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We have studied the random-axis magnet with infinite anisotropy by three methods: Cayley-tree
approximation, Migdal-Kadano6' renormalization group (MKRG), and Imry-Ma scaling. In the
Cayley-tree approximation, by an examination of susceptibilities, it is shown that there exists a corn-
petition between the coordination number z and the number of components n of the spins which
leads to either ferromagnetic or spin-glass order. Using the MKRG at very low temperature we map
out approximately the regimes of the ferromagnetic, spin-glass, and disordered phases as a function of
n and the spatial dimension, d. The Imry-Ma arguments are made as an additional method for ob-
taining information on the critical dimension. Comparisons of these results with the previous litera-
ture are made.

I. INTRODUCTION

In this paper we consider the random-anisotropy-axis
model (RAM) in the limit of infinite anisotropy, D. The
RAM is defined for a d-dimensional lattice of (classical)
n-component spins, s;, of unit length, with (quenched)
random-axis directions, n;, and the Hamiltonian

H~M= —g Js; s& Dg (s; n—;)
(ij) i

Here (ij ) designates nearest-neighbor pairs and the n; are
all unit vectors. This model was introduced by Harris
and co-workers' in order to explain the magnetic prop-
erties of materials such as amorphous TbFe2, and has
since been applied to a variety of other intermetallic com-
pounds. This is a very interesting problem because it al-
lows both spin-glass and ferromagnetic ordering at
sufficiently low temperature T. To see this, observe that
in the case n = 1, that necessarily n; =x for all i, Eq. (1.1)
gives the Ising model which exhibits ferromagnetic order-
ing for T & T, -zJ/kz, where z is the coordination num-
ber of the lattice. On the other hand, for larger n, no
such simplification exists, and the randomness in the a s
can be enough to induce spin-glass behavior as the Imry-
Ma argument shows. Thus, there is a competition be-
tween these types of ordering in which qualitatively speak-
ing spin-glass ordering is favored by making n and/or D
large and ferromagnetic ordering is favored by m.aking z
large. There is, at present, disagreement amongst
different methods in describing this competition.

A variety of techniques have been applied to the investi-
gation of the competition between D and J, including
mean-field theory (MFT), Monte Carlo ' (MC),
renormalization-group e expansion' ' (eRG), position-
space renormalization group' (PSRG), and I/n expan-
sion. ' '9

The infinite-range RAM has been solved for all D and
J. No spin-glass phase is observed. The ferromagnetic

phase transition is observed at exactly the same tempera-
ture as the pure n-component spin system. MFT is exact
in this limit. On the other hand, the Imry-Ma and eRG
arguments say that for d &4 ferromagnetic long-range or-
der is not possible. The MC calculations have not agreed
with each other, but the most recent and detailed' have
found that the ground states were nonmagnetic.

In the D~~ limit of the RAM (the IRAM) the s;
align along +n; and the problem is equivalent to a
modified Ising model with Hamiltonian

H= —g J;it7;orj,
(Ij)

(1.2)

where s;=cr;n; and J; =Jn; n . We will use Eq. (1.2) to
study the IRAM. In the remainder of this paper we will
deal with the IRAM. Thomas has solved this model ex-
actly in one dimension for arbitrary D and J. Bray and
Moore' have applied the large-cell PSRCx method for
d =2 with n=2, 3,10 and obtained a zero-temperature
spin-glass phase.

The degeneracy of choosing —n; instead of n; for the
ith axis can be removed by specifying the "gauge. " The
simplest example is to choose a direction a; (independent
of the random orientation) and require n;.a;)0. The
remaining degeneracy (for those axis orientations with
n; a; =0) can be fixed in a similar way, but such orienta-
tions comprise only an infinitesimal fraction of the
choices. Call the vector a; the gauge for the site i ~ If the
vector a; is the same for all sites i then call this gauge the
uniformly a gauge. However, any such a can be chosen.
Furthermore, the overwhelming majority of available
gauge choices are not at all spatially uniform. Yet all
gauge choices are equally valid mathematical descriptions.
This implies that ferromagnetic ordering must mean
something other than simply a net Ising magnetization,
because by randomly choosing another gauge any such
magnetization would disappear. The ferromagnetic and
spin-glass ordering will be distinguished by thermo-
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dynamic properties which are gauge independent.
In Sec. II we will describe the IRAM on a Cayley tree.

