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Electron clouds of large atoms undergo significant distortion during lattice vibration. The shell
model, which divides each ion into an inner core and a last-filled electron shell, is combined with the
pseudopotential method to provide a theory of phonon spectra. The conduction electrons screen all
of the following interactions: core-core, core-shell, and shell-shell. An important feature of the
theory is inclusion of exchange interactions of shell electrons with the conduction-electron sea. As a
consequence three different dielectric functions appear in the theory (appropriate to core-core, core-
shell, and shell-shell interaction energies). The pseudopotential of each ion has two parts: one for
the core and one for the shell. The new features of the theory are expected to be important in heavy
metals.

I. INTRODUCTION

The purpose of this paper is to construct a dielectric
theory of phonon spectra in metals which combines con-
ventional pseudopotential methods' with the shell model
of Dick and Overhauser. The motivation is to allow for
ionic distortions (during lattice vibration) which may
sometimes be important, especially in heavy metals.

The shell model has been used extensively in lattice
dynamics of insulators and semiconductors. Coupling be-
tween the outermost filled shell of an atom and its inner-
ion core is usually described by adjustable ("spring") con-
stants. Our intention here is to treat al/ interactions as
Coulombic, but screened by the dielectric functions of the
conduction-electron sea.

Ordinarily, pseudopotential models of metals treat each
pseudo-ion charge density p(r —L) as rigid, i.e., the shape
of p does not change when the ion is displaced from its
equilibrium lattice site L. Interactions between ions are
screened by the electron-gas dielectric function E(q),
which in this paper we shall call the test-charge —test-
charge or core-core dielectric function

Qo(q)e(q):—e„(q)= 1+

Here Qo(q) is the Lindhard function,

core-shell and shell-shell interactions will be screened by
two "new" dielectric functions: e„(q) and e„(q). The
theory of these new functions will be presented in Sec. IV.
For the present we will consider these functions as known.
However, before developing the deformable-ion theory we
shall review the rigid-ion version in a formulation that al-
lows immediate generalization to the new model.

II. RIGID-ION PSEUDOPOTENTIAL THEORY

p(G) =np(G), (4)

where p(Q) is the Fourier transform of the pseudo-ion
charge density p(r), and n is the atomic density. The
Fourier coefficient of each electrostatic potential com-
ponent is

The simplest derivation of the phonon spectrum of a
simple metal requires only a few steps. (In Appendix A
we prove its equivalence to published formulations. ) The
total pseudo-ion charge density of a monatomic metal
(having unit volume) is

p(r)=gp(r —L) .
L

Its Fourier transform p(Q) is zero unless Q=G, a
reciprocal-lattice vector. For this case

me 1 1 —x 1+x
Qo(q) = —+ ln~2k 2 2 4x

(2)
P(Q) =4srp(Q)/Q'~(Q) .

Consequently, the potential energy of the equilibrium lat-
tice is

where x —=q /2k+ and kz is the radius of the Fermi
sphere. G+ (q) is the spin-symmetric, exchange and
correlation local-field factor.

Standard theory considers the ion as a rigid "test
charge. " Here we introduce an important distinction.
The inner-ion core will be treated as a test charge, but the
outermost-filled shell will be recognized as an assembly of
electrons. Consequently, there will be exchange correc-
tions to the shell interaction with the conduction-electron
sea. A consequence of shell-conduction exchange is that

~, 2m
~
p(Cx)

~

G e(G)

(The prime indicates omission of the term for Cx=O,
which is a requirement of overall charge neutrality. ) It
should be appreciated that Uo is a fictitious energy (de-
void of physical significance) since it includes the electro-
static self-energy of the pseudo-ions. Only changes in po-
tential energy relative to Uo will influence lattice dynam-
1cs.
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Consider now a sinusoidal displacement u(L) of the
ions from their lattice sites (for a peak amplitude A):

volves the test-charge —test-charge dielectric function, Eq.
(1).

u(L)=Aa~cos(q L), (7) III. DYNAMIC PSEUDOPOTENTIAL MODEL

where a~ is the (unit) polarization vector of the phonon
having wave vector q and frequency coq. Instead of Eq.
(3) the charge density of the ions is now

p(r)=gp(r —L —Aa~cos(q. L) .
L

The nonzero Fourier coefficients (to relevant order in A)
are,

A
p(G) = nP(G) 1 — (G.a)

4

p(Cx+q) = —,
' inp(Cx+q)(G+q) a .

