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Finite-temperature magnetism of disordered Fe-Cr alloys
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A theory of the local-environment effects (LEE) at finite temperatures has been extended to the an-

tiferromagnetic case in order to investigate the magnetism of Fe-Cr alloys in the ferromagnetic and
antiferromagnetic states. The magnetic phase diagram of Fe-Cr alloys, magnetization and sublattice

magnetization versus concentration curves, internal-field distribution function, high-field susceptibili-

ty, paramagnetic susceptibility, and other magnetic quantities have been calculated at finite tempera-
tures by making use of the theory of the LEE. It is found that the Fe local moments show a strong
LEE in the antiferromagnetic as well as in the ferromagnetic one. The nature of the LEE in the anti-
ferromagnetic state changes with the disappearance of the gap in the density of states. An overall
agreement between various experiments and the present theory is obtained, but the extended interac-
tions between local moments have to be taken into account to explain the low-temperature properties
of Fe-Cr alloys such as the spin-glass state.

I. INTRODUCTION

Since many transition-metal alloys are near the Stoner
boundary, at which the local magnetic moments collapse, '

the magnetic states are often influenced by the magnetic
and atomic configurations at neighboring sites. This is
called the local-environment effect (LEE). Such effects
also appear in the strong magnetic alloys with ferrornag-
netic and antiferromagnetic interactions because of the
change of direction of local moments (LM's) due to the
configuration of surrounding of LM's and the competing
interactions. ' The LEE is therefore important for the
magnetism of the transition-metal alloys.

The single-site approximation (SSA) for alloys com-
pletely neglects the LEE. The present author therefore
developed a theory for the LEE at finite temperatures. '
It uses a two-field functional-integral method which de-
scribes local moments as well as itinerant features in tran-
sition metals. " ' The fluctuations of LM's with respect
to the configurational average are taken into account by
means of the distribution-function method developed by
Matsubara and Katsura. ' ' Therefore the spin-glass
state, the LEE on the amplitude of LM's, and the atomic
short-range order are included in the theory.

In a series of papers on alloy problems, we have investi-
gated the finite-temperature magnetism of Fe-Ni, ' Ni-
Mn, ' ' and Fe-V alloys by using the theory of the
LEE. We have shown for the Fe-Ni alloys that the anom-
alous Fe-Fe coupling in the fcc lattice (i.e., an antiferro-
magnetic coupling for small-amplitude Fe LM's and a fer-
romagnetic coupling for large amplitude) is responsible for
the strong LEE in the vicinity of the ferromagnetic insta-
bility of Fe-Ni Invar. Rapid but continuous deviation
from the Slater-Pauling curve, deviation from the Bril-
louin curves, and temperature- and concentration-
dependences of the broad distribution of internal fields
seen by Fe have been explained from the viewpoint of the
LEE.

¹iMn alloys have been investigated as a typical system

with competing interactions: the ferromagnetic couplings
between Ni LM's and between Mn and Ni LM's, and the
antiferromagnetic coupling between Mn LM's. The mag-
netization versus concentration curve with a peak, the
large change of the paramagnetic susceptibility due to the
atomic short-range order, the double-stage magnetization
versus temperature curves in Ni3Mn, and the asymmetry
of the high-field susceptibility around the critical concen-
tration have successfully been explained using LEE
theory. In particular, spin-glass solutions appear in this
alloy after the disappearance of ferromagnetisrn with in-
creasing Mn concentration. The spin-glass temperature
Tg was shown to be influenced strongly by the atomic
short-range order as is the magnetization and the Curie
temperature.

In the investigations of Fe-V alloys we first checked the
validity of the theory by comparing our theory with clus-
ter coherent-potential-approximation (CPA) calculations
for the ground state. It has been found that the present
theory is reasonable at finite concentrations. A change of
the magnetism from the LM type to Pauli paramagnetism
in Fe-V alloys has been investigated. The Curie tempera-
ture maximum as a function of the concentration was
shown to be due to the alloying effect. The broad internal
field distribution and the concentration dependence of the
paramagnetic susceptibility have also been explained by
the theory of LEE.

In the present paper we investigate the finite-
temperature magnetism of Fe-Cr alloys by means of our
theory of the LEE. Our question is to what extent one
can understand the complicated magnetism of Fe-Cr al-
loys by means of LEE theory.

Disordered Fe-Cr alloys form a bcc structure over a full
concentration range, and show ferromagnetism, a spin-
glass state, and antiferromagnetism with increasing Cr
concentration. ' The Curie temperature Tc shows a
small maximum at 5 at. % Cr, which is not explained
by the rigid-band theory, and goes to zero at 81 at. % Cr.
Mossbauer experiments indicate the existence of various
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magnetic states of LM's over a wide range of concentra-
tion (20—90 at. %%uoCr ), showin gu p th e importanc eof the
LEE

The alloys show antiferromagnetism at more than 84
at. go Cr. The Neel temperatures Tz increase with in-
creasing Cr concentration. The alloys cause a transition
from antiferromagnetism to an incommensurate spin-
density wave at a few atomic percent Fe, ' which is
outside the scope of our present investigations. In a smal1
concentration regime between the ferromagnetic and anti-
ferromagnetic states (i.e., 81 —84 at. %%uoFe ) th eFe-C ral-
loys are considered to be in the spin-glass state. ' The
high-field susceptibility shows a broad and large max-
imum near there.