In Sec. III we will present an analysis of the IRAM by
the Migdal-Kadanoff21, 22 position-space renormalization
group (MKPSRG) and illustrate the detailed difl'erences
between the scaling properties of the spin-glass, ferromag-
netic, and paramagnetic phases. In Sec. IV we give argu-
ments of the Imry-Ma type and support these by explicit
numerical calculations. In Sec. V we present our general
conclusions.

II. THE CAYLEY- TREE APPROXIMATION

In this section we study the IRAM on a Cayley tree.
We will compute the mth-order susceptibility 7' Ck ——Ck i ( cosO tanh(PJ cosO) )c =Ck i Ci . (2.8)

The lack of loops allows Ck to be evaluated very directly.
Define 0 and nz by nk ——nk 1 cosO+ nzsinO, where
nk (.ni ——0 and

I ni I
=1. Then

Ck = Ilo Ilk lcost9+no n&sing

k

Xtanh(PJ cosO) g tanh(PJ, i „) . (2.7)
r=1

Because there are no closed loops in this graph the
averaging over the last axis can be decoupled from the
earlier ones. In addition, the averaging over nz decouples
from the averaging over 8. The term containing nz van-
ishes by reflection symmetry, leaving

y(m) y y(m) g(m) ( p (( ))m)
J

(2.1)

Trs; s~e
X;, (C)=

Tre
(2.2)

for m = 1,2. Here (. . . )c is an average over
configurations C, P;~(C) is the susceptibility in the
configuration C,

Hence Ck ——(Ci )" and

x
1+C

1 —cr C 1

which gives a critical temperature T'" at

o '= (cosO tanh(pJ cosO) )c
—(PJ cos 8)c PJ/——n

(2.9)

(2.10)
p=(k&T) ', Tr represents a trace over the spin states,
and H is given by Eq. (1.2). X"' is the standard definition
of the susceptibility for ferromagnetic ordering, whereas
g' ' reflects the spin-glass correlations. By looking at the
singularities of these quantities one can determine the crit-
ical temperature and determine which ordered phase (if
any) occurs first as the temperature is lowered.

We apply a standard graphical series expansion tech-
nique to evaluate these quantities. After reexpressing the
Boltzmann weight

so that k&T'"-0J/n. Of course, this expansion is only
valid for o.C1 ~ 1.

Arguments similar to those leading to Eqs. (2.4) and
(2.5) yield

(2.11)

with

e ' ' '=cosh(pJi )[1+a;ojtanh(pJ~ )] (2.3)
k

Dk =— no nk tanh J,
r =1 C

Ck ——no nk tanh J,
r=1 c

(2.6)

and then performing the trace over spin configurations,
any expression of the form Tro;, o.;, . . .o.; e, can be
expanded graphically. Such an expansion is a sum over
all graphs for which the sites i, a=1, . . . , m have an
odd number of connected lines, and all other sites have an
even number. Each such graph has associated with it the
weight PQ(,"& Gtanh(PJJ), where P=+(; )cosh(PJ; ) and
G is the set of bonds in the graph. The Cayley tree is
simple because there are no closed loops. Thus, only the
graph without any lines contributes to Tre P and only
the (unique) graph with a single curve connecting i and j
contributes to Trs;. sJ e . So

J
X;,.(C)=n;.nj + tanh(PJ, , „), (2.4)

r=i+1
where r indexes the unique path connecting i and j. Let z
be the coordination number of the Cayley tree and
o.=z —1. The number of pairs ij separated by k bonds is
za." '. Putting all of this information together,

X"'=1+ g ' —'C„ (2.5)
k =1

with

no nk lcosO+ no. nzsin8

k —1

X tanh (pJ cosO) + tanh (pJ„( „)
r=1 c

(2. 12)

X(cos Otanh (pJcosO))c

k —1

+ llo Ily tanh J
r=l C

X (sin 8 tanh (pJ cosO) )c . (2.13)

Choose the unit vector x such that x.nk 1
——0 and

no ——(no nk i )nk, +ax. Then a = 1 —(no n„, ) and
performing the average over ni (designated as (. . . )-„)
gives

in the notation of Eq. (2.7). As before, reflection symme-
try causes the terms linear in nz to vanish. The remaining
terms decouple to produce

k —1

Dk = no nk —1 tanh J,
r=1 c
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((no nJ) ) (o (x nJ) ) 12

=a ((x nz) )-„=[1—(np nk &) ]
n —1

(2. 14)

Inserting these results we obtain

(2.15)

Dk ——(cos 8tanh (pJcos8))CDk
k —1

+ [1—(no. nk, ) ] + tanh (pJn
&

n )
n —1 r=1 C

X (sin 8tanh (pJ cos8)) c .

