]
is then given by

v=ln(b)/In(X) =0.79862. . .

where b =2 is the linear scale factor between two succes-
sive iterations. The exponent 0 can be obtained most
directly by considering GL (x, ), the global generating func-
tion of animals on a lattice of length I at the critical fuga-
city. This function is expected to diverge as I " ', by
a standard finite-size-scaling argument. On the other
hand, a direct evaluation of the dominant terms in G(x)
gives

FIG. 2. Two examples of configurations for branched poly-
mers on the T-fractal lattice (the wiggly lines represent monomer
units). The configuration at the top contributes to 3„: This gen-
erating function corresponds to configurations where a part of
the polymer joins the two opposite horizontal vertices of an rth
order lattice, and its diagrammatic representation is a "super-
link. " The configuration at the bottom contributes to 8„, which
enumerates the configurations where a part of the polymer is at-
tached to only one of these vertices.

R

GL (x, )- g 3 '(1+z*) ",

where L, =2 . The dominant term in the sum is obtained
when r =R, and we Anally get

(1 —0)/v=3 ln(1+z*)/ln2 D=5 ——D, (12)

where D =ln3/ln2 is the fractal dimension of the T frac-
tal. The numerical values are

2„—Ak ", B„-Bk" (r~ ce ) (9)

y =A, z=AB .

One has now, asymptotically,

(10)

where A, 8, and k &1 are finite constants. It is more
convenient to work with new, nondiverging variables and
the form of Eq. (9) suggests the choice

6)=0.6025, 5=1n(2+&5)/ln2=2. 0827. . . .

These values agree with the results obtained from a com-
plete calculation of G(x) following the lines of Dhar's
work on linear polymers. '

One has to note that the value obtained for 6 is only
slightly larger than the value 6=2 valid for Euclidean lat-
tices in any dimension d (8, as deduced from the Parisi-
Sourlas relation'

2Vr+)=jrZr, Zr+) —Zr(l+Zr) (1—0)/v=2 —d . (13)

The nontrivial fixed point of Eq. (11) has coordinates

(y*,z') = [0,(&5—1)/2]

so the constant in Eq. (9) is given by
k =(z*) '=(1+&5)/2. Linearizing the recursion rela-
tions around this fixed point, we obtain only one eigenval-
ue greater than one: A, =(7—V'5)/2. The exponent v

The new relation (12) generalizes Eq. (13) to fractal lat-
tices and shows that the two exponents 0 and v are now
independent in general. This is not really surprising,
since the derivation of the Parisi-Sourlas relation depends
on translational invariance, which is lost on fractals. The
quantity 5 appearing in Eq. (12) is a new fractal exponent,
probably not reducible to previously defined quantities.

C. Branching Koch curve

As a second example we consider the animal problem
on the branching Koch curve shown in Fig. 4. This lat-
tice contains loops on all scales and one needs a third pa-
rameter to get a closed set of recursion equations. Beside
two functions analogous to those described in Fig. 2, we
have to define a third partial generating function C„which
enumerates configurations with two disconnected pieces of
polymer, each one attached to an extremity of the lattice
at stage r (Fig. 5). It is straightforward to write down the

FIG. 3 ~ Schematic flow diagram for branched polymers on
the T-fractal lattice. Under the recursion relations [Eq. (5)], the
set of initial conditions, represented by curve )r [Eq. (6)] iterates
either to the 8 axis or to infinity. These two regions are separat-
ed by the separatrix S, whose asymptotic equation is given by
AB=(&5—1)/2 for large A.

r=O

FIG. 4. First stages of the construction of the branching
Koch curve.
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(y",z*,t")=(0., 0.682328, 0.342244),

o

where z' is the real root of z +z —1=0

[( 31 )1/2+ I ]I/3 [( 31 )I/2 1 ]1/3
108 2 108 2

The linearized relations around the fixed point have only
one eigenvalue larger than one, A, =3.751185. . . . The
geometric exponent is

FIG. 5. Diagrams representing the restricted generating func-
tions A„B„and C, for the branching Koch curve, and exam-
ples of configurations belonging to each type.

v= 1n3/in', =0.830978. . . .

At the critical point the dominant contribution to the
global generating function, at iteration order R, is of the
form

recursion relations for these three functions (see Fig. 6 for
an example):

Gtt(x, )- g 5 "(A„B„+28,)- g [I /5]" .