Theoretical investigations of Fe-Cr alloys had been lim-
ited to the ground state for many years. The concentra-
tion dependence of the average LM has been explained
well by Hasegawa and Kanamori ' and Frollani et al.
on the basis of the CPA. A calculation in the antiferro-
magnetic state has been performed by Jo within the
CPA. A second-order transition from the antiferromag-
netic state to a paramagnetic state was obtained.

Finite-temperature calculations in the ferromagnetic re-
gime have recently been done by Hasegawa within the
SSA. He calculated the concentration dependence of Tz,
the magnetization-versus-temperature curves, and the
paramagnetic susceptibilities. He found that the partial
susceptibilities of Cr do not follow the Curie-Weiss law.
Calculated Curie temperatures decrease mon otonically
with increasing Cr concentration against the experimental
fact. Unfortunately he did not investigate the magnetism
near the ferromagnetic instability, which is both theoreti-
cally and experimentally interesting. Furthermore, the
finite temperature calculation in the antiferromagnetic
state has not been perfor'med yet even within the SSA.
Thus the magnetic properties of Fe-Cr alloys at finite tem-
peratures remain almost unresolved. The present work is
the first systematic investigations of the magnetism of Fe-
Cr alloys at finite temperatures from the theoretical
viewpoint.

Hitherto the theory of the LEE has been limited to the
ferromagnetic state. We extend it to the antiferromagnet-
ic state in the following section. We adopt the
degenerate-band Hubbard model instead of the single-
band model according to the recent development of the
two-field functional-integral method. A few comments
on degeneracy and quantum effects on the amplitude of
the LM will be made.

In Sec. III we explain the numerical calculations and
parameters. Then we discuss the magnetic phase diagram
in Sec. IV. Concentration dependence of calculated LM
and the internal-field distribution seen by Fe will be
presented in Sec. V. Strong concentration dependence of
Fe LM's in various local environments is found in the an-
tiferromagnetic state. It is related to the disappearance of
the gap in the density of states (DOS). In Sec. VI, tem-
perature variations of calculated magnetic quantities are
shown. It is found that Fe LM's in each environment
show an interesting temperature dependence in the anti-
ferromagnetic state because of the competition between
the ferromagnetic and antiferromagnetic couplings. Cal-

culated internal field distribution functions are compared
with the Mossbauer experiments. The origin of a shoul-
der in the spectra near the critical concentration of the
ferromagnetism is presented. In Sec. VII the high-field
susceptibility, the effective Bohr magneton number, and
the Weiss constant in the paramagnetic susceptibility P~
are presented as a function of concentration. Origin of a
broad peak of high-field susceptibility is also discussed
there. We finally summarize in Sec. VIII our physical
picture for the magnetism of Fe-Cr alloys, and discuss
remaining problems.

II. THEORY OF THE LEE IN FERROMAGNETIC
AND ANTIFERROMAGNETIC ALLOYS

JF= —f3 'In J g dg e j3E(g)— (2. 1)

Here P is the inverse temperature. J; is an exchange pa-
rameter defined by

J;= U+ 1+ J;,I
2D ' 2D

(2.2)

U; (J;) being a Coulomb (exchange) integral on site i D.
is the degeneracy of the bands (i.e., D=5). Because of the
strong local electron correlations even at finite tempera-
tures, J; should be regarded as a reduced parameter.

The energy functional E(g) in Eq. (2.1) consists of the
free energy for the one electron Hamiltonian H(g) with
exchange fields I g; I, and the Gaussian term

E(g)= —P 'ln Tr(e ~ '~') ——,
' g(U;g; —J;g;) . (2.3)

Here U; is an effective Coulomb integral defined by

U;= 1 — U+ J;.1 1

2D ' 2D
(2.4)

g; in the Gaussian term is an average electron number
with respect to H (g).

The one-electron Hamiltonian H(g) in Eq. (2.3) is ex-
pressed as

H(g)= g (e; p+ —,
' U;g; ——,'J;g;cr —h;o )n—;

ia

+ g ivj v ivcraj v'cr'
lVJV 0'

(2.5)

Here e; and h; are the atomic level and external magnetic
field on site i, respectively. p is the chemical potential.
t; Jde ntoes the transfer integral between (site i, orbital v)
and (site J, orbital v ). a;, (a;, ) is the creation (annihila-
tion) operator for electrons with spin o on site i and orbit-
al v. Furthermore, n; —= g, a;„a;

The thermal average of the LM on site I'. is given by

(2.6)

We adopt the degenerate-band Hubbard model, and ap-
ply the two-field functional-integral method. The free en-
ergy F is then given as follows in the static approxima-
tion:

1/2
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and the amplitude of the LM is given as follows [see Eqs.
(3.15) and (3.24) in Ref. 34]:

&g,')+ 1+
2D

(2.7)

d, Xe-~E'&'

&X)—=
e

(2.8)

Here &
~ ) in the right-hand side (rhs) means a classical

average with respect to E(g); that is, for a quantity X,

F [(~—1 ra)
—1]

(2. 1 1)

(2.12)

In the next term the pair interaction terms gi, ~
4,~(g';, (J )

appear. 4&;~(g;,gj) denotes the pair energy functional be-
tween sites i and j.

4,z(g;, gz)= f deaf(co) Imln—detI'~'(1+tF') . (2.13)

The first-order correction consists of the sum of the
single-site energy functionals I E; (g; ) I,

D

E;(g;)= f dcof(co) Im—gin(L; ' —X, '+F;„'),
m'

The new expression (2.7) for the amplitude of LM
which takes account of the quantum effect has quite re-
cently been derived from the free energy (2.1). The well
known formula for the amplitude of LM (&g; ) —2/PJ;)
by Wang et al. leads neither to correct atomic limit nor
to correct delocalized limit. It is also inconsistent with
the free energy (2.1).