8-

6-

Setting E:( tanh (p—J cos8) )c and using D, = ( cos 8
Xtanh (pJcos8))o, then Eq. (2.15) can be rewritten as 10

n
Rk gk —1g 1

n —1

n —1

1
Dk DD—k— , + (E D& )(E—" ' Df i)—.

n —1

Choosing gk D&E "———1 ln, Eq. (2.16) reduces to
'k

(2.16)

(2.17)

FIG. 1. The value, o.,{n), of o. as a function of n, for which
the spin-glass and ferromagnetic critical temperatures coincide.
For o. & o.,{n) there is a paramagnet to spin-glass transition. Qn
the other hand, for o. & o.,{n) the phase transition is into a fer-
romagnetic phase.

Reinserting Dk gives
k

1 k n —1 nD1 —E
Dk ———E"+

n n n —1
(2.18)

and thus

zE/n z nD1 —E&"'=1+ +—
1 oE n 1—o(nD~ —E)l(n —1)—

(2.19)

This gives the spin-glass critical temperature T' ' at
crE = 1, which yields k& T' '- J(o In ) '~, so that

T(1) 1/2

(2.20)T(2) n

III. THE MIGDAL-KADANOFF APPROXIMATION

We have investigated IRAM by the MKPSRG method.
The general MKPSRG method has been extensively de-

We expect ferromagnetic ordering when T'" ~ T' ',
(i.e., when o ~ n ) and spin-glass ordering otherwise.
After expressing the averages in the form

J f(8)sin" 8d 8
&f(8) ),—= (2.21)

sin" @de
0

the phase boundary between the ferromagnetic and spin-
glass regimes can be calculated more precisely by simul-
taneously solving C1 ——E=o. '. The results are shown in
Fig. 1, where it is seen that o. =n is a good approximation
to the phase boundary. We stress again that the above re-
sults are exact and gauge independent.

We do not expect any other types of thermodynamic
singularities for the transition from the disordered phase,
although quantities such as X=+ (

~
X;~(C)

~
)c have to

be considered. In the Appendix we discuss the possible
relevance of 1'.

scribed elsewhere. We have used a version which
has recently been applied to the Ising spin-glass prob-
lem. The procedure has the following steps. Initially,
assign axis directions n; to each site of the lattice accord-
ing to the uniformly x gauge and compute the nearest-
neighbor pair interactions, J~ =n;-n~. For each
MKPSRG recursion, move the interactions on every other
row to the remaining rows (see Fig. 2) and then sum over
the spin states of those spins which have a low enough
bond connectivity (see Fig. 2). This produces a renormal-
ized set of pair interactions J,&, for the larger length scale.
Repeating the recursion allows the problem to be solved.
The choice of the uniformly x gauge was important for
our procedure because even when the bond is moved there
is no question of the correct sign for the initial pair in-
teraction J~. The procedure in Fig. 2 is for two dimen-
sions but is easily generalized to arbitrary d. The only
change is that the bond-moving step adds together 2"
distinct interactions.

The MKPSRG is applied locally to groups of bonds.
Since the bonds are not all necessarily the same, the
MKPSRG has to be applied to many such bond
configurations to produce a renormalized distribution of
bonds. Typically, we considered distributions made up of
a pool of 10000 bonds with configurations carried out
over 10000 samples.

Our main interest is in what happens at very low tem-
peratures. Clearly at high enough temperatures the phase
is disordered. However at very low temperature the phase
may be (disordered) paramagnetic (PM), spin-glass or-
dered (SG), or ferromagnetically ordered (FM). These
may be distinguished in the following way. In the Ising
ferromagnetic phase, the renormalized couplings a11 be-
come positive and grow as L " '. It is this low-
temperature scaling behavior that yields the Widom scal-
ing relation for the disappearance of the surface tension at
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the critical point, viz. , p=(d —1)v. The PM phase is
characterized by the renormalized couplings decaying ex-
ponentially to zero. Physically, this is because distant
spins are effectively uncoupled from each other. The SG
phase has a striking behavior quite distinct from both the
FM and PM phases. An equilibrium SG phase is charac-
terized by increased coupling strength as in the FM phase
except that the renormalized bonds are equally likely to
be positive or negative. The average value of the pair in-
teractions tends to zero, whereas the average absolute
value A(L) grows as the length scale increases. Previous
studies of an Ising spin glass (ISG) using the MKPSRG
method have shown that A (L)-L (d —d, )/&

