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Magnetoresistance measurements on fractal wire networks
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Measurements of the magnetoresistance have been carried out on aluminum Sierpinski gasket wire
networks fabricated using submicrometer E-beam lithography. The results are in agreement with the
predictions of recent calculations of the localization contribution to the magnetoresistance in the frac-
tal regime where the phase-breaking length, L&, is greater than Lo, the minimum gasket dimension.
A11 details of the theory are observed, including periodic corrections to scaling due to the discrete di-
lational invariance of the gasket. Over the temperature range from T, =1.192 to 4.0 K we have
quantitatively analyzed the magnetiresistance and determined the phase-breaking length, L~(T). The
predominant phase-breaking mechanism inferred from such analysis is found to be one-dimensional
electron-electron scattering with small (quasielastic) energy transfers.

I. INTRODUCTION

Fractal objects, by definition, are those with nonintegral
geometric dimension. In general, such systems may be
fractal over a limited range of length scales. Subsequent-
ly, interpretation of measurements made on these systems
depends upon whether the fractal or the homogeneous re-
gime is being probed. Determination of which regime is
relevant requires a knowledge of several characteristic
lengths. The details of the physics involved determines
the probe length, A. The geometry of the fractal itself
determines its intrinsic length scales including the
minimum and maximum dimensions, Lo and Lz. The
length Lo is the lower bound of the fractal regime. Over
shorter lengths the object is assumed to have integral di-
mension. In the case of the Sierpinski gasket Lo corre-
sponds to the size of the smallest triangles, about 1.5 pm.
Over small distances the relevant structures are the wires
themselves (see below), definitely Euclidean objects. Simi-
larly, L& corresponds to the size of the entire gasket net-
work. For reference, a third-order gasket is pictured in
Fig. 1.

Two distinct physical regimes are determined by the
relative size of the probe length and the characteristic
sample lengths: the homogeneous regime where A&Lo
or A~Lz and the fractal regime where Lo &A ~Lz. In-
teresting new physics is contained both in the fractal re-
gime where the anomalous dimensionality of the system is
probed and in the crossover region dividing Euclidean
from fractal geometries.

Probe lengths relevant to studies of fractal systems in-
clude optical, ' x-ray, neutron, and phonon wavelengths
as well as diffusion lengths for electrons, electron spins,
noise, and Cooper pairs. The corresponding geometrical
lengths characterizing these fractals range from fractions
of nanometers (nm) in percolation studies and investiga-
tions of random alloys, to hundreds of nm in colloids and
to micrometers (pm) in state-of-the-art lithography. The
measurements described below employ an ideal combina-
tion of probe length and characteristic sample lengths for
testing theoretical calculations on fractals. The controlled

geometry of lithographically defined structures are com-
bined with the macroscopically long inelastic and
superconducting-pair diffusion lengths in clean aluminum
films.

Specifically, we have measured the temperature- and
magnetic-field-dependent conductivity of aluminum Sier-
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FIG. 1. The lower graph shows the variation of the supercon-

ducting transition temperature, T„as a function of perpendicu-
lar magnetic field. The upper graph, using the same field axis,
plots the magnetoresistance at a reduced temperature of
E' =2.5 )& 10 . The field-dependent structure in the MR is
analogous to that of the transition temperature. The inset shows
a third-order Sierpinski gasket.
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pinski gasket (SG) networks at temperatures above the su-
perconducting transition temperature, T, . The dominant
contributions to the magnetoresistance (MR) come from
direct superconducting fiuctuations, characterized by the
pair diffusion (coherence) length, g, and localization-
related effects which are parametrized by the phase-
breaking length, L& ——D~&. At temperatures very close to
T„where g &&L&, direct superconducting fluctuation
effects dominate. The MR in this region is characterized
by its fine structure and large magnitude while the
Aslamazov-Larkin (AL) conductance is expected to exhib-
it an anomalous dependence on temperature,

