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The magnetic properties of two Anderson impurities in an electron gas are studied by use of a nu-
merical simulation technique. It is found that magnetic correlations between impurities build up as
the temperature is lowered up to roughly the Kondo temperature (Tx) and stay constant below Tk.
The magnetic susceptibility is quenched on a temperature scale that depends sensitively on the rela-
tive size of Tx and the indirect exchange interaction. When the indirect exchange interaction is
much smaller than the Kondo temperature all thermodynamic properties at low temperatures are in-
distinguishable from the ones obtained for a single-impurity model. The relation of these findings to

other work on this problem is discussed.

I. INTRODUCTION

The properties of two magnetic impurities embedded in
an electron gas have been a subject of considerable recent
interest.!~> When the impurities are sufficiently far apart,
they can be modeled by a single-impurity Anderson or
Kondo Hamiltonian and the properties of such a system
are well understood:*~% the impurity and the surround-
ing conduction electrons develop correlations such that at
sufficiently low temperatures the impurity moment is
compensated by a ‘‘spin-compensation cloud” of sur-
rounding conduction electrons, and the impurity suscepti-
bility approaches a constant as 7—0; the temperature
scale over which the compensation occurs is given by the
Kondo temperature Tx. When two impurities are close
together, however, their spin-compensation clouds will
overlap and interesting new effects appear due to the
indirect exchange Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction® between the impurities.

A central question one would like to understand is how
the competition between quenching of the individual mo-
ments and the RKKY interaction is resolved as the tem-
perature is lowered. One expects the relevant energy
scales to be the single-impurity Kondo temperature T
and the strength of the RKKY interaction J. Different
behavior should occur depending on whether T is larger,
comparable or smaller than J. Jayaprakash, Krish-
namurthy, and Wilkins have used perturbative scaling
techniques to discuss the properties of two Kondo! and
Anderson® impurities in different asymptotic regimes.
Their method, however, is not easily applicable to inter-
mediate parameter regimes. For the case J << Tk, they
conclude that the RKKY interaction plays a minor role
and the impurities are individually quenched. A similar
conclusion is reached in Ref. 2 using a functional-integral

technique. On the other hand, Abrahams and Varma* us-
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ing higher-order perturbation theory and Jones and Var-
ma’ using a numerical renormalization-group approach
conclude that the RKKY interaction plays an important
role at sufficiently low temperatures even for J << Tk.

The purpose of this paper is to establish some of the
properties of the two-impurity Anderson model using a
Monte Carlo method.!® With this approach it is difficult
to achieve extreme regimes of parameters where the
different scaling regimes can be clearly separated. Howev-
er, for intermediate parameter regimes Monte Carlo simu-
lations provide essentially exact results for this nontrivial
many-body problem. It is precisely in this intermediate
parameter regime where analytic approaches are most
likely to fail or be inaccurate.

Our results show that the properties of the two-
impurity system depend sensitively on the relative size of
Tk and the RKKY interaction J. Abrahams and Varma
as well as Jones and Varma have stressed that the impuri-
ties will retain “coherence” as T—0 even for the case
J < Tg. Our results support this observation: as T—0,
the impurity susceptibility goes to a constant (the mo-
ments are completely quenched), but the spin-spin correla-
tion (@, 0,) attains a finite nonzero value. However, we
find that the two impurity spins never lock into a triplet
state at T7-—0 in the ferromagnetic regime, i.e.,
(0,°0,) <1 always. Despite the fact that we have stud-
ied an Anderson rather than a Kondo Hamiltonian, our
results indicate that for both Hamiltonians the zero-
temperature value of (o ,-0,) is a function of J/Tx and
becomes very small for J << Tx. This will be discussed in
detail later in the text. We also find that the uniform sus-
ceptibility is quenched on a temperature scale that de-
creases rapidly as J /T increases and approaches Tk for
J << Tk; in contrast, the staggered susceptibility is always
close to the isolated impurity values. Furthermore, we
find that the local moment is somewhat enhanced by a
ferromagnetic RKKY interaction relative to the isolated
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impurity case and slightly suppressed when the RKKY
interaction is antiferromagnetic. For cases where J << Tk,
we find that the low-temperature thermodynamic proper-
ties of the two-impurity system are essentially identical to
the ones of a single impurity system, in agreement with
Refs. 1-3. We are not able to distinguish the different
scaling regimes discussed in Ref. 1 for J>>Tk, and are
thus unable to check their predictions in that regime.