A„+)——A (8 +3AC+ A ),
8„+) 8(1+A——B+A (8 +8 )+3A C+ A ),
C„+( ——8 +2 AB (8 + AC + AB)

+ A C(B +8AC+2A ),

(14)

This yields finally, through the same scaling argument as
above and noting that the constant I in Eq. (15) is equal to
(

4
)
—2

(1—9)/v= —6 lnz*/ln3 D—
(17)

A, —Al

8, -Bl",
C„-Cl'",

(15)

where A, B, C, and l are finite constants. Choosing as
new variables y = A, z = AB, t = 3 C, and keeping only
the dominant terms, one obtains the recursion relations

2
yr +1 =yz

z„+,——z'(1+z +z'),
t„+, z'(1+2z +3t), —

which have a nontrivial fixed point

(16)

with initial values Ao ——x, 80 ——1, Co ——1 [the iteration in-
dex r has been omitted on the right-hand side of Eq. (14)
for clarity]. The expression of the global generating func-
tion G(x) is cumbersome and will not be given here.

If the fugacity x is larger than a critical value
x, =1/@=0.4598059. . . , A„,B„,C„ tend to infinity for
large r and G(x) is infinite. For x =x, the asymptotic be-
havior of the generating functions is given by

where D =ln5/ln3 is the fractal dimension of the branch-
ing Koch curve. The numerical values of the exponents
are

0=0.482606. . . , 5 =2.0876. . . .

The detailed calculation of the leading singularity of G (x)
gives the same results.

An important remark is that the e6'ect of loops can be
studied in detail, by distinguishing explicitly the
configurations containing loops, at every stage of iteration.
The generating function A„(x), for instance, splits into
two parts, 3,"' and A„' ', corresponding respectively to
the configurations with and without loops. One obtains a
recursion system of six equations that generalizes Eqs.
(14). The asymptotic behavior of the generating functions
without loops on any scale remains the same as that of
the full generating functions, as given by Eqs. (15) and
(16), though the critical fugactiy X, is different. So, lattice
animals with and without loops belong to the same univer-
sality class, and this type of constraint has no inhuence on
the large-scale behavior of branched polymers. This is in
agreement with the standard renormalization-group argu-
ments given for Euclidean lattices, but here the result is
completely rigorous. It is also worth noticing that the ex-
ponent 6 is again quite close to the value 5=2 of Euclide-
an lattices: this near coincidence is puzzling, but it does
not persist for other fractals studied below.

D„B 4
h, „C„

III. SELF-INTERACTING BRANCHED POLYMERS:
THE ANIMAL-GLOBULE COLLAPSE TRANSITION

ON FRACTAL LA'i I'ICES

4
h, „C„ 4

h, „C„ A. Formulation of the problem

FIG. 6. Diagrammatic representation of the recursion rela-
tions for the restricted generating function A„ for the animal
problem on the branching Koch curve.

We now consider the effect of interactions between the
monomer units, in addition to the excluded volume con-
straint which takes into account the hard-core repulsion.



4992 M. KNEZEVIC AND J. VANNIMENUS 35

In a poor solvent monomers belonging to the same
branched polymer will experience an effective attractive
interaction and it is well known that a collapse transition
may occur if this self-interaction is strong enough.

This phenomenon can be studied on a lattice using the
two-variable generating function G (x, w)

G(x, w)= g Q(X,P)x~w = QZ„x
X,P

(18)

where Q(X,P) is the number of different configurations
per site of a branched polymer having X monomers and P
pairs of nearest neighbors and Z~ =Z&(w) is the partition
function of X-link animals. The interaction strength w is
related to the temperature T by the usual Boltzmann fac-
tor w =exp(e/kaT), e&0 being the attractive energy as-
sociated with a pair of nearest-neighbor bonds (mono-
mers) and kz is the Boltzmann constant. At infinite tem-
perature the energies of different configurations play no
role and the generating function G(x, w =1) reduces to
the usual generating function of unweighted animals [Eq.
(1)]. In particular, the free energy per site f (T) is given

by

f(T)= kgT lim—X 'InZ~
1V~ oo

no loops). The simplest lattice on which we did find a
transition is the two-dimensional (2D) Sierpinski gasket
(or equivalently the three-simplex lattice). ' A closed set
of recursion relations may be obtained with six restricted
generating functions (see Fig. 11 of Sec. IV). We will not
repeat here the technical details which were given in a
previous paper, ' but for completeness and as a basis for
comparison we quote the main results.