G~„—(1nt)'" '. We introduce the normalized conduc-

tance, t = T/T, . Here d is the fracton dimension, defined
in terms of the Hausdorff (fractal) dimension, D, and the
anomalous diffusion exponent, 0, via the relation

d =D /(1+ 8/2) = ln9/ln5 = l.365,

Ref. 8. In the following we shall make qualitative state-
ments about the MR in this direct regime, but we have
not been able to study the temperature dependence. This
is due to both the small, applicable temperature range
gust a few mK) and to small variations in the supercon-
ducting properties of the wires.

g(t) is a strong function of temperature, however, fal-
ling off as (1nt) ' . At somewhat higher temperatures,
where g&L&, localization-related effects (weak localiza-
tion and Maki-Thompson fluctuations), those with charac-
teristic length scale L&, are predominant. In our alumi-
num wires the phase-breaking length may be much
greater than the minimum fractal length, Lo, over a large
temperature range. Because of this, the details of the
MR, which are sensitive to L~, depend upon the fracta1
nature of the SG. Theoretical calculations of the MR due
to weak localization (WL) and Maki- Thompson (MT)
effects have recently been carried out for the gasket and
are tested in our work.

At temperatures far enough above T, so that only
localization-related effects are important (more than a few
mK above T, ) the sole fitting parameter in comparing
theory with our data is the phase-breaking length, L&(T).
It is interesting to note that L& is due mainly to electron-
electron effects which have their own characteristic length
scale, Lr = .0(5@m) /&T(K) &Lp. Thus the phase-
breaking processes are in the homogeneous regime, unlike
the resulting MR curves which depend upon the fractal
structure of the network. From an analysis of the mea-
sured values of L&(T) we report some of the first evidence
for one-dimensional electron-electron scattering. One
can envision that with the advances of technology permit-
ting ever-smaller feature sizes that fractal structures might
be made such that Lz ~&Lp, necessitating the considera-
tion of electron-electron scattering in nonintegral dimen-
sions. Although this has not yet been attempted theoreti-
cally it may already be important in understanding weak-
localization (WL) data in natural fractal systems (alloys,
quench condensed films, composites, etc.) where Lp may
be quite small. '

II. EXPERIMENTAL PROCEDURE

Our Sierpinski gaskets were prepared by thermal
evaporation of 1000 A of high-purity Al onto oxidized Si
substrates. The networks were formed by prepatterning
the substrates with a lift-off mask written into two layers
of electron-beam resist by a Cambridge EBMF-2-150 E-
Beam Microfabricator. The gaskets are of tenth order
and are composed of wires with a linewidth of 0.3 pm.
All triangles which make up the gasket structure are isos-
celes due to restrictions inherent in the Cambridge
machine. The zero-order triangles have both base and
height equal to 1 66 pm and an ares of
a=1.38+0.01 pm .

The full network has a base of nearly 1 ~ 7 mm with
pairs of contact pads attached at each corner and at the
midpoints of each side. A wide film with four contacts
was deposited next to the gasket for comparison of resis-
tivities in the bulk and in the wires making up the SG.
All of the MR measurements reported below were made
with four probes, two at the top of the network and two
at the midpoint of the base. Other combinations of the
current and voltage probes were tried with no change in
the resulting normalized MR {AR (H)/R = [R (H)
—R (0)]/R (0)). This is to be expected since the probe
length in all of our measurements is very small compared
to the full gasket dimension, A«L&p. Here L&p is a
length characteristic of s tenth-order gasket.

An accurate determination of the sheet resistance, Rz,
of the wires which make up the gasket is essential for a
proper analysis of the MR data. From measurements of
the coevaporated two-dimensional (2D) strip we infer a
sheet resistance of 0.040+0.002 O. (Figures are reported
for one of the gaskets. Small variations exist from sample
to sample. ) One might expect, however, that the submi-
crometer wires are of somewhat higher resistivity. Using
scaling arguments we can determine the resistivity of the
wires from knowledge of the resistance of the entire gas-
ket. The resistance of the tenth-order gasket is related to
the zeroth-order resistance via

R (L /p) =R (Lp)(L Ip/Lp)

The localization exponent for the SG is —PL
——0.737 and

(L Ip /L p ) =2. Using the tenth-order resistance of 43 0
and the geometry of the zero-order triangles (above) we
have calculated the sheet resistance of the wires snd find
R z ——0.057 A. As expected, this slightly exceeds the
sheet resistance of the 2D comparison films.