The change AU in electrostatic energy (relative to Uo) can
be obtained using Eq. (5). Now, for any harmonic oscilla-
tor the peak value of 4U equals the peak value of the ki-
netic energy. Since the displacement amplitude varies as
A coscoqt, we must set

6 U= 4 nM~qA (10)

where M is the ionic mass. Equations (6), (9), and (10)
determine the phonon spectrum:

4nn IP (G+q)
I I

(G+q)'aq
I

M o I
Cx+q

I
e(Cx+q)

, IP«) I

'G ~, I

'
G e'(6)

This simple result follows from our assumption that the
phonon polarizations az are known (as is usually the case
for q along symmetry axes). For an arbitrary q one ob-
tains, instead of Eq. (11), a 3 &C 3 dynamical matrix.
Eigenvalues and eigenvectors of this matrix give the pho-
non frequencies and polarizations. Equation (11) has tak-
en the compact form shown by assuming spherical ions,
i.e., p(Q) =p( —Q), and by realizing that the sum over Cx

is the same as the sum over —G. Note that Eq. (11) in-

(14)

The dynamical matrix (for a monatomic lattice) is 6)& 6
instead of 3&(3. The core mass is M and the shell mass is
zm, where z is the number of electrons in the outermost-
filled shell. Derivation of the equations of motion is
straightforward. The result is,

D (cc) D (cs) A a
D (sc) D (ss) Bp

nM~ Aa
znmco BP

(15)

Each D is a 3)& 3 matrix, given below, and a,P are three-
dimensional (unit length) column vectors.

The ansatz of the new model is that the pseudo-ion
charge density p(r) can be divided into two parts. For an
ion in equilibrium,

p(r) =p, (r)+p, (r),
where p, (r) arises from the inner-ion core and p, (r) from
the outermost-filled electron shell. During a lattice vibra-
tion the core displacements will still be given by Eq. (7),
but the shell displacements v(L) will differ:

v(L) =BP~cos(q L) . (13)

The (unit) polarization vector Pz of the shell displace-
ments will usually have an in-phase and out-of-phase
component in crystals having two or more atoms per
primitive cell. For simplicity we consider here only met-
als with one atom per cell. Exchange (and correlation)
corrections to the interaction between shell electrons and
conduction electrons lead to three distinguishable dielec-
tric functions: e„(q), e„(q), and e„(q). The first of these
is the same as Eq. (1). The equilibrium potential energy
is, instead of Eq. (6),

I p.«)
I

'
I p.«)

I

' ~p. «)p, «)
U, =2mn'

G e„(G) 6 e„(G) G e„(G)

I p, (G+q)
I

'(G+ q);(G+ q),
D;J (cc)=4vrn

I
G+q

I
e„(G+q,co)

I p, (G)
I

' p, (G)p, (Cx) G;Cx,

e„(Cx,co) e„(G,co) G2
(16)

We have indicated here an explicit frequency dependence
of the dielectric functions. Since the three lowest eigen-
frequencies of Eq. (15) are phonon modes, the co =0 limits
can be used because co &&cop, the conduction-electron plas-
ma frequency. The three remaining eigenfrequencies are
collective shell excitons. Their frequencies correspond to
15—90 eV. For these modes one would use e= 1 —cu&/co
(for all three e's). D(ss) can be obtained from Eq. (16) by
interchanging c and s. Finally,

p, (G+q)p, (G+q)(G+q);(G+q),
D;J(cs) =4vrn

Cx (G+q)'e„(G+q)
(17)

and D (sc) is the transpose of D (cs).
It is easily verified that the foregoing theory reverts to

the rigid-ion pseudopotential model if BP is forced to
equal Aa and if the three e's are equal to Eq. (1). Appli-
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cation of this theory to specific metals will be published
separately. However, we note here that allowance for the
shell vibration (relative to the core) can, in heavy metals,
reduce the zone-boundary frequencies by 15—60 %%uo.

Neglect of shell conduction-electron exchange interactions
can lead to further errors of a factor of 2. In the past
these hidden omissions have been compensated by adjust-
ments in phenomenological, pseudopotential parameters.

IV. THE DIELECTRIC FUNCTIONS
e„(q) AND e„(q)

We will follow the method of Kukkonen and
Overhauser to derive the two new dielectric functions
which appear in the theory of the preceding section. One
must recall that the effective potential experienced by a
conduction electron from a test-charge Fourier component

pq 1s

Equations (18), (19), and (23) can be solved simultaneously
for V,

' . The result defines a shell-test-charge (or shell-
core) dielectric function:

1+(1—G+ )Qp(q)
e„(q)=

1 —(1—y, )G+ Qo(q)
(24)

V,
' = —

z [p~(1 —y, G+) eon—~(1 —G+)] . (25)
q

Equations (19), (23), and (25) may be solved for V,
' . The

result defines the shell-shell dielectric function:

This expression reverts (as it must) to e(q) if y, =0 and to
e„(q) if y, =l.