Three different regimes were identified:
(i) For high temperatures (i.e., for small interaction pa-

rameter, w & w, =5.5), the polymer is in a swollen phase
and its large scale properties are the same as for the
random-animal problem (w =1). The global generating
function has a power-law singularity when x~x, (w) and
the critical exponents are v=0. 71655, 6=2.2370, which
corresponds to an exponent 8=0.5328

(ii) When the temperature is lowered a collapse transi-
tion occurs for w =w, . The corresponding fixed point is a
tricritical one, with two eigenvalues larger than one, in
complete analogy with the situation on the square lattice
for instance. The geometrical exponent is v, =0.63250,
extremely close to the value v, =0.63093 in the collapsed
globule phase. The thermal critical exponent a control-
ling the singular part of the free energy

=k~ T In[x, (w)], fQ„E(w) —
I

w wi
I

(20)

where ui =e/k~ T and x, (w) is the radius of convergence
of the series in the right-hand side of Eq. (18).

For simplicity we restrict in the following the attractive
interactions to bonds within first-order units of the fractal
lattice. It can be shown explicitly for several models of
linear polymers on fractals that this restriction has no
effect on the critical exponents. ' This result is expected
to be general, by analogy with the universality properties
of phase transitions in Euclidean spaces —it is clear any-

way that if a transition exists with restricted interactions it
will also exist with the full set of interactions (the con-
verse might not hold in some cases). The restriction has
the important technical advantage that the recursion rela-
tions do not contain explicitly the interaction strength w,

which appears only in the initial values of the generating
functions. An analysis of the recursion relations estab-
lished for non-self-interacting polymers is then sufficient
also for self-interacting polymers: One has just to look for
other fixed points of these relations that may be reached
from more general initial conditions. Of course, it
remains necessary to use the full equations with interac-
tions on all scales if one wants to obtain the precise form
of the phase boundaries, of the specific heat or of the
compressibility. This is not our purpose here; we are only
interested in the existence of the collapse transition and its
general features.

is negative: a= —4.0269, so the specific heat is very
smooth at w=w, .

(iii) At low temperatures (w &w, ), the polymer is in a
collapsed phase, with v, = 1/D, D = ln3/ln2 being the
fractal dimension of the gasket. The monomer density
per site is finite in that regime.

The most interesting aspect of these results, apart from
the existence of the transition itself, is their similarity with
recent numerical findings on the square lattice. An accu-
rate transfer-matrix study of the collapse of branched
polymers on that lattice gives v, =0.509+0.003, much
closer to the compact value —,

' than previously believed.
This suggests that the phenomenon is not accidental and
may receive a general interpretation.

C. Three-dimensional Sierpinski gasket

The problem of branched polymers is much more
difficult on the three-dimensional (3D) gasket (equivalent-
ly, the four-simplex lattice, Fig. 7). We have to define
eleven restricted generating functions to obtain a closed

B. Collapse transition on the two-dimensional
Sierpinski gasket

We did not find a collapse transition on the branching
Koch curve studied in Sec. II, for any finite value of the
temperature. This is probably due to its quasilinear char-
acter (no transition is possible on the T fractal since it has

FIG. 7. Basic iteration step for the four-simplex lattice,
shown here in projection (in 3D space each elementary unit is a
tetrahedron).
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set of recursion equations and these functions are depicted
in Fig. 8, using a notation that generalizes the one used
by Dhar for SAW on the four simplex. ' The number of
polymer configurations to consider is so large that one has
to use computer enumeration to sort them out and the re-
sulting relations take up too much space to be given
here. '

The initial values of the eleven functions are for the
self-interacting case:

Ai ——x, Bi ——x w, Ci ——1,
Di ——xw, E& ——w, Fi ——xw2 5

G) ——w, H) ——w, I) ——x (x +3xw),

J) ——x w (x+3w),

K) ——x (x +6x w+15xw +16x w') .

(21)

For a given interaction strength w, there exists a critical
value x, (w) above which the iterations diverge —this
value determines the free energy f(T) via Eq. (19). For
x =x, (w) we find that the recursion equations have the
following asymptotic behavior as r goes to infinity:

B,-B*, C„-C*q", D, -D*q",
E„-E q" F, -F q" G„-G q' 0-Hq"

(22)

I,-I q ', J„-J*, K, -Kq
where A*, B*, . . . , K* and q( & 1) are finite and may
a priori depend on w.