The paper is organized as follows. In Sec. II we define
the Hamiltonian and discuss its properties in limiting
cases. Section III briefly describes the numerical simula-
tion method and gives some technical information. In
Sec. IV we present and analyze the numerical results, and
conclude in Sec. V with a discussion.

II. THE MODEL

We consider the two-impurity Anderson model!! in the
absence of direct hopping between impurities:

H = 2 ekcl:acka+ 2 ka(cljadia+H'c')
k k,o
i=1,2

+€1 X ngio+U NaitNg;, » (1)
o i=1,2

=1,

i=1,2

where ¢, and d,, represent conduction electron operators
and localized electron operators (d or f orbitals), respec-
tively; the hybridization is taken to be

ik-R;

V,=Ve 2)

We consider the case €;,=—U /2, which will give well-
developed local moments at low temperatures. In the sin-
gle impurity case, this choice ensures particle-hole sym-
metry if the conduction band is taken to be particle-hole
symmetric, and the average occupation of the local level is
unity. For two impurities, however, it is not possible to
have particle-hole symmetry in general except for particu-
lar separations of the impurities. We choose a free-
electron dispersion relation for the conduction electrons:

D l LR
T kg
and k,,, =V 2kg, so that the band extends from —D/2 to
D/2.
The input for the Monte Carlo simulation is the
Green’s function for U=0, which is easily obtained from

its equation of motion. Its components at the impurity
sites (labeled 1 and 2) in imaginary frequencies are

, O0<k <kpax (3)

1
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g?g(iw,, )zggl(ia),, )=

with
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For the dispersion relation Eq. (3) we have

Kumax /K 2
Fo= AR flomlbrge x| (6a)
T 0 iw _2_( 2_1)
)
AD Kmax/ke X sin[x(kpR)]
Fp=—"5 [ dx—— "2 (6b)
TI'kFR 0 . 2
o, ——(x"—1)
2
A=7Vp(ep) Viki 6
=7V plep)= D (6¢)

Here we set D=12 and in the Monte Carlo simulations
take parameters such that D>>U >A. In the free-
electron limit, when k,,,— 0, F}, has the simple form

—mplep) o krR 1+ 2, /D)]'?

Fio= kR ’

(N
for w, >0 and Fp(w,)=F}(—w,). For large kgR,
V2F,, is negligible and the Green’s functions reduce to
the ones of the single impurity case. When kzR is not
large, F, will give rise to an indirect exchange interaction
between the impurities.

The usual RKKY calculation for the induced spin-spin
interaction proceeds from a model in which an impurity
spin S; is coupled to the conduction electrons by

g—z/)k S, . (8)

H=— ZJSd%[fk'
Kk’

Using second-order perturbation theory in J*¢, the result-
ing RKKY exchange coupling J between two impurity
spins

H =J(R)S;'S,, 9)

separated by a distance R, is given by

J(R)=—ZZ S (J2F ,(iw,,kpR) . (10)

In the free-electron case where F, is given by Eq. (7), the
low-temperature limit of Eq. (10) gives the usual RKKY
result’

mer cos(2kpR)

__[7sd 2 ~
I =W plep) P = (11)

However, if J%¢ is energy dependent, the structure of
the RKKY interaction is modified near the impurity.'>!3
Schrieffer and Wolf'* showed that for small values of
A/U, the Anderson model could be transformed to a
Kondo s-d exchange model with an energy-dependent an-
tiferromagnetic s-d exchange interaction Ji.. For the case
in which €¢;,=—U/2,

U U
e —(U/R2P e —(UR)?

