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Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system
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We have applied the methods of nonequilibrium thermodynamics to study the transport of charge,
heat, and nonequilibrium magnetization in discrete and continuous systems. The linear dynamic
equations of thermoelectricity are extended to describe the interfacial thermoelectric effect, and to in-

clude the thermomagnetoelectric effect. A few ramifications of the equations are discussed, and they
are applied, in the Appendix, to a detailed analysis of the transport of charge and nonequilibrium
magnetization across a ferromagnetic-paramagnetic interface.

I. INTRODUCTION

The thermoelectric effect has served as a classic exam-
ple of the application of nonequilibrium thermodynamics
for more than a century. In the thermoelectric (TE) sys-
tem, the flows of charge and heat are driven by an electric
field and a gradient of temperature. Classically, the dy-
namic laws are derived for continuous systems, and the
TE effects are described in terms of bulk properties of
conductors, such as the absolute thermopower e, the
thermal conductivity ~, and the electrical conductivity o..
For example, if the ends of a conducting wire are held at
different temperatures, a difference of voltage between
them will develop. This is the Seebeck effect, and is a
consequence of the above-mentioned bulk properties of
the wire. Of course, one normally employs another wire,
with a different absolute thermopower (ideally with van-
ishing thermopower, such as a superconductor) in order
to measure this thermal voltage.

In the classical treatments of thermoelectric effects, the
junctions between the two conductors are considered to be
in complete thermal equilibrium; no temperature or po-
tential difference appears across the junctions. This need
not be the case, however, and the standard thermodynam-
ic arguments may be applied to develop relations among
the coefficients describing a number of transport effects
specific to the behavior of a junction between two conduc-
tors. Note that the Seebeck and Peltier effects, though
making frequent reference to the junctions between two
metals, are related to differences in bulk properties of the
two metals and are independent of the detailed nature of
the junctions. We are concerned here with thermoelectric
effects which are specific to the junction. Each conductor
is considered to be a discrete subsystem, each in equilibri-
um with itself but out of equilibrium with the other, and
the two subsystems are connected by a junction which
sustains a difference of voltage and temperature, and
through which charge and heat can flow.

Smith, Skocpol, and Tinkham' have discovered such a
junction TE effect. Refer to Fig. 1. Two metals are
separated by a tunnel (or other) junction, and the equilib-
rium electronic temperature on the left is greater than that
on the right. No voltage is applied across the junction. If
the probability of tunneling (or other transport process) is

N(E) N(E)

FICs. 1. Two free-electron metals are separated by a tunnel
{or other) junction, and T' & T".

independent of energy, the current I&» equals I» &, and
no net current flows. However, if the probability of trans-
port across the interface is a function of energy, there will
be a nonzero current across the interface for zero applied
voltage. Smith et al. demonstrated that a temperature
difference across a tunnel junction drives a current in a
closed circuit, or creates a voltage in an open circuit, and
that the current or voltage depends on the nature of the
junction.

Significant temperature differences may easily appear
across metal to metal contacts of apparently negligible
electrical resistance. The Wiedemann-Franz law implies
that a metal-metal junction with a 0.1 0 electrical resis-
tance will have an electronic thermal resistance of 10
K/W at a temperature of 4 K. Usually this thermal resis-
tance is shorted out by phonon thermal conductance.
However, for small contact areas, or for lower tempera-
tures, the phonon conductance will be limited by a Kapit-
za boundary resistance and may also be less than or of
order 10 K/W. With such a contact, the relatively mod-
est heat flow of one microwatt will give a one Kelvin tem-
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perature drop across the junction. The resultant ther-
moeleetrie voltage, of origin proposed by Smith et ah. ,
may be useful in probing nonequilibrium electron temper-
atures; it may also be a troublesome source of spurious
effects. One purpose of this paper is to genera1ize the usu-
al arguments developed for thermoelectric effects to de-
scribe these junction effects.

A second purpose is to include a treatment of magneti-
zation transport; to generalize the discussion to include
thermomagnetoelectric (TME) effects, both in the bulk
and at junctions. The motivation for the development
was the experiment of Ref. 3, which demonstrated that
there can be coupling of charge and magnetization trans-
port at a junction, in analogy with the coupling of heat
and charge transport which is the basis of the TE effects.

Torrey pioneered the study of the diffusion of non-
equilibrium magnetization under the influenee of an ap-
plied magnetic field gradient, using the particular system
of a tluid of nuclear spins (of spin —,'). He showed that a
current of nonequilibriurn magnetization is given by

JM = DV(M —M—o),
where D is the coefficient of self-diffusion, M is the mag-
netization (magnetic moment per unit volume), Mo X,H——
is the equilibrium magnetization, which is proportional to
the applied field H, and P, is the volume susceptibility.
These ideas pertained to the flow of nonequilibrium mag-
netization in a continuous material. Flesner, Fredkin,
and Schultz extended this idea to study the transport of
electronic nonequilibriurn magnetization in a birnetal sys-
tem. They pointed out that there is both the current of
magnetization driven by a gradient of magnetization in a
bulk metal, as discussed by Torrey, and in addition there
is a flow of magnetization across a metal-metal interface
in the presence of nonequilibriurn magnetization on either
side of the interface.

Aronov was the first to propose a coupling between
charge and spin. He considered a discrete system in
which a ferromagnet is in interfacial contact with either a
paramagnet or a semiconductor, and predicted that asso-
ciated with an electric current driven through the fer-
romagnet into the paramagnet would be a current of mag-
netization. In the simplest, ideal case, in which a single-
spin subband in the ferromagnet carries all the electric
current, the magnetic current is just the product of the
magnetic moment of each electron, the Bohr magneton P,
and the number of carriers crossing the interface in unit
time. The authors, in an experiment outlined below,
have demonstrated this effect and its converse: non-
equilibrium magnetization in a paramagnet that is in in-
terfacial contact with a ferromagnet will induce a voltage
across the interface. This, in a way analogous to that of
the TE effect of Smith et al. , is a junction effect, where
the current or voltage depend on the nature of the inter-
face, as well as the properties of the materials.