According to Hubbard'" we consider a limit U~ao
and introduce charge potentials [ w;(g) I. These potentials
are determined by the charge neutrality condition. Furth-
ermore, we assume that the transfer integral can be ex-
pressed by a geometrical average: t; j =—r t; j r~, where
t; j ~ is the transfer integral for a pure metal, and r; is an
off-diagonal factor which depends on a type of atom on
site i 3Then. Eq. (2.3) is written as follows (see Appen-
dix for the derivation):

(L;, ' —X; ')

1+(L,„' X,„')F,„—— (2.14)

(F'); ~, =[(X ' t ) '];
~
—(1—6,)) . (2.15)

All higher-order terms are neglected in the present theory
by assuming small deviation from the effective medium.
(See Ref. 20 for discussions on the validity of the approxi-
mation in alloys. ) Then the energy functional E(g) in
Eqs. (2.1) and (2.6) is expressed as follows:

E (g) = g E;(g; )+ g C';, (g;,g; ) . (2.16)

Here det' ' means the determinant of a 4DX4D matrix in
the (ij ) subspace. t and F' are the single-site t matrix and
the off-diagonal coherent Green's function defined as fol-
lows:

E(g)= f den f(co) Im Tr—[ln(L ' —t )]
1

+ g [—n;w;(g)+ —,'J;g;] . (2.9)

Here we have omitted the zeroth term for brevity which
does not make any contribution to the thermal averages
(2.6) and (2.7).

The effective medium is determined so that the single-
site t matrix (2.14) vanishes in average,

Here f (co) is the Fermi distribution function. t denotes
the matrix t;„~ . n; is the electron number on site i. The
locator L is defined by

&
~
r;„~ G; (co, g;)) =F; (X ') (2.17)

(co e; w; (()+—,
' J—;g;iT—+iM)

(L ');„) ~ —— fi,,5„~ . (2.10)

It describes an atomic state with random potentials and
exchange fields.

At finite temperatures the integration with respect to
the exchange fields tg;] in Eqs. (2.1), (2.6), and (2.7) is
not an easy task because the exchange fields couple each
other via the first term at the right-hand side of the energy
functional (2.9). Furthermore the evaluation of the latter
itself is dificult in disordered alloys because of the ex-
istence of random potentials in the locator L. Thus we
replace L ' in Eq. (2.9) by an effective medium [X, '),
which describes thermally and configurationally averaged
states, and expand the deviation in[1+(L

')(L ' —t ) '] with respect to the site. " The
zeroth order is described by the effective medium only.

G; (co, g;) is the one-electron Green's function for orbital
v and spin o. at an impurity site i as defined by

1
Giva(~~(i ) = 2

( iva shiva + iva )
r,. (2.18)

&g'"+") =x'"&g &" (k=0 1) (2.19)

where

&g,")o—= f dg;(g',")exp[ PE;(g; )]If dg;exp[ PE—;(g;)], — '

and similarly for g,
" + and x,~ =

& g~ )o.
have10, 38

Since the integration in the thermal average on the rhs
of Eq. (2.6) is formidable, we replace the exchange-field
variables I g; J except for the central site by the Ising spins
making use of a following decoupling approximation
which is correct up to the second moment:
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( KO»1& 1»2&2d5 05pe

d
—PP'(gP, s1x1,s2x2, - . )

cc 5pe
Isj

,
'

&g, ).+ (4o, $,x„$2x2, .
) =Eo(ko)+ g 4o (fo) —g @o";(gp)+P 'tanh

i~p i~p
+ Q A„$;—+ 8„$,$,

j&0 i (ij )

(2.20)

(2.21)

Here g!,)
means g„g„.gI, , ~

implies a summa-

tion with respect to all pairs which are not related to the
site 0. Pair interactions 4p, (go), 4p";(go), %';, , and 8;, are
defined, respectively, as

C'o (ko)

+o"(ko)
=l X C'o (go»;) (2.22)

4;, (M;,» ) .
it=+ v=+

(2.23)

The coupling 8;~ means the exchange coupling between
the atoms on site i and j as seen from the last term of the
rhs in Eq. (2.21).

In the following, we make a molecular field approxima-
tion. Extension to the Bethe approximation is trivial. ' '
In the molecular-field approximation the variables [$; } in
Eq. (2.21) are replaced by their thermal averages:
&$;) =&m;)/x;. Equations (2.20) and (2.21) then reduce
to

(2.24)

&m, )
+(g)=Ep(g)+ g @p;(g)—g @p";(g)

i&o i~p l

(2.25)

Here y; denotes a type of atom on site i.
A local magnetic moment depends on the surrounding

atomic and magnetic configurations [y; } and I & m; ) } via
the energy functional 4'(g'). Therefore the LM's have a
distribution due to the randomness. When a binary alloy
is ferromagnetic the effective medium X,„' may be in-
dependent of site i. Then the distribution function of LM
of atom a depends on the type a only, which we write as
g "'(M). When the alloy forrrts the antiferromagnetic
state with two sublattices (+ and —) we have to intro-
duce two kinds of effective medium IX,' —'} depending on
whether the site belongs to (+ ) or ( —) sublattice. Thus
we have four kinds of distribution functions g" —'(M).
However there are symmetry relations between the (+ )

and ( —), e g , X.
'. '=X'+' and g" '(M)=g "+'(—M).