Ji =p? (12)
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For our present purposes, it is appropriate to replace €,

and €, by the energy transfer Matsubara frequency w,,, so

that Eq. (10) becomes

2

v
U

r
2

(U/2)?

J =
w2 +(U/2)?

Fhliw,,kpR) ,

2

n

(13)

with (8V2/U), the effective Schrieffer-Wolf exchange cou-
pling. Then, for example, in the free electron limit when
krR <D /U,

8A - cos(2kgR)
JR)= |22 | | Ty 2T (14)
nU | | 4 (kgR)?
12,13

Thus the dynamic response of the impurity Green’s
function changes with characteristic fall off of the interac-
tion from (krR)~3 to (kzR)~? when kyR becomes small-
er than of order D/U. For the parameters used in our
Monte Carlo simulations, we are usually in the
krR <D /U regime, where J(R)~(kzR)™2.

In this paper we will use Monte Carlo techniques to
calculate various physical observables such as the equal
time spin-spin correlation function {(o%c%) and the im-
purity susceptibilities. By studying the dependence of
these quantities on the temperature and impurity separa-
tion kxR, we can obtain insight into the behavior of the
indirect exchange interaction. For the weak coupling case
where Eq. (9) can be used we have for the spin-spin corre-
lations, if we neglect charge fluctuations,

1—eB R

= (15)

(oi03)

zZ .z
1
We can take into account charge fluctuations to lowest or-
der by renormalizing both the effective exchange and the
spin-spin correlation by the local moment:

m?={((09?)={(n;;—n;)?) , (16)
which will be less than unity for any finite U, and obtain
1—eB RIm’ BJ (R)(m?2)?
<0’§U§)=Wm ~——4—'— , (17)
for BJ (R)m? << 1, and for the susceptibility
__ 8m?
X= eﬂJ(R)m2+3 : (18)

If J(R) remained fixed as the temperature decreases, a
low-temperature singlet state would be formed when
J(R)>0 with (o%0%) going to —m? and X vanishing as
88m2e & (Rim*  For J(R)<O (ferromagnetic coupling),
the low-temperature limit of (o%0%)=m?%/3 and
X ~88m?. However, at low temperatures the spins be-
come strongly correlated with the conduction electrons
and the detailed behavior of {o30%) and the susceptibili-
ties depends upon J(R)/Tk.

As Yosida and Yamada showed, ! perturbation theory
in U/A can also provide a useful guide. For example, the
equal time spin-spin correlation function to first order in
U is given by
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(0%0%)=—-2 (T gg?z(iw,) 2
+4UT§X“(ia),)X21(——ia),) , (19)
with
Xilio)=T 3 g}ilio, +io))g (io,) , (20a)
(20b)

Xplio)=T 3 g% io, +ie g} lio,) .

In these expressions, the frequency dependence of g9, is
set by A. Therefore, when kxR <D /A, {ci0o3) obtained
from Eq. (19) decreases as (kgR)™? due to the dynamics
of the Anderson impurities, as previously discussed. We
find in the next section that for U/7A <1, (o3o3) calcu-
lated from Eq. (19) is in reasonable agreement with our
Monte Carlo data at intermediate temperature, while Eq.
(17) gives better agreement for larger U.

ITII. MONTE CARLO METHOD

The input in the calculation is the imaginary-time
Green’s function for the noninteracting case:

gi?(I,II)ZTze—iw,,AT(I—I')gg(l.wn) ) 1)

Here, i,j=1,2 and 1 </,I’ <L label times slices of size AT
with B=LAr. The Green’s functions gJ(iw, ) are given in
Eq. (4).