Thermodynamics can be used to study both discrete
and continuous systems, and we will find it useful to con-
sider both cases. Conventionally, most processes of in-

terest occur in continuous systems. Examples, which will

be derived below, are the flow of heat Q, charge q, or
magnetization M in a bar that has a continuous gradient

of temperature T, voltage V, or magnetization potential
(M /7, H—) (formally introduced below), respectively.
The analogous processes in a discrete system are the flow
of heat, charge or nonequilibrium magnetic moment from
one homogeneous subsystem to another through an inter-
face which supports a difference of temperature, voltage,
or (JR/7, H)—, respectively. Here Juris , the magnetic mo-
ment of a subsystem, and g, is the sample susceptibility.

Using the framework of thermodynamics, this paper
will investigate the TME system, where charge, nonequili-
brium magnetization, and heat simultaneously flow, for
both continuous (bulk) and discrete (junction) systems.
We will not concern ourselves with the myriad of TE
effect that are particular to superconduetors; rather we
will confine our attention to normal metals. Also, the
presence of large, externally applied magnetic fields affects
TE transport in ways known as thermomagnetic, or
thermo-galvano-magnetic effects. These effects are well
known and well studied, and arise from the Lorentz
force of the app)ied field on the charge flow. These are
not to be confused with the TME effects of interest to us,
which arise from the flow of spins, driven by a magnetic
field, in a way analogous to the flow of charge driven by a
voltage. On a microscopic scale, our concern is with mag-
netization currents driven by terms such as PH in analogy
with electric currents driven by e V.

In summary, our second goal is to develop the dynami-
cal laws that describe the thermornagnetoelectric
phenomenon associated with the the simultaneous flow of
charge, heat, and nonequilibrium magnetization in both a
continuous system and a discrete system. We will calcu-
late the rate of entropy production in the system, and use
a thermodynamic relationship to identify the relevant gen-
eralized forces. We will then use linear response formal-
ism to write the dynamical laws, and employ an Onsager
relationship to limit the number of independent
coefficients. We will apply this derivation, in the Appen-
dix, to an analysis of the flow of magnetization in a
ferromagnetic-paramagnetic interfacial structure.

II. DISCRETE SYSTEMS

The techniques of nonequilibrium thermodynamics are
well established, ' '" and we review them here for applica-
tion, first, to the TE system. Consider an isolated system
composed of two subsystems I and II, each in equilibrium
with itself with entropy S' and S", and separated by a
semipermeable partition (refer to Fig. 2). Extensive vari-
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FICz. 2. An isolated thermodynamic system, composed of
subsystems I and II separated by a porous partition.
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able X„will flow through the partition until the total en-

tropy, S =S +S, is maximized. The change in entro-
py, at constant internal energy U, that results from the
flow of dX„ is

dS'+dS" =
I IIas dx' asdX„+ dX„" .

However, X„ is an extensive parameter, and the total
amount in the system, X„=X„'+X„",is conserved. Then
dX„' = —dX„", and

dS =(F„" F„')d—X„—:F„dX„. (3)

The difference, across the interface, of the intensive vari-
able F„'=as'/aX„' acts as a "pressure" that drives the
flow of parameter X„, and EF„=F„is known as the gen-
eralized force or affinity The. response to the applied
force is characterized by the rate of change of the parame-
ter X„,which is the flux J„=dX„/dt. Here, positive flow
is defined to be from subsystem I to II, the direction of
flow in response to a positive affinity F„=F„" F„' (J&—0
for ~=X"—X'&0; this sign convention will be con-
venient for the transformation to the continuum case,
with the accompanying notation change b, ~V ). Of
course, more than one extensive quantity may flow, and
we wish to extend the ideas to include magnetization flow.
Note that in general, the magnetization M (or equivalently
the magnetic moment of the sample Af) is not conserved.
Rather, it may be destroyed by spin-relaxation processes
at a rate 1/T& ~ For this reason, we will see that generali-
zation to the magnetic problem is not trivial.

When the affinity vanishes, the flux vanishes and the
system is in equilibrium. The identification of the
affinities in a particular system is frequently rendered
more convenient by considering the rate of production of
entropy. Differentiating the total entropy with respect to
time,

A. Junction thermoelectric e6ects

Let us first solve for the thermoelectric system, in
which charge and heat are permitted to flow through a
semipermeable partition from one subsystem to another.
For example, each subsystem could be a metal, and the
partition a finite resistance interface, such as a tunnel
junction, or a thin oxide permeated by pinhole leaks. We
suppose that the two subsystems are each internally in
equilibrium, and that all of the irreversibility of the trans-
port is confined to the interface Ea. ch subsystem can
deliver or receive thermodynamic quantities reversible to
or from this interface. We place the boundaries between
the subsystems and the interface, therefore, a few mean
free paths into the bulk on either side of the physical junc-
tion, since the irreversibility is associated with thermaliza-
tion of the excitation distribution within this region. Let
the volume of the subsystems be fixed, and let dQ', dW',
dq', and dS' be the heat added to, the work done by, the
charge added to, and the change of entropy of the ith sub-
system.

Consider a steady-state process in which heat dg' and
charge dq flow reversibly into the interface region at tem-
perature T' and voltage V' from region I, in which there
is irreversible heat flow and joule heating within the inter-
face region, and in which heat dQ and charge dq flow
reversibly into region II at temperature T' and voltage
V". We suppose that T'& T". The change in entropy of
the full system is

dg II dg I

TII TI

In steady state, the entropy of the interface cannot
change, and the changes in subsystems I and II can be
computed directly by the reversible heat flows to and
from the interface. Applying the first law to the interface
gives, in the steady state,

gives

dS as dx„
dt

=& ax„dt (4)
d UI~«&~«dg I dg II+ ( VI V»)dq 0

from which we derive the result

dg II dg I + ( VI VII )dq

(9)

(10)

J„=gL „F +—QLI „F,F1

m Im

(6)

The functions L „are called kinetic coefficients, and are
determined empirically. If the system is close to equilibri-
um, quadratic and higher terms can be neglected and a
linear relationship is valid,

J„=gL „F

S= QF„J„.
n

We will use this approach to identify relevant affinities, '

and we will also find this approach to be the most useful
when we later move from discrete to continuous systems.