In zero applied magnetic field the superconducting
transition temperature was T, (H =0)= T,p 1. 192 K. ——
The high-field dependence of T, on H (due to the one-
dimensional nature of the wires) was used to determine
the superconducting-pair diffusion length (coherence
length), g(0)=0.26 pm. " The value of the diffusion con-
stant, D =270 cm /s, follows from the relationship

g (0)=MD/8k' T, .

III. THEORY

The magnetoresistance of disordered metals with in-
tegral dimension has been studied extensively in the past
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few years. Theoretical and experimental advances have
been combined to make MR measurements a convenient
tool for investigating electron phase-breaking (often
equivalent to inelastic) lifetimes, r&, in thin films. Alumi-
num films, similar in composition to our SG samples,
have recently been investigated in both the one-
dimensional"' (L& & W, d) and two-dimensional"
( W & L

& & d) weak localization regimes. Measured
phase-breaking rates due to inelastic processes are in ex-
cellent quantitative agreement with theory.

At most temperatures above T, the important contribu-
tions to the MR come from weak localization and Maki-
Thompson effects. A general calculation of the WL mag-
netoresistance on the SG has recently been carried out by
Doucot and Rammal. ' They find that the MR may be
calculated from knowledge of the eigenvalues, A, , of the
Hermitian matrix, Q, which has diagonal elements

Q =z cosh(i)) and off-diagonal elements Q &
———e

In these expressions z is the node coordination number (4
in the case of the SG) and r)=L/L&, where L is the
length of an elementary wire in the gasket.
y & (2rrlgp——) J A dl is the line integral of the magnetic
vector potential along these wires, connecting nodes o. and
P. The normalized contribution to the MR due to WL
effects is

5R ~ 2 i) cosh(i) ) —sinh(i) )

R wL 2 Z i) sinh(i) )

+—sinh(r)) g A,

a=l

=y(H;Lp) .

The prefactor ~/2 is defined as [R (L)/(iriri/e )](1/i))
where R (L) is the resistance of a wire of length L (as in
the definition of il). In the case of the SG there is
currently no simple, closed expression for (1). A numeri-
cal method using renormalization techniques has been
developed, however, allowing rapid calculation of bR/R
to a high precision. Details may be found in Doucot and
Rammal. '

In order to describe our real gaskets we must explicitly
account for the effects of spin-orbit scattering, as well as
for the finite width of the wires. In wires with finite
width diffusing electrons may follows paths within a sin-
gle wire (as well as those around loops) which enclose
nonzero magnetic flux. This necessitates a redefinition of
the phase-breaking length (roughly speaking, the length of
a typical closed diffusion path which encloses one quan-
tum of flux)

H
Lp(H) =Lp 1+

3 Qp/Lp W

Spin-orbit (SO) scattering is only slightly more difficult to
incorporate into the WL calculation. Formally, one per-
forms the sum in (1) twice, using first the singlet diffusion
length, L

~
——L&, and then the triplet diffusion length,

Lz ——[L& +( ', )Lso] ' . We assume th—at there is an

insignificant amount of spin-flip scattering, a good approx-
imation in Al films. '

The full WL correction to the resistance is

,'y(H—;L,)+ —3y (H;L2) .
WL

(3)

Finally, for comparison to experiment we define the mag-
netoresistance

hR(H) 5R(H)
R

5R (0)
R

(4)

The MT contribution to the magnetoresistance is close-
ly related to the WL expression, (1). At most values of
field and temperature (H &H, and lnt & 5) it is possible to
use Larkin's approximation'