with d, -2.5.
Thus in the MKPSRG method, the ISG has a lower

critical dimension (LCD) of 2.5. The factor of —, in the
exponent arises due to the frustration and randomness
present in the spin glass. This distinctive dependence of
the characteristic coupling on the length scale leads to a
Widom-like scaling relation for spin glasses, viz. ,

p=[(d —d, )/2]v. A SG phase for d ~d, is characterized
by the effective coupling tending to zero (as in the PM
case) but only algebraically.

Our analysis of the IRAM at low temperatures by
MKPSRG yielded results in accord with those found for
the pure Ising SG and FM cases. The value of d, for the
SG case was found to be -2.5. A phase diagram for the
low-temperature phases as a function of n and d could
therefore be obtained.

We looked at the case J/(ks T) =100000, for arbitrary
n and d. Our results are shown in Fig. 3. The n =1 re-
sults are of course those of the Ising model and agree with
the facts that the LCD is 1 and that there is no SG phase.
For larger n, say n =5, as d increases there is a continu-
ous increase in the amount of order and thus all three
phases are observed. The critical dimension for SG to
FM is very sensitive to the choice of n. However the criti-
cal dimension for PM to SG is quite insensitive to the
choice of n. For fixed, nonzero J/kz T the critical dimen-
sion for PM to SG must grow, though, because the root
mean square of the initial pair interactions is exactly
known to be J/+n, which vanishes as n~ oo for any d.
For the n s which we show, this critical dimension (PM to
SG) is about 2.53, which is in rough agreement with the
lower critical dimension obtained for the Ising spin
glass. '

These results are in disagreement with the eRG method
because of the FM phase predicted below d =4 for some
values of n. They do however show the qualitative behav-
ior found from the Cayley-tree approximation.

I ~ i (Ij

12+ 45 23+ J56 J36 + J25

( ~ I ( ~ i

(b) J69 + '58

F

(c) 2 3 4 5

FIG. 2. The two-dimensional MKPSRG. (a) the original lat-
tice, (b) the bond-moved lattice, and (c) the renormalized lattice.

FIG. 3. The d vs n phase diagram of the IRAM in the
MKPSRG approximation, at the temperature J/(k~ T)
=100000. PM stands for paramagnetic, SG for spin glass or-
dered, and FM for ferromagnetically ordered.
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IV. AN IMRY-MA ARGUMENT

The MKPSRG approximation yields a LCD less than
4. If this result is not an artifact of the approximation,
one reaches a somewhat surprising conclusion of a reen-
trant behavior (for d 54) as follows. The system is fer-
romagnetic in the absence of any anisotropy. On turning
on a weak anisotropy, the magnetization is destroyed
(since d &4). The MKPSRG results suggest that when
the anisotropy is made infinitely strong the magnetization
returns.

To verify that this result is indeed spurious, we carried
out an Imry-Ma —like analysis in the limit of very strong
anisotropy. We assume ferromagnetic ordering and ask
when such an ordering becomes unstable. The system
gains energy by reorienting its magnetization to make op-
timal use of the random anisotropy. On the other hand,
such a reorientation costs energy due to the formation of
domain walls. In the weak anisotropy limit, the anisotro-
py energy gained per spin by having domains of length L
goes like L, whereas the domain wall energy per spin
-L . Thus in this limit the uniformly magnetized state
is unstable to the formation of domains for d &4.

Here we adapt the original Imry-Ma argument to treat
the case when D= ao. To do this we must formulate an
effective anisotropy energy and an effective domain wall
energy since the former, in particular, appears only impli-
citly in the Hamiltonian when D = oo. To be more
specific, we considered d-dimensional regions with L lat-
tice spacings in each direction and periodic boundary con-
ditions. Choose an initial set, 0, of axis orientations and
a unit vector a. Initialize all the spins to o.;= I in the
uniformly a gauge. We then decrease the energy by mak-
ing single spin flips until no single spin flip wil1 reduce the
energy any further. This produces a local minimum
whose magnetization points roughly along a. The energy
of this final configuration is called e(Q, a). Let 5(Q) be
the difference between the maximum and minimum values
of E(O, a) as a is varied. B(L,d), the gain in anisotropy
energy by having optimally oriented domains of size L in
d dimensions, is defined as the average of 5(Q) over the
configurations 0, with the size L and dimension d.