Thus we can proceed by using the quantities on sublattice
(+ ) only. We omit (+ ) sign in the following promising
that X, =L,'+', g"'(M) =—g~'+'(M), etc.

The LM's
I & m; ) } which determine the central LM

&mp) are also determined by their surrounding LM's.
They should have the same distribution functions as in
the central site. This leads to an integral equation for
g'"(M) (see Ref. 17 and Appendix in Ref. 20),

g
' (M)= y y J 5(M —&mp)([y;}, rm, }))

3 1 ] Z

X g [p, 'gr". (+m;)dm;] .

It is difficult to find the solution of integral equation
(2.26) for bcc (z=8) and fcc (z= 12) without further ap-
proximation. We make a decoupling approximation in
the rhs;

f M "+"g"'(M)dM=(x u ) "(x u )" (k =0, 1) (2.27)

and

x u =[&m )],= f Mg'"(M)dM,

x~U~—= [&m )~],= f M gI "(M)dM,

(2.28)

(2.29)

where [ . ], denotes the configurational average. The
approximation is correct up to the second moment. It
may be more reasonable for the system with a larger num-

ber of z. Then Eq. (2.26) reduces to

(2.26)

Here the upper (lower) sign in gz'". at the rhs is for the fer-
romagnetic (antiferromagnetic) state. We have only taken
into account the nearest-neighbor (NN) pair interactions.
z is the number of NN's. p, ~ is the probability of finding
atom y at a neighboring site of atom o.. It is given by
Cowley's atomic short-range order parameter r as

p, r=cz+(5 r —cr)r, cr being the concentration of atom

(M) = g I'(n, z,p, ) g g 1 (k, n, q + )1 (l,z n, q )5(—M —
& g )„ki ) . (2.30)

n =0 k=o l=o

zt
(p aa)n( 1 aa)z —n

n!(z n)!—
q + in Eq. (2.30) is defined by

(2.31)

Here I (n, z,p," ) is the binomial distribution function, 1 1+ (2.32)

This is interpreted as the probability that the fictitious
spin on atom a with magnitude u is in the up direction.
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& ka & nkl J Pankl(KC dk (2.33)

The quantity &g &„kI in Eq. (2.30) is the LM of an
atom of type a when k of the fictitious spins among the
surrounding n atoms of type a point up, and l spins of the
remaining z —n atoms of type a also point up.

x u =[&m &], ,

x'v'=[&m &'], ,

(2.36)

(2.37)

Substituting Eq. (2.30) into Eqs. (2.28) and (2.29) we
obtain the self-consistent equations to determine u and

P .ki(k)=
—~ankI [4]

Wan—kl &4~
(2.34)

Z

[&m &'], =— g I (n, z,p, )[&m &'„], (i =1,2),
n=0

(2.38)

'Pank/(g)=& (g)+n@ (g)+(Z —n)@ -(g)

(2k —n )N'" (g)v + (21 —z +n )N'" u

(2.35)

n z —n

[&m &'„],—:g g I (k, n, q + )

k =01=0

XI (l,z —n, q )(&g &„ki)' . (2.39)

Here we have replaced the site index (i) by the type (a) of
atom on the same site.

The same consideration for Eq. (2.17) leads to a
simplified CPA equation,

Xc- X —1+
([ g2 ] )1/2

(2.40)

[&4&],= g 1(n,zp. ) g g I (k, n, q + )I (1 z n, q —)& g' &„ki, (2.41)
n =0 k =0 1=0

(2.42)

where i=0,1.
Solving Eqs. (2.36), (2.37), and (2.40) self-consistently, we obtain u, u, and X, . The charge potential e +iv (g) p-

in E (g) and @ ~(g) is determined by the charge neutrality condition on a site.
The amplitude distribution function is obtained as follows by using the same approximation scheme as in the deriva-

tion of Eq. (2.30) (see the Appendix in Ref. 20):

g' '(M)= g I (n, z,p, ) g g I (k, n, q )I (l,z n, q )5(M——(&m &„ki)' ), (2.43)
n =0 k =01=0

&ma& k1=3na
2D

n + 1+ &ka&nkl2D 2D " pJ.
(2.44)

Here the site indices have been replaced by the types of atoms.
The internal field H; seen by atom a at site i is assumed to follow a phenomenological expression,

ZI

H, =a & m, & + g y b ",' &m, & . .

1=1j=1
(2.45)

Here zI is the number of the 1th NN sites. &m, & is the average LM at the 1th NN site j. a and b "r are the propo. r-
YJ

tionality constants. Then the internal-field distribution function P (H) for atom a is given in the molecular-field approx-
imation as follows:

P (H)= QQI (ni, z, ,p, )I (nq, nq, p2 )

ni n2

nl n2 ZI —n] zp —n2

X yy y y r( kniqi+)I (k2, n2, q +)
kl k2 ml mp

Xl (mi, zi n i,q )I (mz,—z2 n2, q )5(H H( I-ni I, I ki —I, Imi
—
I )) . (2.46)

2

H (In I, Ikir I, ImiI)=aa&ga&nkvd+ g [b"'(2kr ni)x v +—b"'(2mI —zi+nI)x u ] .
1=1

(2.47)
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Here pl is the probability of finding an atom of type a at
the Ith NN when the central site is occupied by atom a.
Note that zI ——z and p&

——p, . Internal-field distribution
function in the antiferromagnetic alloys should be given
by [P (H)+P ( —H)], because Eq. (2.46) is for (+ ) sub-
lattice. All results for g "(M), g' '(M), and P (H) will
be given by a histogram in the following sections.