IV. RESULTS

Before making a detailed analysis of the MR well above
T p we present a brief, qualitative discussion of the region
within a few mK of the transition temperature. Here the
primary contribution to the magnetoresistance is from
direct, or Aslamazov-Larkin, fluctuations. Although the
functional form of the AL magnetoresistance on a fractal
lattice is not known, it is possible to make qualitative pre-
dictions. One signature of Aslamazov-Larkin MR is
found in the detailed structure of the magnetoresistance
curve. In Fig. 1 we have plotted the MR at a temperature
T=1.195 K such that (T —T,p)/T, p(E . Again e, is the
size of the AL regime (approximated for 2D above). The
fine structure in the resistance as a function of magnetic

hR AR

R MT + ' wL
= —P( T/Tcp) (H ~iso =0)

The limits defined in terms of the critical field,
H, =(2ckzT/meD)lnt, a. nd the pair-breaking parameter,
5=iriii/8k~ Tr;, are discussed in Ref. 11. Larkin's P is a
smooth function of the ratio T/T, p ——t which diverges as
1/lnt as r approaches unity from above. Since P is field
independent the only structure in the MR comes from the
renormalization group calculation of the WL magne-
toresistance. This is to be compared with the highly
structured (fractal) phase boundary, T, (H), of the SG.

The thir'd contribution to the MR at temperatures
above T, comes from the direct, or Aslamazov-Larkin
(AL) (Ref. 16) superconducting fluctuations. Currently
there is no calculation of this contribution to the rnagne-
toresistance on the Sierpinski gasket. This poses no seri-
ous problem to our analysis, though, since the AL contri-
bution drops off very rapidly above T, due to the fact that
its characteristic length scale, g'(t)-1/(1nt)', becomes
much smaller than L& just above the transition. For com-
parison, in two dimensions the AL term becomes
insignificant above temperatures such that

lnt & F., =[1.52)& 10 Rz(Q)]' =10

This is consistent with our data in which the AL contri-
bution, characterized by its strong temperature depen-
dence and fine structure, is observed only at temperatures
within a few millikelvin of T,p.
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field is reminiscent of the structure in the superconducting
phase boundary, T, (H), which has been included in the
same figure. This is expected since the direct term in the
superconducting fluctuations diverges with the factor
1/(lnT/T, ), where T, = T, (H). ' In other words, the AL
magnetoresistance depends strongly on the field-
dependent transition temperature. At higher tempera-
tures, T & 1.200 K, this structure in AR /R vanishes.

In Fig. 2 we show an example of the MR data at tem-
perature T=1.306 K, or t=1.096. The smooth curve
passing through the data points represents a sum of
theoretical terms due to weak localization and Maki-
Thompson effects. In general, such a fit requires a
knowledge of three parameters: P(t), L~(T), and Lso.
The prefactor, /3, has been tabulated by Larkin and is
completely defined by the normalized temperature, t. The
spin-orbit diffusion length, Lso ——(Dmso)', is slightly
more difficult to determine. In general Lso may be varied
simultaneously with I

&
in fitting the experimental MR

curves. Because our samples are of very small resistivity,
however, we were only able to resolve the low-field MR at
temperatures below about 4 K. At these temperatures it
is always true that L& &&Lso and the shape of the magne-
toresistance curves are relatively insensitive to the value of
the spin-orbit length. It is, however, possible to calculate
a value for the spin-orbit length from existing measure-
ments of Lso in aluminum films. From Santhanam' we
have the empirical expression

«&so —-2 X 10

Combining this with the measured diffusivity D=270
cm /s=( —,

' )UFr we calculate that iso'=4)& 10 s ' or
Lso 2.6 pm. Thus, we are able to compare our MR
data to theory by varying a single parameter, L&
= (Dry)'