To determine the location of the relevant fixed points
and the critical exponents we introduce new, nondiverging
variables

a =A, b=8, c=CI, d =DI,
e =EK, f =FK, g =GDK, )() =HK (23)

i=I /K, j=J, k=K.
Other choices are possible and give the same results (in
practice, some choices may prove more convenient to lo-
cate the fixed points numerically, but we did not investi-
gate that question in detail). The search for the fixed
points in terms of the new variables is not straightfor-
ward, however, because the resulting system of 11 non-
linear algebraic equations has a large number of fixed
points and a direct application of the multidimensional
Newton method fails. It is necessary to iterate the com-
plete system of equations, in order to identify approxi-
mately the nature and location of the relevant fixed
points. Their coordinates are then determined very accu-
rately by Newton's method.

We find in this way three relevant fixed points for the
large-scale behavior of self-interacting branched polymers.
In terms of the reduced variables defined in Eq. (23):

(i) The fixed point (a, b, c, . . . , k)' =(0.18459, 0.00322,
0.06673, 0.00463, 0.01710, 0.00071, 0.00057, 0.00011,
0.15776, 0.02138, 0) is reached for large values of the
temperature —i.e., all initial conditions with w &w, =2
lead to that fixed point. This is the random-animal fixed
point corresponding to the swollen phase of the polymer.
Linearizing around the fixed point one finds only one
relevant eigenvalue: A. =3.14069. The geometrical ex-
ponent is then v=ln2/ink, =0.60566. The global generat-
ing function has again a power-law singularity and one
can obtain the corresponding exponent along the same
lines as given in Sec. II, using finite-size scaling. An in-
dependent calculation of the dominant singularity of G(x)
as x~1/p[=x, (w =1)=0.129263] gives the same values
of the exponents: 0=0.75667 and 5=2.40177.

(ii) The fixed point which is reached for low values of
the temperature (w & w, ) has most reduced variables equal
to zero, except four of them:

C (r)

p(r) E(r) F(r)

Ll

FIG. 8. Diagrammatic representation of the 11 partial gen-
erating functions for the four-simplex lattice.

(b,f,h, j)"=(0.00999, 192 , 4', , 0. 16334) .

These non vanishing generating functions describe the
polymer configurations having all vertices occupied
(configurations B, F, H, J, K in Fig. 8). Linearization
about this fixed point leads to only one relevant eigenval-
ue: A, =4, corresponding to v, = —,=1/D, D =2 being the
fractal dimension of the 3D Sierpinski gasket. This is,
therefore, a compact fixed point describing the collapsed
phase of the polymer, with a finite density per site.

(iii) A third fixed point (a, b, c, . . . , k) =(0.03728,
0.01592, 0.01870, 0.00491, 0.02239, 0.02378, 0.00257,
0.01496, 0.03059, 0.13771, 0.) is reached only for w =w,
and has two eigenvalues greater than one: A, i

——3.94050
and A.2 ——1.32094. This tricritical point corresponds to the
collapse transition of the branched polymer. The average
gyration radius scales as N ' with v, = ln2/ink,

&

=0.50546, once again quite close to the value v, = —,
' in

the collapsed phase. If one looks at the location of the
fixed points in phase space, it is clear that the tricritical
and the compact points are close to each other, since only
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xc

0.5

FIG. 9. Critical fugacity x, for branched polymers on the
four-simplex lattice, as a function of the self-interaction parame-
ter w. The collapse transition occurs for w =w, =2.

Mandelbrot. Its recursive construction is described in
Fig. 10; it corresponds to a linear scale factor b =3 and
has fractal dimension D =ln6/ln3. A first account of the
results obtained for that lattice has been presented in a
previous letter, ' and we give here only the main points
with more comments and some additional results.

The six partial generating functions which appear in the
closed set of recursion relations are depicted in Fig. 11.
They are exactly the same as for the 2D Sierpinski gasket,
since they depend only on the different ways parts of the
branched polymer may be connected to the three vertices.
The relations themselves are much more intricate —one of
them contains 154 terms —and have to be obtained by
computer enumeration. ' The initial values of the partial
generating functions, in the presence of self-interactions,
are

A& ——1, B& ——x, C& ——xw
(25)

the variable j* is large at both points, all other coordi-
nates being small. The random-animal point is very far
apart, the largest variables being a *, i *, and c', all others
being much smaller.

The free energy per site f (T) of the branched polymer
is singular at w =w„and the thermal critical exponent is
given by

a=2 —ink, &/ink, z ———2.9267 .

D& ——w, E& ——w, F& ——x +3wx

B. Random-animal phase

Iterating these relations for low values of w, one ob-
serves that only a few terms remain dominant in the re-
gion close to the critical fugacity x=x, (for the case
without self-interactions, w =1, x, '=@=5.14165). The
asymptotic form of the recursion system is then

E= —wd(lnx, )/dw . (24)

The transition is weak, but less so than on the 2D Sierpin-
ski gasket.

