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The inelastic neutron scattering technique was used to determine the dispersion of the spin-wave
excitations of the triangular antiferromagnet CsMnBr3 below T& ——8.3 K. Two spin-wave branches
of transverse and longitudinal symmetry were observed which are excellently described on the basis
of a spin-wave model including an intrachain exchange coupling J= —890+10 peV, an interchain
exchange coupling J"=—1.7+0.1 peV, and a single-ion anisotropy parameter D =12+1 peV. The
small value of the ratio J"/J indicates the one-dimensional magnetic character of CsMnBr3. Care
has to be taken in the interpretation of the observed energy spectra with respect to two-magnon
scattering contributions. Our data are consistent with the recently observed spin-wave energy gap of
CsMnBr3 in the one-dimensional state.

I. INTRODUCTION

A major breakthrough in the understanding of magne-
tism occurred sixty years ago with the discovery of quan-
tum mechanical exchange by Heisenberg' and Dirac.
Later their ideas were generalized by Van Vleck. The
Heisenberg —Dirac —Van Vleck (HDVV) model assumes
pairwise magnetic interactions of the form

&= —2 g J)S;.S, ,

where J;J is an effective exchange parameter and S; is the
spin operator of the ith ion. The HDVV model is an ex-
tremely powerful model for the interpretation of a wide
variety of magnetic properties of S-state systems. Obvi-
ously it is of fundamental interest to know both the signs
and magnitudes of the exchange parameters as well as the
limitations of the applicability of the HDVV model.
Quantum-mechanical calculations of exchange interac-
tions, both on an ab-initio level and with a variety of ap-
proximations, can claim only qualitative accuracy. The
most reliable information thus results from experimental
data. Measurements of the magnetic properties and the
heat capacity have long been used to derive exchange pa-
rameter values. Spin-wave dispersions, obtained by in-
elastic neutron scattering (INS), provide a valuable source
of information about exchange parameters. The potential
of ferro- and antiferromagnetic resonance, NMR, and op-
tical spectroscopy (magnon sidebands) has more recently
been realized. There are principal difficulties, however, in
the derivation of exchange parameters from experimental
data in magnetically ordered materials. Except for a few

low-dimensional situations it is not possible to obtain ex-
act theoretical solutions of the relevant effective Hamil-
tonian. The sum of pairwise interactions has to be re-
stricted, and certain approximations have to be made in
the underlying statistical concept. In addition, effects
such as higher-order exchange coupling may not manifest
themselves directly in the physical properties under exam-
ination. Nevertheless, there is an alternative method
which bypasses the difficulties that arise with cooperative
systems. This alternative method is to study a few mag-
netic ions which are exchange coupled among themselves
and isolated in a "nonmagnetic" matrix. The advantage
of studying such magnetic clusters is that the model can
be treated exactly, as only a small number of interactions
are present and cooperative effects do not occur. Hence,
an unambiguous comparison of theory and experiment is
possible as outlined in paper II.

In the present paper we present INS experiments on
CsMnBr3. The crystal structure is hexagonal, space
group P63/mme, and consists of chains of Mn + ions
along the c axis with an intrachain separation of 3.26 A,
whereas the interchain distance amounts to 7.91 A. Be-
cause of the simple, spin-only ground state of the Mn +
ions (S = —', ) the exchange interaction is expected to be of
the HDVV-type. Neutron diffraction, magnetic suscepti-
bility, and specific-heat measurements showed that three-
dimensional magnetic ordering occurs at T& ——8.3 K.
Below T& the Mn + moments are coupled antiferromag-
netically along the chains but lie in the basal plane, where
they form a triangular array. The magnitude of the
Mn + moment extrapolated to 0 K amounts to about
3.3pz. This low value can be explained by the existence
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of a substantial zero-point spin deviation, which rejects
the basically one-dimensional nature of the magnetic
coupling. Indeed, above Tz neutron scattering maxima
were observed at reciprocal lattice planes, indicative of
one-dimensional correlations along the chains which sub-
sist up to about 50 K.