Each flux J„can, in general, be driven by each of the
generalized forces Fl. In equilibrium, each flux vanishes
as the affinities vanish, so that one can expand J„ in
powers of the affinities, with no constant term,

Treating the differences dg" —dQ', V' —V", and
T' —T" as small quantities, recalling ~—=X"—X', and
keeping only terms first order in the small quantities, the
substitution of Eq. (10) into (9) gives

ds=dg' — + q (v' —v")
TII TI TI

1=dgb
T

1—dq —tV+second-order terms .
T

Considering the changes to have taken place in a time dt,
and recalling the definition of the fluxes to be positive for
a flow from I to II yields the following expression for the
rate of entropy production in the interface due to irrever-
sible processes:

I

(12)
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where the I's refers to the rate of transport through the in-
terface.

Comparison of Eqs. (12) and (5), after having adopted
the arbitrary sign convention of Morse or Callen that
Ji ———Iq and J2 ——I&, gives the equations analogous to
Eq. (7) to be

which, for small temperature differences dT across the in-
terface, can be written as

2

I =G kgTdT .
3e

This result allows the identification

—Iq —— 1AV+L ']26
T

(13)

2 2

L', 2
= — k~GT'= — [lnP(E)]~ k~GT' .

3e dE 3e

L2 1
Ig —— AV+L 226T T

I =—J P (E)[f'(E) —f"(E)]dE,
e

(15)

where E is measured from the Fermi level, e = —
~

e
~

is
the electron charge (a convention chosen throughout this
paper), and f' is the Fermi function for the ith subsystem
at temperature T'. Here, P(E) is a relative measure of the
contributions of electrons of energy E to the tunneling
current. It is a weak function of energy, and can be ex-
panded as

The relative magnitudes of the kinetic coefficients L;J in
Eq. (13) may be estimated in terms of simple models.
When there is no temperature difference across the inter-
face, the ratio of current to voltage is defined as the con-
ductance G. We thus make the trivial identification
L'ii ——GT. In a simple one-dimensional Drude model, in
which a junction of area 2 is represented by a tunneling
barrier with transmission probability t «1, the conduc-
tance is '

G e 2

N(E )v t.
2

The cross coefficient L'&2 may be identified with param-
eters discussed by Smith et al. , and we follow them' in
calculating the voltage across an interface for a small tem-
perature difference dT. As noted in the introduction„ this
coefficient is related to the energy dependence of the rela-
tive contributions of electrons of different energy to the
tunneling current. The magnitude is conveniently es-
timated by writing the tunneling current in the form

For a tunnel barrier of height P (measured from E~)
and thickness s, the transmission probability as a function
of energy E (measured from EF ) is of the form
P(E) ~ exp( ~s&P—E). T—hen we find c, =~s/2&/
=3.1 eV ' for the parameters of the junctions of Smith
et a/. For a uniformly insulating barrier with pinhole
leaks, the current across the interface, and thus P (E)
(now measure E from the bottom of the band), is propor-
tional to the component of velocity normal to the inter-
face. Then the order of magnitude of c& will be given by

c~ —— [In(v„«~)]zr ———
&

[ln(E)]+~
d 1 d

1 =O(0. 1 eV ') .
2EF

(21)

Using c, =0 (1 eV '), and asking for the open circuit
voltage that would be associated with an electron temper-
ature difference across the interface gives a value of 10
volts/kelvin at a temperature of 4 K. This is a small
coefficient, but it is measurable, as demonstrated in Ref. 1

for the case of a superconducting film, and as recently re-
ported in Ref. 16 for a point contact geometry.

Finally, to estimate L22, one must find the electronic
contribution to the heat transported across the interface.
The solution is in the same spirit as the standard
Wiedemann-Franz calculation, and is readily conceptual-
ized with the aid of Fig. 1. A particle of energy E above
E& transports this much energy from I to II when it tun-
nels across the interface. Thus, the heat current from par-
ticles tunneling left to right is

P(E)=1+ciE+higher-order terms . (16) Ig, „—— f" EP(E)[f'(E)[1—f"(E)])dE . (22)—oo

In the second term, the constant c& is a parameter charac-
teristic of the interface:

c, —: [lnP (E)]E (17)

G k 2 [( T I )2 ( T II )2]
6e

If f' and f" differ only because of an applied voltage
across the interface, then f'(E) f' (E)= e V(df IdE), an—d
the integral gives I =GV. On the other hand, if there is
no applied voltage, but if the electron temperatures on the
two sides of the interface are different, there is a current
which may be evaluated by noting that the first term in-
tegrates to zero by symmetry, and by using the Sommer-
feld expansion' for the second term to give

We write a similar term for particles tunneling from II to
I (leaving a hole which is filled at cost of energy E), —
sum the two terms, use Eq. (16) for P(E) (keeping only
the first term this time), and use the Sommerfeld expan-
sion again to find

Ig ——— k~ TdTG ~
e2 3

(23)

for small temperature differences dT across the interface.
Note that in Fig. 1 the temperature is greater on the left
(T'& T"), and recall our previously defined sign conven-
tions.

Defining ~'(T) to be the phonon contribution to the
conductance of the junction, L 22 is given by
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dA, =dA, ;+deaf, . (28)

Nonequilibrium magnetization is only conserved when
T, m, dW, =O.

We wish to consider the system in the presence of an
applied field H, and adopt the convention' that the mag-
netic field energy represented by the bilinear term M H is
considered to be outside of the system under considera-
tion. With this convention, the magnetic work done by
the system under both a change in H and an internally in-
duced change in AL is JRdH. Adopting this convention,

hn =M/P. The net magnetic moment A, is an extensive
parameter, and is the proper thermodynamic variable for
the discrete case. When we consider a continuous system
we will use the magnetization M, an intensive variable.

The nonequilibrium magnetization described above can
be detected as a voltage Vd by a second ferromagnetic film
(called a detector) that is in interfacial contact with the
paramagnet and located within 5, of the injector. The ex-

pression for the voltage Vd is derived for a specific model
in a previous paper, and for the general case below.