In Fig. 9 we plot the radius of convergence x, of
G(x, w) as a function of the interaction strength w. This
gives the "phase diagram" for polymers in solution in a
fractal environment. The figure also gives the internal en-

ergy per site E of the polymer, through the simple relation

A'=2A B
B'= A'B'F+3AB'
C' —3A B

D'=4A B

E'=6A B

F'=2B +6AB F,

(26a)

(26b)

(26c)

(26d)

(26e)

(26f)

A final remark is that our model of self-interacting
branched polymers is, in fact, more general than the cases
studied above. In particular, it includes as a special case
the problem of 1inear polymers: If one suppresses a11

terms containing the generating functions 6, H, I, J, and
K of Fig. 8, one obtains the recursion relations for hinear

polymers on the 3D Sierpinski gasket, which have them-
selves three relevant fixed points, including a tricritical
point corresponding to a co11apse transition. ' So, by in-
troducing appropriate weights for the configurations con-
taining branch points, it would be possible to study the
crossover between the two types of polymers. Other fixed
points of the recursion system might be reached if other
constraints or more complicated interactions are included.

where A' and A, for instance, stand for A, +& and A, .
A physical interpretation for the origin of this reduced

system comes from the examination of the diagrams asso-
ciated with the terms that appear on the right-hand side
of Eqs. (26). These are shown in Fig. 12: In all of them
the polymer goes through the central site and has a
branch point there, it is clear that at a given order of
iteration taking advantage of the higher connectivity of
the central site allows many more different conformations
for the same number of monomers, and this effect occurs
on all scales. Mathematically, this is related to the notion
of the "ramification order" R that measures the number

IV. ESSENTIAL SINGULARITY FOR POLYMERS
ON A MODIFIED GASKET

A. Construction of the recursion relations

The last fractal lattice we study is a close relative of the
2D Sierpinski gasket of Sec. II and belongs to a whole
family of generalized gaskets introduced by Cxiven and

FICr. 10. First stages of the construction of the modified b =3
gasket.
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(y, z, s, t, u)*=(1,3, 3, —,', 2 +
) (27)

E(r)

FIG. 11. Diagrammatic representation of the restricted gen-
erating functions for the modified gasket. They are identical to
the generating functions for the Sierpinski gasket.

of bonds one has to cut to disconnect a finite region of the
lattice (when the limit of vanishingly small elementary
units is taken). R depends on the point considered and
it may be shown that for the Sierpin ski gasket its
minimum value is R;„=3 and its maximum value
R,„=4, while for the modified b =3 gasket R;„=3but
now R,„=6. The important qualitative difference is that
the Sierpinski gasket fulfills the "quasihomogeneity" con-
dition R~» ——2R~;„—2, while the modified gasket does
not possess that property —intuitively, its topological en-
vironment may vary a lot from point to point.

The recurrence system, Eqs. (26), is in fact easier to
study than one might think at first sight and its solution
presents several new features. Introducing new variables
y = AF/B, z =EF/C, s =CE/A, t = AE/D,
u =FA, one finds that the random-animal fixed point
has coordinates

in agreement with a direct search by iteration of the full
system. Note that the variable u contains the generating
function A elevated at an irrational power, while all vari-
able changes used in the previous examples were rational.
Linearizing around this fixed point we find an eigenvalue
larger than one: A, =3+&3, so the geometric exponent is

v=lnb /1nk=ln3/In(3+ &3)=0.7068. . . .

This value is a little lower than v=0. 7165 for the 2D
Sierpinski gasket, in agreement with the intuitive expecta-
tion that the b =3 gasket is "closer" to a 20 Euclidean
lattice, for which v=0. 64.

The most important novel result concerns the global
generating function G (x). The dominant contribution
when x~x, is of the form

G(x)= g6 "[Ar t(x)] (28)

To estimate this quantity note that inserting relations (27)
for the fixed point into the recursion system (26) gives an
equation for A„

(29)

so that

ln A„(x, ) -a„(3—v 3)', (30)

inGL, (x, ) -L ~~" (31)

where a„ is a slowly varying function of r. This type of
behavior is not compatible with a standard finite-size-
scaling form for GL (x, ). Rather, it implies that lnG has a
scaling form

and that G(x) has an essential singularity of the form

G(x)-exp[c (x, —x) ~]

where a new exponent appears

/=in(3 —&3)/1n(3+ &3)=0.15273 .