Derivation of the shell-shell dielectric function e„(q)
requires a modification to Eq. (18). The source pz of the
"disturbance" arises now from shell electrons. Conse-
quently the effective potential experienced by a conduction
electron must include the correction y, G+. Therefore,

(19)

V,
' = — [pq ebnq(—1 —G+)], (18)

q

where Anq is the Fourier component of the conduction-
electron density response (caused by V,

' ).
2

5n~ = — Qo(q) V,
'

4me

1+(1—G+ )Qo(q)
e„(q)=

1 —(1 —2y, +y, G+ )G+ Qp(q)

This function also reverts to e(q) when y, =0.

V. DISCUSSION

(26)

V,
' 4mePq

q'e„(q)

Accordingly,

e„(q)=1+(1—G+ )Qo(q) .

(21)

(22)

This function differs substantially from e(q), Eq. (1),
which one can obtain from just the Coulomb contribution
to V,

' . (e„will appear in the derivation of the rigid-ion
theory presented in Appendix A. )

We now focus our attention on the effective potential
V,
' experienced by an electron in the (last-filled) shell.

Its exchange interaction with the conduction-electron den-
sity Anq is much smaller than that of a conduction
electron —by a factor of -2 to 4. There is no reason
why the q dependence of this correction should be the
same as G+(q). However, since Eq. (20) is heuristic any-
way, we shall merely multiply it by a factor y, & 1. Con-
sequently the effective potential of a shell electron (caused
by p~) is,

where Qo(q) is given by Eq. (2). G+(q) is the spin-
symmetric exchange (and correlation) correction factor to
a conduction electron's effective potential:

G+(q) = 1.1x
(20)1+1.7x

with x=q/2kF. This function is an interpolation be-
tween x =0 and oo limits, which are known from
electron-gas theory. (It does not include a possible peak
near q =2kF.)

Equations (18) and (19) determine V,', which provides
a definition of the electron-test-charge dielectric function:

Application of the foregoing theory to specific metals
will be the subject of a separate study. Our intent here is
to elaborate the formalism without making specific
choices on how to model the pseudo-ion core and shell
charge densities p, (r) and p, (r), Eq. (12). Each worker
will naturally have his own preference in such matters.

Two important effects have been included in the
present theory which have ordinarily been neglected in the
lattice dynamics of metals: motion of the last-filled shell,
relative to its inner-ion core, and the modified dielectric
interaction of the last-filled shell with the conduction-
electron sea. We have already remarked that a quantita-
tive study of this latter effect indicates that y, -0.3. For
the filled shells of the inner-ion core the corresponding y's
would be much smaller. (Exchange integrals between
conduction electrons and hydrogenic states are -Z, ff ).
For this reason one can regard the inner-ion core (as we
have done) as a test charge.

The theory developed here has application beyond lat-
tice dynamics alone. For example, the theory of electron-
phonon interaction (and its application to electronic trans-
port phenomena) will be altered by the ion deformations
and by exchange (and correlation) associated with the
last-filled shells.

Finally, the lattice dynamics of magnetic metals will in-
volve a spin-dependent generalization of e„(q), Eq. (26),
analogous to the Kukkonen-Overhauser interaction be-
tween conduction electrons. This development would be
of interest for studying the influence of magnetic order on
phonon spectra.
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APPENDIX A: THE RIGID-ION MODEL

g«+q) «+q), I
&+q

I

'
I

V, «+q)
I

'
4aM

—g a, r;G'V, (a) (A 1)

A commonly used formalism describing pseudopoten-
tial models of phonon spectra in metals divides the
dynamical matrix D,z into two parts:

This factor arises from the self-energy of the pseudo-ions
immersed in the conduction-electron sea. VM(q) is the
bare-ion pseudopotential which, in our notation, is
4srP(q)/q . Observe that the dielectric function in Eq.
(A3) is the electron-test-charge dielectric function, Eq.
(22). In the theory presented in Sec. II only the "true"
e(q), i.e., the test-charge —test-charge dielectric function
appears. Nevertheless the two formulations are
equivalent.

Each term of Eq. (11) can be divided into two by writ-
ing

and 1 —1
e(q)

(A4)

g(&+q);(&+q),go(&+q)4'
—g'G; Gjgo(G) (A2)

The first term (on the right-hand side) describes bare
Coulomb interactions between the ions, and corresponds
to the contributions given in Eq. (Al). Now, the follow-
ing identity can be verified easily from Eqs. (1) and (22):

, I
VM(q)l'

go(q) —= —~'
e„(q) 1 —G+ (q)

(A3)

In Eq. (Al), V, (q):—4~Ze/q . Z is the valence of the
ion, so this term corresponds to the "bare" Coulomb in-
teraction between the ions, which can be treated as point
charges Ze. In Eq. (A2),

—1=-
E(q) e„(q) 1 —G+(q)

(A5)

It follows by inspection of Eq. (A3) that the second term
of (A4) corresponds to Eq. (A2).

Dielectric models of phonon spectra in metals depend
sensitively on the exchange (and correlation) corrections to
the various dielectric functions. Which e is the relevant
one depends on the theoretical approach.
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