To compute the domain-wall energy S, consider the
same lattice and axis orientations except that one of the
lattice directions, x (the "longitudinal" direction), does
not have periodic boundary conditions. Define the a, b ro-
tating gauge to be independent of the transverse corn-
ponents of the lattice position, but changing continuously
from a to 1 as one crosses the sample in the longitudinal
direction. Initialize the spins to o.; =1 in the a,b rotating
gauge. This produces a configuration whose local magne-
tization rotates between roughly a and roughly b as one
moves longitudinally across the sample. The same
single-spin-flip minimization is performed except that the
ends in the longitudinal direction are held fixed. If we al-
lowed these spins to flip the boundary would eventually
disappear. Let co(a, b) be the resulting energy and g(a,5a):—co(a, a+5a) —co(a, a), with a+5a being slightly rotated
from a. Averaging over a and Q with the amount of rota-
tion kept constant gives the energy S(L,d).

We have performed zero-temperature Monte-Carlo
simulations in d=2, 3,4 for systems containing up to 4096

spins. The averaging was carried out over 50—200
different configurations of the anisotropy axes and over
10—50 different orientations of the magnetic gauge direc-
tion. While the d =2 and d =3 results indicate that the
gain in anisotropy energy exceeds the domain wall cost,
the d =4 simulations are consistent with the energies be-
ing equal. The systems studied are unfortunately not
large enough to make any definitive statement, but are
consistent with an LCD of 4 even in the strong anisotropy
limit.

V. DISCUSSION AND CONCLUSIONS

The methods of this paper can be extended to treat the
regime J«D & oo. To do this one would let

s; =cr;n;(1 —s;~)'~ +s;), (5.1)

where s;z is a vector perpendicular to n;. One can in-
tegrate out s;z to obtain an effective Hamiltonian in terms
of o.;. This effective Hamiltonian would differ from that
in Eq. (1.2) due to the contributions from terms of order
s;&, etc. Thus for D & ap one has

J J(0)+J y & (k, l)(PD )
—k( JyD )I

k, 1)0
(5.2)

Thus, within perturbation theory, the symmetry of the
Hamiltonian in Eq. (1.2), would remain unchanged, but
the coupling constants J~ would be perturbed from their
D= ~ values. In other words, the results of the present
paper are expected to be qualitatively correct as long as
D »J and D »k&T and do not rely on the strict limit
D~ ~. Physically, this reflects the idea that Heisenberg
spins with a large anisotropy should be considered
equivalent to Ising spins, as in Eq. (1.2).

We may summarize our conclusions as follows.
(1) For large D, there is a competition within mean-field

theory between ferromagnetic order which occurs at low
temperature when z ~ n and spin-glass order which occurs
at low temperatures when z 5 n.

(2) The low-temperature MKPSRG shows qualitatively
the behavior of mean-field theory as illustrated in Fig. 3.
In particular, the spin-glass phase is in the same univer-
sality class as that of a pure Ising spin glass with random-
ly distributed couplings.

(3) The statement listed under (1) probably remains true
as long as fluctuations do not play a decisive role in de-
stroying long-range order. From the Imry-Ma argument,
as generalized here, we therefore expect this type of corn-
petition as long as d & 4.
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APPENDIX



4934 HARRIS, CAFLISCH, AND BANAVAR 35

field, leads to a higher-temperature divergence than exists
for P™.We believe this to be true only for the Cayley
tree with free boundaries and not for high-dimensional
hypercubic lattices. Independent of this assertion, it is
clear that we have compared the stability of two proposed
orderings, ferromagnetic and spin glass, and find an in-
teresting crossover from one type to the other as the num-
ber of spin components is varied.

On the Cayley tree, 7 is only relevant if the signs of the
bonds may be "gauged away" as one works out to the
surface. However this may be avoided by a constraint

which pins the surface. Because of the anomalously large
surface to volume ratio [in the thermodynamic limit, this
ratio is (cr —1)/cr) one cannot simply ignore the random-
ness by pushing it to the surface; the randomness remains.
Because our results did not require any similar gauging
procedure, they do not suffer from this difficulty. Furth-
ermore, because of the loops, there is no analogous gaug-
ing procedure in a d-dimensional hypercubic lattice and
thus P should not show such a divergence for a hypercu-
bic lattice.
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