E 20-
O
0

CC

a

III. NUMERICAL CALCULATIONS
AND PARAMETERS

l0—

In the numerical calculations we adopted the fivefold
equivalent band model which greatly reduces the comput-
ing time:

2O)

H(g)= g g [e, —p+m, (g) ——,'J;g;0 h;—cr]
V 1CT

-0.2 0
(R~ )

0.2 0.4

ivo + ~ ij ivo jvo
1JCT

(3.1)

The model is suitable for a qualitative or semiquantitative
description, and includes the effect of degeneracy and
Hund's rule coupling.

The orbital dependence drops in all the equations in the
previous section when we use the Hamiltonian (3.1). The
coherent Green's function (2.12) is then expressed for fer-
romagnetic state as

(3.2)

where po(e) is the density of states (DOS) for a pure metal

It;~ I. In the antiferromagnetic case we use further ap-
proximation ek+Q — Ep for the dispersion curves to
[tz], Q being 2'(1,0,0)/a in the case of the bcc lattice
where a denotes the lattice parameter of the unit cell.
The relation e~+& ———eI, holds true when the NN
transfer integrals are only taken into account. Equation
(2.12) then reduces to a simplified expression as fol-
10 s:41 42

FIG. 1. Local density of states for Fe in various environments
in the antiferromagnetic state. Here and in the following figures
the environments are specified by n, the number of Fe nearest
neighbors (NN's). The inset shows the model density of states
used in the present calculations.

energy co and field variable g. The results are extrapolat-
ed to the zero temperature.

A typical example of the DOS in various environments
in the antiferromagnetic state is shown in Fig. 1. The
model DOS po(e) in the inset has been used in the previ-
ous calculations for the bcc metals and alloys. ' ' A
sharp dip is seen near the Fermi level, which is due to the
use of the perfect nesting relation ok+& ———eq. The
difference in line shapes of the local DOS is mainly deter-
mined by the average atomic levels for up and down spins
in each environment.

(~)
& (~)

po(e)de

[X+(cu)X (co)]'~ —e
(3.3)

Input parameters used in the calculation are d electron
number n, d band width 8', effective exchange parame-
ter J, and the model DOS, po(e). The latter is given in
the inset of Fig. 1. Others are chosen as follow:

n„,=7.00, 8'„,=0.45 Ry, J„,=0.0697 Ry .

n CI' 4 72' Scl 0 58 Ryy JcI 0 0350 Ry

Parameters for Fe are the same as in the Fe-V alloys.
The d-band width for Cr is taken from Kiibler's calcula-
tions. nc, and Wc, are chosen so that (i) the Fermi lev-
el of pure Cr is in the dip of the DOS which arises from
the nesting part in the antiferromagnetic energy dispersion
curves, (ii) the sublattice magnetization is about 0.6ps at
the ground state.

The numerical calculations have been done above 75 K
because of the difficulties of integration with respect to the

Cr 0.8 0.6 0.4 0.2 Fe

Concent rat i on

FIG. 2. Concentration dependence of e8'ective pair energies
8 ~ at 150 K (solid curves) and 1350 K (dashed curves).
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IV. PHASE DIAGRAM

Rough features of the magnetism of Fe-Cr alloys can be
understood by means of the nearest-neighbor exchange in-
teractions I 8 r J. They are shown in Fig. 2. The cou-
pling between Fe LM's is ferromagnetic, while the cou-
pling between Cr LM's is antiferromagnetic. This ex-
plains the ferromagnetism in Fe-rich concentrations and
the antiferromagneti. sm in Cr-rich concentrations. The
antiferromagnetic coupling between Cr and Fe LM's im-
plies that Cr LM's are antiparallel to the bulk magnetiza-
tion in the ferromagnetic state. There is no frustration of
the magnetic arrangement until the number of the antifer-
romagnetic Cr-Cr pairs becomes comparable to that of the
Cr-Fe pairs.

The cajculated phase diagram is shown in Fig. 3 togeth-
er with the experimental one. The present theory de-
scribes qualitatively the experimental phase diagram. ' A
maximum of Tc around 5 at. % Fe (15 at. %%uoFe inour
calculation) is explained by the enhancement of the Fe-Fe
coupling d"F,F, as shown in Fig. 2. This is an alloying
effect due to the band mixing, which is not explained by
the rigid band model. The same situation has been
found in Fe-V alloys.

The present calculations give the Neel temperature of
pure Cr higher than the experimental value (310 K).
This is because of the use of a simplified expression (3.3)
for the coherent Green's function. Note that Eq. (3.3)
was derived by assuming a symmetric band which pro-
duces a completely nesting Fermi surface for the half-
filled case. The antiferromagnetic energy is overestimated
for this reason. One has to take the antiferromagnetic
band structure into account more seriously for quantita-
tive discussion.

It has been suggested in the experimental investiga-
tions ' that the spin-glass state exists in a small concen-
tration range (81—84 at. % Cr) at temperatures less than
30 K. Theoretically Jo claimed that the spin-glass state
was possible on the basis of simple CPA calcuIations. It
is not accepted, however, because there is no order param-
eter to distinguish the spin-glass state from the paramag-

netic state in simple CPA calculations. In the present
theory the spin-glass solution ( [ ( m ) ],&0 and

[ ( m ) ],=0) is clearly distinguished from the paramagnet-
ic solution ([(m ) ],=[(m ) ],=0), but it does not ap-
pear above 75 K according to the numerical calculations.
When the temperature decreases the Cr LM lose the ex-
change splitting, therefore the antiferromagnetic Cr-Cr
and Cr-Fe couplings disappear. The remaining Fe-Fe NN
coupling is ferromagnetic. Thus we do not expect the
spin-glass solution at the ground state. We have to take
account of more distant pair interactions to obtain the
spin-glass solution. In what follows we assume that LEE
due to 1ong-range interactions which cause the spin-glass
solution at low temperatures are not important at higher
temperatures (~100 K). This is reasonable because the
random configurations of thermally induced LM's cause
the damping of pair interactions.