An Ising variable S;(/) (i=1,2) is defined at every time
slice for each impurity. A configuration is specified by
these 2L Ising variables, and a Monte Carlo sweep in-
volves attempting to flip each one of these variables
sequentially. The Green’s function for the fully interact-
ing system for a given configuration obeys the Dyson
equation:

gy=g2+(g2—1)(ey“—l)g# . (22)

Equation (22) is a matrix equation where the matrix labels
are impurity and time slice, i.e., 2L X 2L matrices. pu la-
bels electron spin. The potential V is diagonal in impurity
indices and time indices and is given by

VG5 1) =8,;8,uAS; (1) (23)

with p==1 and coshA=exp(A7TU /2).

The Monte Carlo procedure used involves an exact up-
dating of the fermion Green’s function every time an Ising
spin is flipped.!®!® The computer time for our case is
proportional to 8L3 per sweep [(nL)® for n impurities].
The code is trivially vectorizable on a Cray computer
since the updating do loop, which takes the bulk of the
computer time, is very simple. A typical run of 6000
sweeps with L =64 takes 16 min on a Cray XMP.

The only source of error in our computation (besides
statistical) is the finite-time slice size Ar; we expect the
systematic error to be proportional to (A7)?AU. We have
performed the simulations for A=0.5 and U=2 and 4 us-
ing A7=0.25 and 0.5. We find the differences with the
two values of AT to be a few percent. We have also made
extensive studies of the A7 dependence in the single im-
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FIG. 1. Comparison of Monte Carlo and exact diagonaliza-
tion results for local moment and spin-spin correlations for a
two-impurity two-site conduction electron lattice. U=2, A=0.5.
Solid lines are exact results, solid and open circles Monte Carlo
results for A7=0.25 and A7r=0.5, respectively. The band is
half-filled so that the impurity correlations on nearest-neighbor
sites are antiferromagnetic.

purity case,!” and compared Monte Carlo results with ex-
act diagonalization results for two impurities and a two-
site conduction electron lattice. Figures 1 and 2 show
comparison of exact and Monte Carlo results for the two-
site model with U=2 and A=0.5, for equal time correla-
tions and susceptibilities [Eq. (25)]. It can be seen that
the agreement is excellent (~5% or better). We expect
the results presented in the next section to have the same
level of accuracy.

IV. NUMERICAL RESULTS

We start with a discussion of the indirect exchange in-
teraction for intermediate values of the temperature. Fig-
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FIG. 2. Same as Fig. 1 for the susceptibilities. Solid and
open circles denote uniform susceptibility, and solid and open
triangles staggered susceptibility, for A7=0.25 and 0.5. Because
the impurity correlations are antiferromagnetic, the staggered
susceptibility is larger than the uniform one.
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FIG. 3. Spin-spin correlations vs krR for B=4. Solid lines
are results from first-order perturbation theory, Eq. (19). The
dashed lines are results from large-U perturbation theory equa-
tion (17).

ures 3 to 5 show results for spin-spin correlation versus
distance for several values of U and =4, 8, and 16. It
can be seen that the characteristic oscillatory behavior is
obtained already for small values of U. The position of
the first node in the indirect exchange interaction varies
with U, beyond that the results are very similar for all
values of U considered. The temperature dependence is
found to be stronger for small values of U. It can be seen
that our lowest-order perturbative expression Eq. (19)
gives a reasonable fit to the data for U=1 at =4 and
B =38, but fails for =16. Similarly, the large U expres-
sion Eq. (17) [with m? taken from the Monte Carlo re-
sults and J (R) calculated from Eq. (13)] fits the data well
for U=4 at =4 and 8, but not at =16. The agreement
of both expressions with the Monte Carlo data is not as
good for U=2. The numerical results appear to follow a
1/R? law in the range of kR studied, as discussed in Sec.
II. Figure 6 shows the U dependence of our results for
krR=0, compared with the perturbative expressions. For
B=4 and 8, a smooth match of the weak- and strong-
coupling perturbative expressions gives reasonable agree-
ment with the numerical results for all U. For larger
values of U, we expect the correlations to decay as (A /U )?
as predicted by the Schrieffer-Wolff transformation.
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FIG. 4. Same as Fig. 3 for B=38.