This experiment demonstrated a new concept which is
analogous to the junction thermoelectric effect. We will
call it the magnetoelectric effect: the transport of charge
and of nonequilibrium magnetization across a fer-
romagnetic-paramagnetic metal interface are each driven
by differences both of voltage and of magnetization poten-
tial across the interface. This section will examine this
concept by a process which requires embedding the
magneto-electric effect in the more general formalism
developed above.

Let us reconsider our thermodynamic system, assumed
to have spin-up —spin-down symmetry, in which charge
and heat flow in a steady state from one homogeneous
subsystem to another. Each charge carries a magnetic
moment P, but in equilibrium the magnetic moments are
randomly oriented (there is an equal number of up and
down moments). We wish to consider now a system in
which the spin-up —spin-down symmetry is broken. In a
system comprised of a ferromagnetic metal in interfacial
contact with a paramagnetic metal, some fraction q of the
charges which compose the current I~ crossing the inter-
face are spin polarized (there is a nonequal number of up
and down spins). Thus, in addition to the fiow of charge
and heat there is also a flow of magnetic moment I~. For
the discrete (one-dimensional) system, IM is a vector that
points in the direction of the magnetization. We will let
the axis of polarization be fixed along some arbitrary
direction, and treat IM as a scalar.

In contrast to the development of the TE effect, in
which the charge q is conserved, for the TME problem
the magnetic moment JR is generally not conserved, but
can be destroyed by, for example, spin relaxation events
characterized by a time T&. Similarly, it can be created
by, for example, scattering events (characterized by a time
T&I) in a ferromagnet that scatter an unpolarized electron
into a polarized band. The change in magnetic moment,
dent, of a system may refer either to such a Tj process,
which we will refer to as internal processes dA, ;, or to the
transfer of magnetization into the system from the out-
side, an external transfer dJR, . Then we can write

the term in the internal energy involving the external field
is the "spectroscopic energy"

UH —— H—g p; = HA— , .

l

(29)

where p; are the individual atomic or electronic moments
of the system.

In a ferromagnet there exists a large magnetic moment
JH o (later, magnetization Mo), but it is in equilibrium, and
there is an associated effective internal field which can be
quite large. We wish to expand several thermodynamic
functions in deviations A, of the magnetic moment (later,
deviations M of the magnetization) from a reference state.
We take the reference state to be one of zero applied field
H. For a paramagnetic metal A, is just the magnetic mo-
ment. For a ferromagnetic metal, there is a large magnet-
ic moment Ato in zero field, and we define

AL=Af —A, o . (30)

To further simplify the discussion, our ferromagnets will
always be considered to be ideal, thin film single domains
where the equilibrium magnetization is well defined, and
we will take H to be parallel to the plane of the film so
that we can ignore demagnetizing fields. Similarly, in
paramagnetic materials we will assume that demagnetiz-
ing fields can be ignored.

We will work at fixed volume, let dg', dW', dq', and
dS' be the heat added to, the work done by, the charge
added to, and the change of entropy in the ith subsystem,
and let dA, ' be the change in magnetic moment. In order
to identify the generalized force to be coupled to the mag-
netization current, we need to develop an expression for
the rate of entropy production in the presence of a magne-
tization current for comparison with Eq. (5). From the
first law we know that

dU=dg —dW . (31)

dU =dg JRdH —H "dW, + Vdq, — (32)

which gives the change of free energy F = U —TS to be

dF =dg —TdS SdT WdH —H*d&, + V——dq . (33)

Here, d 8 is the sum of two contributions, d 8'
=d8'I+d8'2, where dWI is the electric work and d8'2
is the magnetic work. As in the usual development of the
thermoelectric effects, we have d8'& ———Vdq. For the
magnetic work we must distinguish between changes in A,
due to internal relaxation processes dA, ;, for which there
is no analog in the electrical problem, and changes due to
transfer of magnetization, dJR, into or out of the system.
With our definition of the internal energy, i.e., it is not to
include the contribution to the magnetic field energy
which is proportional to A,H, there is no magnetic work
associated with change in A, due to internal processes, but
there is a term A,dH associated with a change in the ap-
plied field. For transfer of magnetic moment deaf into the
system there is a term, analogous to the electrical Vdq,
which we shall denote as —H*d&,„where —H* is a

magnetization potential which we must determine. The
first law may then be written as
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This is the change in free energy associated with an arbi-
trary process in which any of the parameters can vary. If
the process is reversible, then dg =TdS and we have

dF„„„;b),———SdT —AfdH —H'dM, + Vdq . (34)

We can identify the magnetization potential —H as
follows. For a small deviation of magnetic moment from
equilibrium, we can Taylor expand the free energy in
powers of the magnetic moment:

F(T,H, Af, ,q, V) =Fo(T,q, V,JRo)+a JK+ JR—+
2

(3&)

where a and b may be functions of H and T. Recall that
in a ferromagnet the expansion is in powers of A,
=JM —JRp i.e., in powers of a small deviation A, from the
equilibrium magnetic moment in zero applied field. At
equilibrium, for fixed T, H, q, and V, the free energy F is
a minimum with respect to a variation of Af:

'6F =a+be„=O,
R4t

(36)

which determines that At,~= —a lb. Equation (29) re-
quires that a include a term linear in —H, a =a' —H, and
the definition Af,

&
——0 at H=O demands that a'=0. Fi-

nally, b must be given by b =1/P„ the isothermal sample
susceptibility (the ratio of net sample moment to applied
field), and we conclude that

(40)

—Tds = —H dP, ;. (41)

The change of entropy is

Recall that other authors ' ' have previously introduced
H * as a driving term for currents of magnetization.
We are here extending this idea to make a formal iden-
tification as a thermodynamic variable.

We have chosen this particular sign convention so that
H* has the same sign as H in the limit of vanishing AL.
The magnetization potential H* has units of magnetic
field. It is not to be confused with magnetic potential P,
which describes the response of a test monopole, nor vec-
tor potential A. Because it describes the response of
magnetization, we have called it the magnetization poten-
tial. In the formalism of statistical mechanics, it would
enter as a term in the magneto-electro-chemical potential.
Both of these are equally descriptive titles.