At this point we shall make some qualitative comments
about the MR curves of Figs. 2 and 3. It is interesting to
compare these with measurements of the phase boundary
T, (H) in the same gaskets or in other wire networks. For
both the SG and the square network' the superconduct-
ing phase boundary is a fractal. It follows that their
T, (H) curves will have discontinuities over all scales in
the field, H. In addition, the phase boundary of the SG is
expected to reAect the discrete dilational invariance of the
network. If the MR was due simply to a rigid translation
of R (T) with varying T, we would expect all of the struc-
ture of T, (H) to be present in the magnetoresistance. The
striking result lies in the lack of structure in the MR
curves. The explanation comes from the details of the
calculation of the localization component of the magne-
toresistance. On a wire network this calculation is closely
related to that for T, (H). The difference lies in the fact
that the MR depends upon a regularizing sum of the
field-dependent eigenvalues of Q (see above) while T, (H)
depends only upon the band-edge energies. In the case of
the regular array this regularizing sum completely elimi-
nates all structure in H with period less than one Aux

quantum per loop. The case of the Sierpinski gasket is a
bit different. Here the MR is determined via an exact
renormalization-group (RG) calculation and because of
the discrete dilational symmetry one expects a small oscil-
lation in AR /R with period 6 lnH =ln4. This oscillato-
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FIG. 2. A plot of the MR at T= 1.306 K. The points
represent experimental data. The smooth curve passing through
the data at higher yields represents a theoretical calculation us-

ing the fitting parameter g=L /L~ ——0.142. The straight line in-
dicates the quadratic behavior at low fields. The arrows indicate
the positions of the small oscillations due to the discrete symme-
try of the gasket.

FIG. 3. The derivative of the MR with magnetic field. The
field is given in units of flux quanta per elementary triangle. The
data of Fig. 2 is used here and represented by the crosses. The
theory (smooth curve) has been offset for clarity. The bumps in
the curves at fields such that 6 lnH =ln4 are corrections to scal-
ing due to the discrete dilational invariance of the gasket.
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ry structure should disappear in random fractal structures
such as percolation clusters. Unlike the phase boundary
of the gasket the magnetoresistance is expected to be
smooth (differentiable) at all fields. The ln4 period oscilla-
tions are dificult to see in the raw MR data, Fig. 2, but
they are quite evident in the differentiated data in Fig. 3.
The oscillations are equally spaced on the logarithmic
field axis, in excellent agreement with theory. The limit-
ing quadratic behavior, b,R (H ~0)-H, is also observed
(see Fig. 2).

From fits of theory to the MR data we are able to
determine the electron phase-breaking rate as a function
of temperature. A large body of experimental data exists
which identifies contributions to ~& from inelastI'c
scattering due to (bulk) electron-phonon (e-ph) interac-
tions as well as two- and three-dimensional electron-
electron (e-e) interactions. Although some experiments
have been carried out on samples with narrow wire
geometries in which one-dimensional WL (and MT)
effects are present, " only very recently have one-
dimensional e-e processes been observed. ' This is due to
the fact that the characteristic length for e-e scattering,
LT, is generally much shorter than L&, 8 .

In two-dimensional aluminum films and wires it has
been demonstrated that the phase-breaking rate has three
components: electron-phonon, electron-electron, and
electron —superconducting-fluctuation (e-f 1). The
electron-phonon rate in aluminum, both from empirical
results" ' and from theory, is

~, p„——( l.6)& 10 )T (6)

(7)

The presence of these contributions to w~ '(T) in alumi-
num films and wide wires is well documented. "

In our samples the e-e and e-fl contributions to the
phase-breaking rate are no longer expected to be two-
dimensional since W=0. 3 pm&L r0. 5 (pm)/v T(K).
The coherent backscattering which results in the MR
corrections is characterized by the length L& =10 p, m (see
below) and it samples the fractal nature of the gasket.
Electron-electron processes, however, are only sensitive to
the 1D nature of the wires since both the width and thick-
ness of the wire are smaller than the characteristic length,
LT.