Figures 7 to 12 show the temperature dependence of
the local moment,

(o})=((ngy—ng)*) , (24)

spin-spin correlations {o%0%), and uniform and staggered
spin susceptibilities:

X= foﬁdr([021(7')+0§(T)][01(0)+‘75(0)]) » (252)

Xst= fO"dT<[aq(r)—ag(f)][oﬂm—05(0)]), (25b)

for U=2 and kgR=0.5, 1.0, 1.25, 1.5, 2.0, and 3.0. We
also show the results for the corresponding case with
krpR = oo for comparison, and the Kondo temperature for
that case (Tx =0.088) as an arrow.

Consider Fig. 7. The exchange interaction is strongly
ferromagnetic here; the local moment starts forming at
high temperatures following the single impurity values but
at low temperatures it is enhanced with respect to the
R =« case. At temperatures 3~4 to 8, the spin-spin
correlations increase following roughly what one would
get from just a spin-spin interaction term in the Hamil-
tonian:

J
L—e® —BJ (26)

(giod)=—"F%~—— .
12 3+eﬂ] 4
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FIG. 5. Same as Fig. 3 for f=16.

The dashed line in the figure show the temperature depen-
dence of this expression, with J=0.065 fitted to the
Monte Carlo results [it is slightly lower than that given by
Eq. (13)]. At temperatures above B=4, the spin-spin
correlations decrease below the value given by Eq. (26)
due to charge fluctuations since the local moment is start-
ing to decrease. At temperatures below =8, the spin

FIG. 6. Spin-spin correlations versus U for krR=0. Solid
and dashed lines are results from first-order perturbation theory
and large-U perturbation theory, respectively, Egs. (19) and (17).
The Monte Carlo results for 3=4, 8, and 16 are drawn as solid
circles, crosses, and open circles, respectively.
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FIG. 7. Top: Spin correlations (open circles) and local mo-
ment (crosses) for two impurities, krR=0.5, U=2, and A=0.5
vs temperature. The solid circles show the local moment for
krR = . The dashed line shows the spin-spin correlations one
would obtain from a temperature-independent indirect exchange
interaction. Bottom: T times susceptibility for this case. Open
circles, uniform susceptibility; crosses, staggered susceptibility;
solid circles, susceptibility for krR = 0.

correlations again deviate from Eq. (26), and appear to
level off around S=32. This suppression of the spin-spin
correlations should not be attributed to charge fluctua-
tions (the local moment is constant in this range), but
rather to the fact that the Kondo effect is setting in and
suppressing the RKKY interaction.

The susceptibility coincides with the single impurity
values up to f=1; for lower temperatures, TX starts de-
creasing in the R = o case due to the Kondo effect while
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FIG. 8. Same as Fig. 7 for kpR=1.
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FIG. 9. Same as Fig. 7 for kpR=1.25.

it increases somewhat and then stays constant for the two
impurities. We believe at lower temperatures TX will be
suppressed but have not reached that regime for this case.
The staggered susceptibility shows values close to the sin-
gle impurity ones but somewhat lower. This appears to
be in disagreement to results obtained from a large-N ex-
pansion. '#

As we increase the value of kR, we see in Figs. 8 to 12
that the spin-spin correlations become smaller since the
indirect exchange interaction is decreasing. (J=0.05,
0.039, 0.024, 0.008, —0.006 for kzR=1, 1.25, 1.5, 2, and
3, respectively.) In all cases the spin-spin correlations fol-
low an effective spin Hamiltonian behavior given by Eq.
(26) and deviate from this when T approaches Tk. It is
particularly clear in Figs. 9 and 10 that the spin-spin
correlations have leveled off and will likely stay at this
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FIG. 10. Same as Fig. 7 for kpR=1.5.
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FIG. 11. Same as Fig. 7 for kpR=2.

finite value, intermediate between 0 and 1, down to T=0.
Since in all cases the local moment is essentially the same
while the asymptotic value of {o3c3) is quite different, it
is clear that this asymptotic value is determined by the re-
lation between the Kondo temperature and strength of the
indirect exchange interaction rather than by charge fluc-
tuations. Thus, we expect the same range of asymptotic
values of (o%03) to occur with the Kondo Hamiltonian
(scaled by the local moment). The asymptotic value of
(030%) is close to its value attained around the Kondo
temperature.