V. CONCENTRATION DEPENDENCE

The magnetization and average LM of constituent
atoms change monotonicaHy as shown in Fig. 4, and
disappear at 80 at. % Cr. The results are consistent with
the neutron experiments as well as previous CPA calcula-

/(mFz )
~P

1000

0.8 0.6 0.4 0.2 Fe
500

'c

0
Cr 0.8 0.6 0.4

Concentration
0.2 Fe

FICx. 3. Calculated magnetic phase diagram of Fe-Cr alloys
and the experiment (inset) (Refs. 21, 23, and 29). F, P, and AF
mean the ferromagnetic state, and paramagnetic state, and the
antiferromagnetic state, respectively.

Conce nt ration

FIG. 4. Concentration dependence s of the magnetization
([(m ) ], ), sublattice magnetization ([( m~ ) ], ), and various local
moments at 150 K. Experimental values are shown by open cir-
cles for magnetization (Ref. 52) closed circles for sublattice mag-
netization (Refs. 29, 45, and 46) and triangles for the average lo-
cal moments of constituent atoms ([(m )], ) (Refs. 53 and 54).
The local moments ([(m ) ], )'~ are also shown by dashed-
dotted lines.
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tions. ' The sublattice magnetization in the antiferro-
magnetic state shows a peak near 2 at. % Fe. It is related
to the position of the Fermi level in the gap of the DOS,
and therefore it is considerably parameter dependent. Ex-
perimentally the alloy changes from a commensurate to
an incommensurate spin-density-wave state near 2 at. %
Fe with decreasing Fe concentration. ' The fact that
the maximum amplitude of the local magnetization in the
incommensurate phase is smaller than that of the com-
mensurate one seems to support the present result. The
amplitudes of the LM calculated from our new formula
(2.7) have large values as compared with the previous re-
sults for Fe-V alloys. The enhancement of the Cr LM
due to the quantum effect is much larger than that of Fe
but the concentration dependence of the iron is stronger
than the Cr because of larger change of [(g,)],. Thus
we see in Fig. 4 a crossing of the amplitude curves at 70
at. % Cr, which does not appear when the classical ex-
pression is adopted.

The LEE in the ferromagnetic state are more or less
similar to those of Fe-V alloys as shown in Fig. 5(a).
The Fe LM's with larger number of Fe NN's have larger
local magnetization. This is not due to the enhancement
of the ferromagnetic exchange coupling with surrounding
Fe LM's but due to the increase of an amplitude (g, ).
The latter is caused by the atomic pair energy NF, F,(g)
which shows a sharp upward convex curve as shown in
Fig. 6. The Cr LM with no neighboring Cr LM is anti-

n=8
n=4
n=0
n=8
n=4
n=Q

6

parallel to the magnetization as discussed in the previous
section. When the number of neighboring Cr LM anti-
parallel to the magnetization increases, the Cr LM at the
central site reverses as seen from Fig. 5(a). Calculated
LM in the concentrated alloys show a broad distribution
as shown in Fig. 7(a). Concentration dependence of the
distribution functions is similar to the Fe-V alloys, but
the line width of gIc,'(M) is larger than that of gv (M) in
Fe-V alloys because of stronger antiferromagnetic cou-
plings d"c.c'

Internal-field distribution functions created by the LM
distributions are presented in Fig. 8. Theoretical curves
at 150 K show a broad distribution in agreement with the
experiments. This justifies the existence of the LEE on
the LM's. However the experimental linewidths are nar-
rower than the theoretical ones. This is presumably due
to the temperature eff'ect. (The experimental curves are
obtained at 4.2 K, while the theoretical ones are calculat-
ed at 150 K.) The temperature dependence of the distri-
bution function is strong in particular near the critical
concentration of the ferromagnetic instability. This is
seen by comparing the experimental curves at 75 at. % Fe
and 4.2 K in Fig. 8 with those in the inset of Fig. 12.

In the antiferromagnetic phase the LEE on Fe LM's
changes its nature at 5 at. % Fe. The Fe LM with more
than four Fe NN's couple antiferromagnetically to the
surrounding Fe LM when the Fe concentration cF, is less
than 5 at. 'Fo Fe. This is not explained by the sign of the
simple exchange coupling 8„,„, only. The local magneti-
zation is determined by the single-site term E„,(g), the
atomic pair functions N r(g), and the exchange terms
N'"r(g) [see Eq. (2.35)]. The single-site energy functional
of Fe [EF,(g)] has a deep minimum at g=lps on the
(+ ) sublattice in the pure Cr metal, which is related to
the gap of the DOS near the Fermi level. Therefore the
nearest-neighbor exchange pair energy @F",F,(g) depicted
in Fig. 6 cannot change the direction of Fe LM's even
when the central Fe LM is surrounded by eight Fe LM's.
The role of atomic pair energy @F,F,(g) with strong con-
vexity (see Fig. 6) shift the position of the minimum in

0.8 0.6 Q.4
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0.2 Fe

Concent rat i on
T =300&

(bj

n= 8

3

cv It
C

I

0.8 0.6 0.4 0.2 Fe
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FIG. 5. Local magnetic moments in various environments for
Fe (solid curves) and Cr (dashed curves): (a), [(m )„],; (b),
([(m.'). ],)'".