Having made the identification of H, we may examine
the result of a finite T& in which an internal, irreversible
change of magnetic moment dA. ; may occur. Compar-
ison of Eqs. (33) and (38) for fixed T, H, V, and q, and
with dg =dM, =0 (no magnetization transport, and
thermal isolation from the external world) gives

F(T,K,At, q, V) =Fo(T,q, V, Mo) HJN, +-
2X.

(37) dS= —— —H dJM; .
T X

(42)

is the proper form of the free energy at and near equilibri-
um. It follows that, under an arbitrary change in T,A, ,
and H,

This represents the change in entropy associated with the
approach of the magnetization to equilibrium and, under
the assumption dM; /dt = —(Al, XH)/T&, the —entropy
production dS/dt is clearly positive, as it must be for an
irreversible relaxation process.

Next, as before, consider two subsystems separated by
an interfacial region which acts as a partition. Each sub-
system can deliver or receive thermodynamic quantities
reversibly to or from the interface. Irreversible processes
are confined to be within the interface. That is to say,
each subsystem is in equilibrium with itself, and irreversi-
bility associated with the transport of magnetization is
confined to within the interface. Consider a process in
which, in addition to a How of heat and of charge, there is
a transfer of magnetic moment de, reversibly from I to
the interface, irreversibly within the interface, and reversi-
bly from the interface to II. In this development we
neglect the possibility of spin relaxation within the inter-
face by taking —dA, ,' =deal,"=dJR, . Generalization of
the argument to include interfacial relaxation is straight-
forward but cumbersome, and it seems to play no impor-
tant role in many of the bilayer spin-resonant experi-
ments. The irreversible magnetization Aow within the in-
terface is associated with a difference AH*, just as irrever-
sible charge fiow (joule heating) is associated with an in-
terfacial voltage drop AV. We find that the change of en-
tropy in the universe, generated by the irreversible trans-
port of dg, dA, „and dq, is

dF = (T,q, VJNo)dT JR dH + — HdA(, . (3—8)
dFo

dT X.

We wish to deduce the H' appearing in Eq. (34) by com-
parison of that equation with Eq. (38). The validity of the
comparison requires that the changes in Eq. (38) be rever-
sible. Since we are interested in situations in which there
may be magnetic moment transport associated with the
presence of nonequilibrium magnetization, changes in
magnetic moment from T& relaxation processes will be ir-
reversible and must be excluded. We can use the analogy
with thermoelectric phenomena to study the magnetiza-
tion transport if we briefly impose a conservation of mag-
netic moment restriction by requiring an infinite T& relax-
ation time; i.e., we require de;=0 and set dA, =dA,
Then Eq. (38), under the restriction of reversibility, be-
comes

rever

(39)

Finally, for a reversible change of magnetic moment car-
ried out under the constraints of fixed T and H, compar-
ison of Eqs. (39) and (33) permits the identification

dFo
(T,q, V,AIo)dT+AI dH + HdAI, . —

+S
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dS„„;„=b, —dg ——b, ( H—*)ddt, ——b, Vdq,
I 1, — 1

(43)
p2

L33 ——g GT
2

(47)

where T is the temperature of the interface. Again, the ir-
reversible entropy generation within the interface has been
expressed in terms of the reversible transfers at the boun-
daries of I and II, and the amenities. It follows that the
rate of entropy production, for the discrete system, is

S = b, —I — b( H—'—)I — bV I—1, 1
univ T Q T M T q

(44)

Lz& 1 L236 V +L 2qb, —+ 6( H*), —(45)

1 L33
IM —— —AV+L'3~6 —+ 6( —H') .

T T T

This generalization of Eqs. (13) involves three new, in-
dependent coeKcients. These are phenomenological
coefticients to be determined empirically. However, it is
of interest to estimate their magnitudes. Aronov's postu-
late, Eq. (27), suggests writing

L3i ——L i3 ——g —GT,
e

(46)

where q is the phenomenological parameter previously
discussed whose modulus is less than one, and e is the
electron charge.

In order to estimate the magnitude of L33 a simple
free-electron model calculation may be performed, in
analogy to the calculation of the conductance of a tunnel
junction. We find

where the I's refer to the rate of transfer of quantities
through the interface.

As before, from Eq. (44) we can identify the generalized
forces by comparison with Eq. (5), and write the linear ex-
pansion' '"

1
L'

I = b—, V+L'»3, —+ b( H*), —
T T

where g is a phenomenological parameter (typically of
magnitude unity) introduced in the same spirit that g was
introduced. This result is va1id for a limited class of junc-
tion models, but it should give the proper magnitude of
the magnetic conductance of a junction if the electrical
conductance is known.

Finally, to find L23 ——L32, we make a postulate similar
to Aronov's. Assume that, when AV=bH*=0, some
fraction g' of the electrons in the thermoelectric current
will be spin polarized. Then we have L23 rI'(P—/—e)L I2,
or

77 C 1L 23 ———g'p k~ GT
2 (48)

Using these estimates for the transport coeScients, we
can write the linear, dynamic transport equations. Let
1/e=—m c~/3, so that e has units of energy. We write Eq.
(24) as

kBT3G
L22 ——a

2

where a =m. /3 for a Sommerfeld model. Here we have
neglected the phonon contribution to thermal conduction,
which is valid for small area contacts at low temperatures.
Then electronic transport across an interface is given by
the following equations:

The parameter q' is not necessarily the same as q, though
it is likely to be of the same order of magnitude. In a
simple model, the majority and minority spin subbands
are treated independently. Each has its own conductance
6 and energy-dependent transport parameter c&. Then
we expect g' to be given by

1,maj maj C 1,min min

c i maj 6maj +c 1,min Gm j

and q'= g only for the case

=d dc, ,&

—— ln[P „(E)]= ln[P;„(E)]=c&

kBT

I
k TB

Ig ———G
em.