As kpR increases and the indirect exchange becomes
weaker we now see the susceptibility TX starting to be
suppressed in the temperature range studied. For
kpR=1.5 and 2 it appears to follow a universal Kondo
curve with a somewhat lower Kondo temperature. For
smaller kxR it appears that the decay of TX is slower
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FIG. 12. Same as Fig. 7 for kpR=3.
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FIG. 13. Same as Fig. 7 for U=4, A=0.5, and krR=1.5.

than given by the simple single impurity behavior with a
renormalized Kondo temperature. In all cases, single im-
purity behavior for all quantities is observed for 7 > 1.

Figure 12 shows an antiferromagnetic case (kpR=3).
The spin-spin correlations appear to tend again to a finite
nonzero value which is negative for this case. Here the
staggered susceptibility is slightly larger than the uniform
one. However, because the indirect exchange interaction
is much smaller than the Kondo temperature there is not
much difference with the single impurity results. The
same was true in the weakly ferromagnetic case, Fig. 11.

Figure 13 shows one case for a larger U, U=4. The lo-
cal moment and susceptibilities are larger than for U=2,
but otherwise the results are qualitatively similar. The
spin-spin correlations here follow the form Eq. (26) (with
J=0.035) over a wider temperature range because the en-
ergy scales A and Tk are more separated than in the pre-
vious case. But at sufficiently low T again they tend to
level off.

V. DISCUSSION

We have presented results of Monte Carlo simulations
for a two-impurity Anderson model which are essentially
exact. We found the following features:

(a) At high temperatures (T > A) the behavior is identi-
cal to isolated impurities. The local moment slowly de-
velops as T is lowered below A, and the susceptibility is
given roughly by X ~ (o3 ) /T. The spin-spin correlations
are negligible.

(b) As T is lowered below A, the local moment is fully
developed and levels off, while spin correlations start to
grow. These are clearly induced by correlations between
the impurity spins and the conduction electrons. For
U/mA =1, the spin-spin correlations follow the behavior
predicted by perturbation theory Eq. (19). For larger U,
they are reasonably approximated by an effective spin
Hamiltonian expression Eq. (9), with J(R) the modified
RKKY coupling given by Eq. (13) with the mean square
local moment {m?2) given by Eq. (16). At the same time
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that spin correlations develop, the susceptibility starts to
deviate from the single impurity behavior and to differ
from the staggered susceptibility.

(¢) As T is decreased further and approaches T the
spin-spin correlations deviate from what one would obtain
from a fixed indirect exchange J and start leveling off so
that at low temperatures {o30%) ~J (R)/4Tg. The local
moment is essentially temperature independent in this
range. One can interpret this as meaning that the indirect
exchange interaction is decreasing proportionally to the
temperature. The magnetic susceptibility TX starts to de-
crease, but slower than the universal behavior of the single
impurity (in the ferromagnetic regime).

(d) If the indirect exchange interaction is small com-
pared to the Kondo temperature the impurities never de-
velop significant correlations and all thermodynamic
properties are essentially given by their single impurity
values.

In summary, our results support the more conventional
picture of the two-impurity problem rather than the one
suggested in Refs. 4 and 5. For J << Tk, the impurities
are independent and individually quenched; for J compa-
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rable to Ty, the impurities develop magnetic correlations
as T is lowered up to Tx and they are “collectively
quenched,” with the moments retaining residual correla-
tions as T—0. Thus below Tk we find that {o%03) does
not approach the singlet —1 or triplet 1 limit, rather it
approaches an intermediate value of order J(R)/4Tk.
These residual correlations may, in a concentrated system,
be related to the low temperature coherence properties ob-
served in heavy-fermion materials. '°
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