FIG. 6. Pair energy functionals 4 ~(g) and —@'"~i() at g0
at. % Fe. The notation ay(at) [ay(ex)] means the former (the
latter).
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%(g) to a larger value in the low Fe concentrations. This
is because the Fe LM coupled antiferromagnetically to the
surrounding LM's increase with increasing number of Fe
NN's. As seen from the mechanism mentioned above, the
increase of Fe LM's does not mean the enhancement of
the Fe-Fe antiferromagnetic coupling.
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%'hen the Fe concentration increases the gap of the
DOS disappears at about 5 at. % Fe. The minimum of
the single-site energy EF,(g) then becomes shallow. The
ferromagnetic exchange energy @F'F,(g) becomes relative-
ly important. Thus the reversal of Fe LM's with more
than four Fe NN's takes place at about 5 at. % Fe in Fig.
5(a).
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creasing Cr concentration, showing a simple dilution pic-
ture. When the concentration exceeds 75 at. %%uoCr th eal-
loys change from the strong to the weak magnetism.
Thus m,z being to increase rapidly. This behavior has
also been found in Fe-V alloys. Effective Bohr magne-
ton numbers in the staggered susceptibilites also have
large values, more than 3pz in 90—100 at. % Cr, reveal-
ing a characteristic of the weak magnetism. There are
only a few experimental data, unfortunately. Therefore it
is impossible to make comparison with the experiments at
present.

The concentration dependence of partial susceptibilities
(X ) of constituent atoms is shown in Figs. 15(a) and
15(b). XF, follows the Curie-Weiss law in the wide range
of concentration. The Cr susceptibilities change their sign
except for those at c=0.9 and 1.0 with decreasing T, and
negatively diverge at Tc. Hasegawa found a positive
divergence of 7c, at Tc in pure Fe. Such a positive diver-
gence is not found in the present calculation.

We show an example of paramagnetic susceptibilities in
each environment in Fig. 16. Susceptibilities of Fe LM s
follow the Curie-Weiss law. The Fe LM's with fewer Fe
NN's have a smaller induced local magnetization. The
susceptibilities of Cr LM's in each environment do not
follow the Curie-Weiss law. gc, with no Fe NN diverge
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for various environments at 70 at. % Cr. Partial susceptibilities
for Fe and Cr are also shown by the solid curves.
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as the alloy approaches the Curie temperature, while oth-
er susceptibilities of Cr change their sign and show a neg-
ative divergence at T&. This is explained as follows. Fe
LM show the LM feature rather than the weak magnetic
one in this concentration. When the alloy approaches Tc
the local magnetizations of Fe induced by the magnetic
6eld become very large as compared with those of Cr LM,
because the directional spin fiuctuations take place in Fe
LM. Then a negative polarization is induced in Cr atom
by the surrounding Fe LM via the antiferromagnetic cou-
pling cPF,c, (&0). Thus Cr LM's show a negative diver-
gence at T~. For the Cr LM's with no Fe NN's there is
no such mechanism. Thus one expects a normal behavior
for it.

VIII. SUMMARY AND DISCUSSION

-50

100

0 500 1000
T (~)

1500

FIG. 15. Paramagnetic spin susceptibilities for (a) Fe and (b)
Cr. Note that Pc, for C=O.O, 0.2, and 0.4 are multiplied by
0.01, 0.1, and 0.1, respectively, in the figure.

We have extended the theory of LEE at finite tempera-
tures to the antiferromagnetic case and investigated the
finite-temperature antiferromagnetism as well as the fer-
romagnetism in Fe-Cr alloys.

The theory explains qualitatively the magnetic proper-
ties of Fe-Cr alloys. A small maximum at 5 at. % Cr in

T& was explained by the enhancement of Fe-Fe exchange
coupling due to the alloying effect. With increasing Cr
concentration the alloys monotonically approach to the
weak magnetic regime. The Curie temperature and mag-
netization decrease mon otonica11y in 10—80 at. %%uoCr.
The effective Bohr magneton numbers follow a simple di-
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lution picture. Ho~ever each Fe LM is strongly
inAuenced by the surrounding atomic configuration be-
cause of the existence of the holes in the up spin DOS.
The distribution of Fe LM's is extended from Op& to 2pz
in the concentrated alloys (60—75 at. % Cr). It causes a
broad internal field distribution seen by Fe in agreement
with experiments. But further theoretical investigations
are desired to discuss the details of the line shape at low
temperatures. It has also been verified that the LM with
different environments respond to the magnetic field in
different ways. In particularly, the Cr LM with no Fe
NN s show a positive divergence at Tc, while the Cr with
Fe NN's diverge to minus infinity.

In the antiferromagnetic state the alloys show a gap
near the Fermi level in the DOS. Such a nesting effect
produces a deep minimum of the single-site energy func-
tional EF,(g), resulting in Fe LM's parallel to the sublat-
tice magnetization even if they are surrounded by eight Fe
LM's. With increasing Fe concentration a gap disappears
at about 5 at. % Fe, and the minimum in the single-site
energy functional EF,(g) becomes shallow. Then the fer-
romagnetic Fe-Fe exchange interactions begin to break the
antiferromagnetic long-range order. Fe LM show a
strong LEE there, i.e., the coexistence of ferromagnetic
and antiferromagnetic Fe clusters.