IM

akB T
2

2

pT ks
c e

'2
p kbT

5( H')— (50)

Let us analyze some of the ramifications of these equa-
tions. We can now offer a very simple explanation of the
spin injection experiment, which was presented in Ref. 3,
and briefly described at the beginning of this section.

Suppose there is no temperature difference across a
ferromagnetic-paramagnetic metal interface. Equation
(50) implies that, even when there is no diff'erence of mag-
netization potential across the junction, we can drive a
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Vf —V~ = — (Hf H~* )—,
e

(51)

where Vf —Vz is the voltage measured by the external
voltmeter, connected to both metals far from the junction.
If the relaxation processes in the ferromagnet are
sufficiently rapid (see the Appendix), then the ferromag-
netic magnetization is essentially in equilibrium,
—Hf ——0, and we derive the detector voltage Vd to be

Vd
—= Vf —Vp ——r)P

e
(52)

The generalization of the junction thermoelectric effects
to magnetic systems suggests other possible experiments
as well. For example, Eq. (50) suggests that a tempera-
ture drop across an interface will drive a magnetization
current determined by the coeScient L 3z through the in-
terface. To our knowledge, such a thermomagnetic effect
has not been experimentally observed. A simple model is
easily described with the aid of Fig. 4. On the left side of
the junction, a ferromagnet whose spin subbands are in
substantial imbalance is at a higher temperature than a
paramagnet on the right side. If the tunneling probability
is energy dependent, as in the Smith et al. model, then a
net current will result. One expects a larger contribution
to this current from one of the spin subbands than the
other, which is the same (in the absence of interfacial re-
laxation) as an associated current of magnetization, and
which in principle could be detected by a spin detector

magnetization current (i.e. , a current of magnetic dipoles)
by biasing the junction with a voltage difference AV. This
describes how the injector in Fig. 3 functions. The inject-
ed magnetic current creates a nonequilibrium magnetiza-
tion (a magnetic dipole moment) in the sample within a
spin depth of the injector. The operation of the detector
is also described by Eq. (50). The ferromagnetic film and
bulk paramagnetic sample are externally connected by a
high-impedance voltmeter, so that Jq ——0. To achieve zero
electric current and to thwart the tendency of the non-
equilibrium magnetization to drive an electric current via
the cross-coefticient L z&, a voltage must develop across the
junction:

III. CQNTINUQUS SYSTEMS

The dynamical laws for a continuous system are
developed in the same way as in the preceding section,
with a few conceptual changes. First, let the extensive
quantities of interest X„become intensive by dividing
each by the volume of the ith subsystem. Second, model
the continuous system by a sequence of partitions of the
sort described in conjunction with Fig. 2, in which the ir-
reversible processes occur; the interfaces are interleaved
between thin layers which are taken to be in local internal
equilibrium with well-defined thermodynamic variables.
The derivation of the equations of thermoelectricity is
standard, and the reader can find details in standard texts
such as Refs. 10 and 11.

For the TME system, the calculation of the rate of en-
tropy production associated with the flow of heat, charge,
and magnetization proceeds identically to the argument
leading up to Eq. (44). One should everywhere replace
"magnetic moment" JR with "magnetization" M. We
find

(53)

where J~ is the flux of magnetic moments per unit area
per sec, Jq is the flux of charge per unit area per sec, and
J& is the fiux of heat per unit area per sec. From Eq. (53)
we can identify the generalized forces and write a linear
expansion for the fluxes —Jq, —JM, and J&,

—J = VV+L)2V —+ V( H*), —L» 1

T T T

L2& 1 L23
Jg —— V'V+L22V —+ V( H*), —(54)

L3 1 L33—JM —— V'V+L32V —+ V( H*) . —
T T T

film. Furthermore, the converse effect should also be pos-
sible: a current of magnetization across the interface
should, under suitable boundary conditions, create a tem-
perature difference.

ik E ik E

ygyyxyyggyyx/+

L)) ——To, L)2 ——L2I ———T oe,2

L22=T CTE' +T K
(55)

Note that if L3~ ——O=L;3, the familiar dynamic equa-
tions of the thermoelectric effect result. Once again,
Onsager's symmetry theorem tells us that L;~=L~;, so
that there are six independent coeKcients. We can im-
mediately write down three of them from the conventional
thermoelectric equations:

N(E)

FICx. 4. The thermornagnetic effect. The conductance be-
tween spin down subbands is less than the spin up subband con-
ductance (depicted by arrows).

where o. is the electrical conductivity of the material, e its
thermopower, and v the electronic thermal conductivity.
The term in o.e appears because ~ is defined under condi-
tions of zero electric current flow while the L22 defines the
heat flow under conditions of zero voltage gradient. We
will neglect it as small compared to the term linear in ~.
Also note that we have neglected the phonon contribution
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to thermal conduction, ' this is valid for a bulk material as
long as the electrons have reasonable mobility.

The new coefficients involving the magnetization are to
be experimentally measured. However, as in the case of
the junction effects, their expected magnitudes can be es-
timated from a simple free electron model. In a homo-
geneous material, let p be the degree of spin polarization
of the electric current. Then, by Aronov's postulate, there
is an associated current of nonequilibrium magnetization
JM given by

P
e

(&6)

For a ferromagnetic metal, p might be expected to be of
order one, and will be determined by things such as the
densities of states at EF, the Fermi velocities, and relaxa-
tion times for each spin subband. For a Pauli metal p
would be effectively zero and the coupling between charge
and magnetization currents would be negligible.

From the work of Torrey, Flesner et al. , and
Monod, ' we know that a current of magnetization will be
driven by a gradient of magnetization, and the propor-
tionality constant is the coefficient of diffusion of the mo-

Most generally JM is a second-rank tensor which specifies
both the direction of flow and the orientation of the mag-
netization. We shall impose the simplifying constraint
that the nonequilibrium magnetization is measured along
an arbitrary direction, for example the direction of equi-
librium magnetization Mo in the ferromagnetic injector or
detector. Then we can treat JM as a vector. At fixed T
and H*, we deduce that

ppcr T
31 e

ments: JM ———DVM. It follows that L33 —T+D, which
can be rewritten, in a simple free-electron model using an
Einstein relation, in terms of the conductivity cr as

p2
L33 ——( oT,

e2
(58)

which is analogous to Eq. (47). Here, g is a phenomeno-
logical parameter analogous to g. With the assumption
g= I, Eq. (58) would give a plausible estimate for the ki-
netic coefficient in a nearly free electron, nonmagnetic
metal, and would likely overestimate the coefficient in a
ferromagnetic metal in which the spin polarization is
dominantly in the d band, but where the conductivity is
dominated by s band electrons.