Electron-electron inelastic processes (tr- F =k&T ) surely
contribute to phase breaking in these narrow wires.
Al'tshuler et al. , however, have recently pointed out that
in the one-dimensional limit multiple scattering events
with small, quasielastic energy changes QF «kz T ) lead
to a large dephasing rate. This rate, which is larger than
the inelastic e-e rate in 1D (this is not true generally), is
equivalent to the Nyquist rate, v.&'. Thus, for narrow,
clean wires we expect a total phase-breaking rate of the
form

In two dimensions (W& LT ——QfiD/ks T &d) the
electron-electron and electron-fluctuation contributions
may be combined and written '

kp T R m6/e 2 ln2

(2~/e') R~ lnt+B

r——, ph+r~ +r, ti(ID),
where the 1D Nyquist rate is given by

2/3
R~ kti i/D

V'2(g/e 2) fi W' T2/3

(8)

No calculation exists for the one-dimensional e-fl term,
although one might expect it to be comparable in magni-
tude to the 1D inelastic rate due to electron-electron in-
teractions and to diverge as T approaches T,o from above.
We comment below on the omission of this term from our
analysis.

Combining the e-ph (bulk) and e-e (quasielastic, one-
dimensional) contributions to the phase-breaking rate
gives us

wp
' ——(1.6&&10 )T +(7.8&&10 )T (10)
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FIG. 4. A plot of the temperature dependence of the phase-
breaking rate for two samples. The solid line is the theoretical
result of Eq. (10), using no fitting parameters. In calculating the
dashed curve we have replaced the predicted 1D electron-
electron effects with that expected for 2D.

for the sample parameters discussed earlier. In Fig. 4 we
have plotted our experimentally determined values of
~& '(T) for two samples at temperatures from T,O=1.192
to 4r0 K. At higher temperatures the MR is too small to
reliably infer rates. The solid line in the figure represents
the theoretical calculation (7), with no free parameters. A
two-dimensional e-f 1 term has been added to suggest the
divergent behavior near T,o. One must keep in mind that
we probably underestimate the phase-breaking rate due to
one-dimensional e-fl effects in this way. Finally, we point
out that the good agreement between theory and experi-
ment at higher temperatures depends critically on includ-
ing spin-orbit effects in the analysis.

Evidence that we do in fact observe 1D (quasielastic)
e-e scattering comes from comparison of the data in Fig. 4
with the dashed line. It has been calculated by replacing
the 1D e-e contribution with that due to 2D electron-
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e1ectron eff'ects, (7). At the lowest temperatures this is

roughly a factor of 4 below the experimental results. Al-
though we lack the temperature range to unambiguously
identify the T temperature dependence (it is bounded
by T, below and T behavior above), the close absolute
magnitude match of ~&

' to theory offers a compelling
consistency argument.

V. SUMMARY

We have made magnetoresistance measurements on
aluminum Sierpinski gasket wire networks fabricated with
state-of-the-art electron-beam lithography. Because of the
submicrometer gasket geometry and the relatively long
diffusion lengths in clean Al the magnetoresistance has
been found to reAect the large-scale fractal nature of the
gaskets. Specifically, we were able to fit recent calcula-
tions of the localization-related magnetoresistance to our
data. A single fitting parameter, L~(T), was used. All
detailed predictions of the theory were observed, including
the ln4 period oscillations in the magnetic field due to
discrete dilational invariance of the SG. ' The values of
the phase-breaking length inferred from these fits are in
excellent quantitative agreement with model calculations
which include recently suggested one-dimensional, quasi-
elastic electron-electron scattering. These are among the

first observations of this novel mechanism.
The theoretical and experimental problems discussed

above should be helpful in advancing towards the larger
goal of understanding the transport properties of naturally
occurring fractals (alloys, composites, colloids, quench-
condensed fi1ms, etc.). Towards these ends work needs to
be done on understanding electron-electron effects in sys-
tems of nonintegral dimensions (since the length scales of
naturally occurring fractals may be quite small) and the
effects of randomness on the physics of fractals.
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