(32)

/
A'= 2 A~B2

r
D'= 4 8~A~ This behavior of G(x) may be traced back to an unusu-

al asymptotic form of the number of distinct animals of
mass N (Ref. 23):

8'=A B F 2AB + AB
with

N +c'N
N I (33)

co=//(1+/)=0. 13249 .

C'=ABF + 2A B + A8

FICr. 12. Cyraphical interpretation of the dominant terms in
some of the recursion relations for the modified gasket [Eq. {26}].
Note that in all diagrams the polymer has a branch point at the
central site.

This is in contrast with the "standard" form with only
a power-law correction to the dominant p term, as given
by Eq. (2). In fact, subdominant exponential terms of the
form (33) are not excluded by any general theorem: Their
absence in Euclidean systems is expected because the
properties of polymers can be related to those of magnetic
systems and the existence of the critical exponents is then
justified by field theory. This argument fails on fractal
lattices due to the loss of translational invariance, and our
results show that in some cases the exponent 8 may still
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be defined, while in other cases the singularity of G(x) is
of a different nature. The important point is that the ar-
gument may also fail for disordered systems, since they
do not possess translational invariance, and the singular
behavior discovered for a particular fractal may be far
more general.

We have noticed earlier that the b =3 gasket differs
deeply from the Sierpinski gaskets due to its lack of
quasihomogeneity. It is plausible that this property is
necessary for the existence of an essential singularity, but
it is not sufhcient since the Koch curve is also non-
quasihomogeneous. The study of other lattices will be
necessary to clarify the conditions for essential singulari-
ties to appear. An important case is that of the fractal in-
cipient infinite cluster at a percolation threshold. This
fractal appears to have finite ramification order, as the
gaskets, and it would be very interesting to see if it is (sta-
tistically) quasihomogeneous or not, and if there are indi-
cations of an essential singularity for branched polymers
placed on percolation clusters.

C. Compact phase

In the opposite limit, when the self-interaction parame-
ter w is large (low temperatures), the polymer is found in
a collapsed state, as for the standard gasket. Here again,
only a few terms of the recurrence relations are dominant
and only three of the six partial generating functions,
namely C, E, and F are relevant —they correspond to the
densest configurations, where all three vertices are occu-
pied. The recursion then reduces to

C'=142C F +18CEF

E'=2E F +77C EF +171C F
F'=60CE F +564C EF +468C F .

The analysis of these relations yields the coordinates of
the compact fixed point

V. CONCLUSION

We have presented results for branched polymers on a
variety of fractal lattices. Thanks to the simple topologi-
cal structure of these lattices, the large scale properties of
the polymers can be obtained exactly by a real-space
renormalization-group method. Many of these properties
are similar to those of polymers on periodic lattices, in
particular the existence of a collapse transition in the pres-
ence of self-interactions, when the temperature is lowered.
This is not always the case, however, and the existence of
the critical exponent 0 is shown to depend on the lattice
considered: For a modified fractal gasket we find an
essential singularity in the polymer generating function,
instead of the power-law singularity predicted by field
theory for Euclidean spaces. We suggest that such an
essential singularity may also exist for polymers in
sufficiently nonhomogeneous systems.

A technical aspect of our work needs some comments:
The equations we derive for the polymer problem, though
exactly solvable for the asymptotic properties, are quite
complicated in some cases and it does not seem practical
to go much further in that direction. This makes it desir-
able to have a systematic and well-controlled approxima-
tion scheme. This might be based on the empirical obser-
vation that in general only a few variables have large
values at the critical points. The other variables are
necessary to write a closed set of equations and are
relevant in the renormalization-group sense, but they have
much smaller values and might be treated as a perturba-
tion. From that point of view the fractal lattices are an
excellent testing ground to validate approximation
methods before applying them to more difficult problems,
such as random media.

Finally, it would be very instructive to study the
dynamical properties of polymers on fractals, in view of
the recent interest for the dynamics of polymers placed in
porous materials. It is not clear to us how to adapt the
present methods to these problems: The main difficulty is
to formulate a closed recursion system, analogous to the
one we have obtained for static properties.

EF/C =3, E /C =(14 3' 10 )'~

and linearization around that point gives only one
relevant eigenvalue I, =6, so the geometric exponent is

v, =ln3/ln6= 1/D, as expected for a compact phase.
We did not locate the collapse transition temperature

accurately enough to discover what terms are relevant in
that region and find the corresponding tricritical point.
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