Finally, consider coefficients L23 ——L32. If we follow
Aronov's logic and assume that a fraction p' of the ther-
moelectric current is polarized, we find that an estimate
for L23 is given by

L23 ——L32 —— O. T eP 2

e

As in the junction case, p is likely to be of the same order
of magnitude as p, but generally p&p'. In the spirit of
the free-electron model we can write the thermopower e
as a "k&T/eEF, where a"=~ /2. Finally, with our as-
sumption that electron thermal transport dominates over
the phonon contribution, we use the Wiedemann-Franz
law to estimate the thermal conductivity ~ as a'kz/e To.,
with a'=m /3. Using these estimates for the magnitudes
of the transport coefficients, and omitting terms higher
than first order in the off-diagonal components, the linear
dynamical laws for the flow of heat, charge, and none-
quilibrium magnetization in a continuous medium are, to
rough order of magnitude

JM

a "g2 T2

eEF

p2

a "k2T

eEF

a'kg T

e
'2

, pT ka
p EF e

p

2

p k~T
p EF e

e2

VV
VT

V( H*)— (60)

One may ask whether these terms involving the trans-
port of magnetization induced by gradients in a magneti-
zation potential, electric field, or temperature gradient
have been observed, or are of a magnitude to be observ-
able. The diagonal term I33 as already noted, was pro-
posed by Torrey in the context of nuclear magnetic reso-
nance in 1956. It is an essential term in the interpretation
of transmission electron spin resonance and in the spin-
injection experiment of Ref. 3. In the context of conduc-
tion spin transport the magnitude has been confirmed to
be that expected with g= l. In systems containing local-
ized magnetic moments, however, there is reduction of the
coefficient from that predicted by the free electron theory

by the factor 7, /(X, +X~), where X, and X~ are the con-
tributions of the conduction electrons and the local mo-
ments, respectively, to the total susceptibility. Similarly,
in strongly exchange enhanced systems there should be a
reduction of the magnetization transport relative to charge
transport by a factor of the exchange enhancement of the
susceptibility.

The off-diagonal components have not, to our
knowledge, been observed. The coefficient L&3 could, in
principle, be contributing to the injection signal in the
spin-injection experiment. To argue this in detail requires
combining the implications of both the bulk and the inter-
face TME effects for the spin-injection experiment, and
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this is done in the Appendix. Suppose that the interfacial
charge-spin coupling is zero, but that there is a large cou-
pling p in the ferromagnet. There is then a large J~ in
the ferromagnet, but no JM across the interface associated
with the Jq flowing through the interface. As a conse-
quence, a large nonequilibrium M must develop in the fer-
romagnet at the interface in order to drive a back
diffusion current to make the total J~ at the interface
small compared with the J~ in the bulk ferromagnet. But
then there can be a magnetization transport across the in-
terface due to the diagona1 L33 term in the interfacial cou-
pling. To decide unambiguously the relative contribution
of the two mechanisms requires rather complete charac-
terization of the interface and the magnetization transport
within the ferromagnet. The problem is discussed in
more detail in the Appendix.

The thermomagnetic coupling L23 is of suScient mag-
nitude to give rise to effects of observable magnitude and
predicts, for example, that an open circuit ferromagnetic
wire will develop an extra magnetic moment in proportion
to a temperature difference between its ends. However,
there would arise ambiguities of interpretation similar to
those discussed in the preceding paragraph in disentan-
gling the bulk and interfacial contributions to any specific
experiment.

Finally, we note in passing that an analytic tool for the
thermoelectric system is the calculation of the current of
entropy in a continuous medium (wire) that carries
current Jq along a temperature gradient AT. From Eqs.
(54) we can algebraically eliminate the variable V V, and
write J(2[V(1/T), J~]. The current of entropy is

Js ——J&/T, and is found to be

IV. CONCLUSIONS

In order to better understand the spin-injection experi-
ment of Ref. 3, we have applied the methods of nonequi-
librium thermodynamics to study transport processes at
interfaces. After a brief review of formalism, we first ex-
amined effects, associated with the transport of charge
and heat, specific to junctions. We then generalized to in-
clude the transport of nonequilibrium magnetization. Fi-
nally, we extended the study of charge, heat and magneti-
zation flow to a continuous system. In each case, our
method was to calculate the rate of entropy production,
identify the generalized forces, and use linear response
theory to write the thermodynamic equations of motion.
We briefly discussed some of the ramifications of these
equations, and, in the Appendix, we apply them to a de-
tailed analysis of the spin-injection experiment.

We have noted that there may be a significant departure
from thermodynamic equilibrium across a small area con-
tact of moderately high conductance; this junction non-
equilibrium can lead to unexpected sources of heat gen-
eration and of thermally induced voltages which are dis-
tinct from the usual thermoelectric effects. If one of the
two metals is ferromagnetic there is, in addition, the pos-
sibility of electrically and thermally induced magnetiza-
tion currents and of magnetically induced thermal and
electrical currents at the junction. In a similar fashion,
electric and thermal potential gradients in a bulk fer-
romagnetic metal will drive a magnetization current.
Rough magnitudes of the various possible effects are es-
timated.
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(62)

Note that this reduces to the form Eq. (61) for p=O, as it
must. If we take p=p', we discover that the entropy
transported per electron (in a metal for which P~O) is re
duced from what it would be for p=0 if p&0, i.e., if the
polarized current is in the majority band, and is increased
if p&0, i.e., if the polarized current is in the minority
band. Knowing JM(x) (which is calculated in the Appen-
dix), Js(x), and H'(x), one can calculate —the rate of en-
tropy production, and the associated heating (or cooling),
in various regions of the ferromagnetic-paramagnetic sys-
tem.