In a small concentration regime between the ferromag-
netic and antiferromagnetic states, most of Cr atoms lose
the LM at low temperatures but Fe atoms still have them.
We only took account of the nearest-neighbor-pair in-
teractions to describe the fluctuations of LM due to the
atomic configurations, and moreover 8&,c,——Pc,F,——0 and
8„,„,&0 at T=O. Thus the present calculations do not
produce the spin-glass state observed at low temperatures
( —10 K) in a small concentration regime 81 —84 at. % Cr.
It is plausible for the following reasons that the long-
range Fe-Fe pair interactions produce such a spin-glass
state. Chromium is not far away from iron in the Period-
ic Table. Therefore we do not expect the dumping of
long-range interactions due to disorder scattering. Since
the Cr LM's disappear at low temperatures and Fe LM's
are rather weak in the spin-glass concentration range, we
do not expect dumping of the exchange interactions due
to disordered LM's either. Thus we might expect to have
extended exchange interactions between Fe LM's at low
temperatures in the Cr-rich Fe-Cr alloys. It is highly
desirable to check by means of the CPA —Korringa-
Kohn-Rostoker method whether or not the second-NN
exchange interaction between Fe LM's is antiferromagnet-
ic in the spin-glass concentration range.

Finally, we remark that the present theory does not de-
scribe a sharp peak of the linear-in-T specific heat at low
temperatures near the critical concentration for fer-
romagnetism. ' Two mechanisms have been proposed
from quite different viewpoints. One is paramagnon mass
enhancement in a nearly ferromagnetic metal. The oth-
er arises from the existence of localized moments in an
infinitely small effective field which results from the long-
range exchange interactions and the randomness of the al-
loy. It is certainly an interesting question in the
localized-versus-itinerant magnetism of transition metals
which mechanism determines the anomalous Sommerfeld

term of the Fe-Cr alloy. One has to go beyond the
present framework of the theory, i.e., the static approxi-
mation in order to answer this question.

APPENDIX: DERIVATION OF THE ENERGY
FUNCTIONAL (2.9)

We explain in this Appendix how Eq. (2.9) follows
from Eq. (2.3). We introduce the charge potentials
jw;(g)) defined by

w;(g) —= —,
' U;(g;(g) —g; ) . (Al)

+ g —w;(g)g;— w; (g)'+ —,
' J;g,'

U;
(A2)

Here we have omitted the constant term ( g, U;(g;) )/4.
H (g) in Eq. (A2) is defined by Eq. (2.5) in which
2;+ U;g; /2 —p has been replaced by e; —p.

The saddle-point condition BE/Bg; =0 reduces to
BE/Bm; =0. This leads to the following equations:

g; =n; (e; —p+w;)—0 0 0 2

j

(A3)

Here n; (e; p+—;w) denotes the thermal average of the
electron number on site i with respect to the one-electron
Hamiltonian H (g).

We now define g; so that [ w;(g) ) vanish at T=O:

P=l«'(&' V)]T=D . — (A4)

This is nothing else but the electron number on site i in
the Hartree-Fock approximatiog. at T=O. In the strong
U; limit the charge neutrality condition g; =n; may be
satisfied on each site. Then Eq. (A3) reduces to

n,'(e0 p+w, )—=n, ,

and Eq. (A2) reduces to

(A5)

E(g)= —p 'ln Tr(e ~ '~')+ g ( w;n;+ —,'J;g—;) .

(A6)

Equation (A5) determines the charge potential w;(g) for a
given set of exchange fields [g; ].

The free energy for the one-electron Hamiltonian in Eq.
(A6) is expressed as follows:

—p 'ln Tr(e ~ '~')= —p ' f deep(co, g)ln(1+e ~") .

(A7)

Here p(co, g) is the density of states for H(g). By making
use of integration, by parts, we obtain

P'ln Tr(e ~ —'~') = —f des f (co) f" p(cu', g)dc@',

(A8)

Here a constant g; will be defined later. We rewrite the
energy functional (2.3) using the new potential (A 1).
Then we obtain

E (g) = —P 'ln Tr(e ~ '~')
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p CU, dM = Im, de)—co —co 77 k ai +15

= ——Im Tr ln[z —H(g)],
I

(A9)

where f (ai) is the Fermi distribution function.
The integrated number of states is written as follows:

when we assume a geometrical average for the transfer in-
tegral. Here (r');„=r 6;,5 ~ and (r);,, =r, 5;,6„, r;„
being an off-diagonal factor. The matrix (t ),,~

~ denotes
a transfer integral for a pure metal. The locator matrix L
is defined by Eq. (2.10). Then Eq. (A9) reduces to

p co, dc'

[H(g)]; =—[e; —p+ io;(g) —'J;g cr ——lt;o. ]
= ——Im[Trln(L ' —t )+Trin(r*r)] . (A12)

&& ~ij ~vv + ~ivjv (A10)
The second term at the right-hand side of Eq. (A12) van-
ishes because it is real. Thus Eq. (AS) is expressed finally
as

Here e~ denotes a one-electron energy level for the Ham-
iltonian H (g). The complex number z is defined by
co+i 5, 5 being an infinitesimal positive number.

Note that

1
p

—'ln Tr(e t'~'&')= —I dtof(ai)Im Trln(L ' t —) .

(A13)

z —H(g)=r'(L ')r r*t r— (All) Substituting Eq. (A13) into Eq. (A&) we obt»n Eq. (2.9).
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