APPENDIX

As a specific application of the formalism developed in
the paper, we use Eqs. (50) and (60) to model the iso-
thermal flow of magnetization from the ferromagnet into
the paramagnet at the injector junction in the experiment
described briefly in the main body of the text. The one
dimensional model used is depicted in Fig. 5. For simpli-
city we assume the area of the interface to be unity. An
electric current Jq is imposed and we ask for the resultant
magnetization current JM injected from the ferromagnet
into the paramagnet.

Consider first the steady-state flows within each metal.
We use Eq. (60), assuming the temperature everywhere
the same, to relate the currents to the potential gradients.
The conservation of charge requires that Jz(x) is indepen-



4970 MARK JOHNSON AND R. H. SILSBEE 35

ferromagnet —,'::.'::,'.'::.: .
'".

.
:':.—:::::::;paramagnet

'4%kj L. . . a ltlKM MRIIS& f%$.

where the upper sign is for i =f, and the lower sign for
i =p. The spin diffusion length 6; is defined by

(g; p; )—cr;P Ti;
(A4)

ik Hy

This is essentially the definition 5= QDT& with the
diffusion constant D given by an Einstein relation
D =P crle X, modified by the factor g; which allows for
differences in the charge and spin diffusion constants, and
the term p; which arises from the coupling between the
charge and spin currents. Equation (Al) may then be in-
tegrated to give

X
Jq+ Vo; .

0;
(A5)

kV
From these solutions the magnetization current at the in-
terface may be evaluated for either metal as

(A6)

FIG. 5. One-dimensional model of a ferromagnet and a
paramagnet in interfacial contact, to study magnetization How in
the spin-injection experiment. (a) The spin depth 5f in the fer-

romagnet; (b) The spin depth 5, in the paramagnet; (c) —Hof,.
(d) —Ho~, (e) The slope is 1/crf, (P The slope is 1/o~; (g)

(@le)pfHo, f i (h) Vo,f —Vo,,=I& X(the apparent junction resis-

tance); (i) hV.

Note that the second term on the right is the magnetiza-
tion current carried in the bulk associated with the cross
coupling to the electric current. It is present in the fer-
romagnet, but not in the paramagnet (p~ =0).

In our approximation of no spin relaxation in the inter-
facial region, the two currents JMf and JM~ given by Eqs.
(A6) must be equal. Further, they must equal the current
through the interface given by Eq. (50),

2

JM ———G bV —g hH*
e e2

(A7)

subject to the condition on AV and AH* that the electric
current must equal Jq, or

dent of x, hence that within either metal the magnetiza-
tion and electric potentials are related simply by

Jq ———G 6 V — hH* (A8)

V' V; = V'H;* ——Jq,Pi, 1

e ' 0-
(Al)

with b, V and b,H* determined from Eqs. (A3) and (A5)
by

where the subscript i =f,p denotes respectively the fer-
romagnet and the paramagnet. The magnetization need
not be conserved in the presence of spin relaxation at a
rate 1/T1;. We have, then, from the continuity equation
for magnetization,

M; —g;H

b V = V~(0) —Vf(0)=( Vo~ —
Vof )+ pfHof, —

AH* =Ho —Hof .
(A9)

The conservation of current across the interface gives the
two independent equations

JMf JM JMp

VV;+g;o; VH

(A2)

which, together with the condition of Eq. (A8), determine
the three unknowns Hof, Hp~, and AV in terms of Jq and
the bulk and interfacial transport coefficients. Equation
(A9) may then be used to determine the junction resis-
tance

where we have used Eqs. (Al) and (60). This may be
solved for the spatial dependence of H

Vof —Vo,

Jq
(A 10)

H; =H,oie (A3)
After the appropriate algebraic manipulations, we find

the following expression for the magnetic current:
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~p 1+6(pf/ri)(5f/crf )(g r—i )/(gf p—f )

1+6(g ri—')[(5~ /cr~ )(1/g~ )+ (5f /(7 f )1/(gf p—f )]:—p' —Jq .
e

(A 1 1)

The interpretation of Eq. (All) depends critically upon
the products G(5;/cr;). The ratio 0.;/5; is an effective
conductance of the ith metal from the interface to the
bulk of the metal via the combined effects of spin diffusion
and relaxation. If 6(5;/cr;) «1, then the spin distribu-
tions are little disturbed on either side of the interface as a
consequence of magnetization transport across the inter-
face and it is the interfacial transport parameter g which
entirely determines the ratio of magnetic to electric
current:

JM Jq (A12)

1J~ =Pf—Jq 1+(5 /rr )(+f /5f )(gf pf )/g
(A13)

In this limit the injection efficiency is proportional to the
bulk transport properties of the two metals and indepen-
dent of the interface. If spin diffusion and relaxation are
rapid in the paramagnet compared with the ferromagnet,
then the injector efficiency,

'9 =If ~ (A14)

On the other hand, if the interfacial conductance is
large compared with the diffusive spin conductance of the
ferromagnet, 6(5f/o' f) &&1 (and the dimensionless pa-
rameters p, g, etc. are of order unity), then the magnetiza-
tion current is given by

Vd ——g*( H" )—=—t)*— H—
e e X

(A15)

with g given by Eq. (Al 1).
It should be noted that the model geometry used in this

appendix is rather far from the actual experimental
geometry. Without attempting a quantitative argument,
one may simply remark that the effect of the real
geometry is to increase the effective spin diffusion conduc-
tance o.;/5; on either side of the junction and to make it
probable that the experiments of Ref. 3 were carried out
in the weak coupling, 6(5;/cr;) «1, regime.

is just the cross coupling of electric and magnetic currents
in the ferromagnet; all of the magnetization current car-
ried in the bulk of the ferromagnet is carried into the
paramagnet and is relaxed there. With a low diffusion
and long relaxation in the paramagnet, nonequilibrium
magnetization builds up in the paramagnet and JM is re-
duced by the factor in the denominator of Eq. (A13).
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