Various attempts to determine the exchange interaction
from the magnetic thermodynamic properties provided
values for the nearest-neighbor intrachain coupling be-
tween —970 and —850 peV. ' There is no doubt, how-
ever, that a more reliable value results from an analysis of
the spin-wave dispersion. From INS experiments carried
out in the ordered phase a nearest-neighbor intrachain in-
teraction J= —880+10 peV and a nearest-neighbor inter-
chain interaction J"= —1.9+0.3 peV were obtained, i.e.,
the exchange along the c axis is almost 3 orders of magni-
tude larger than in other directions, which confirms the
one-dimensional magnetic behavior of CsMnBr&. The
spin waves measured in the one-dimensional magnetic
state have similar energies to those found below T&, but
no dispersion is observed for wave vectors perpendicular
to the c axis as expected. '9, 10

The INS rneasurernents of the spin-wave dispersion in
CsMnBr& reported so far ' are not sufficiently detailed
to allow an unambiguous interpretation, since only one
spin-wave branch was observed. Although the spin-wave
branches are nearly degenerate along the (001) direction,
an appreciable splitting may be expected for the spin
waves perpendicular to the c axis, particularly in the vi-
cinity of the magnetic Brillouin zone centers. Therefore
we decided to reinvestigate the spin-wave spectrum of
CsMnBr with the aim to resolve the low-energy spin ex-
citations and to study in detail the energy gap at zero
wave vector, which provides direct information about the
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FIG. 2. Energy spectrum of neutrons scattered from
CsMnBr& at T =6 K.

magnetic anisotropy. As we will show below, our data
clarify the recent controversy concerning the analysis of
the spin-wave energy gap observed for CsMnBr& in the
one-dimensional state. '9, 10

II. EXPERIMENTAL RESULTS

-10

1.5

The INS experiments were performed at the DR3 reac-
tor in Ris5 and at the reactor Saphir in Wurenlingen.
The high-resolution scans were performed at Ris@ with
the use of the triple-axis spectrometer TAS7 which is in-
stalled at a neutron guide connected to a cold H2 source.
The scattered-neutron energy was held constant at 5 meV
giving rise to an energy resolution of 0.28 meV. At
Wiirenlingen we used the triple-axis spectrometer R2 with
the scattered-neutron energy kept fixed at 13.7 meV giv-
ing rise to an energy resolution of about 1 meV. The sin-
gle crystal of CsMnBr& was prepared as described in de-
tail in paper II. A cylinder of 0.7 cm diameter and 1.2
cm length was oriented so as to place the (101) plane into
the scattering plane. The measurements were carried out
in the neutron energy-loss configuration for scattering vec-
tors Q=(Q„,O, Q, ), i.e., for spin waves propagating along
the (100) and (001) directions. The majority of the
data were taken below T&.

Typical high-resolution energy spectra are shown in
Figs. 1 and 2. Clearly two spin-wave excitations are ob-
served along the (100) direction. The peak positions of
the spin-wave excitations versus wave vector
q=(g'„g~, g', ) are shown in Fig. 3. The background of
the energy spectra displayed in Fig. 1 exhibits a broad
cusp centered between 1 and 1.S rneV which is due to
two-magnon scattering. The spectral distribution of the
two-magnon scattering contributions is considerably tem-
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FIG. I. Energy spectra of neutrons scattered from CsMnBrq.
The temperature was 6 K for the upper spectrum and 4.2 K for
the lower two spectra.

FIG. 3. Observed and calculated spin-wave dispersions of
CsMnBrq at T =6 K.
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FICx. 4. Temperature dependence of one- and two-magnon
scattering contributions to the energy spectra of neutrons scat-
tered from CsMnBr3 for Q=(0,0, 1).

perature dependent as shown in Fig. 4. Upon raising the
temperature the mean energy is shifted upwards and the
intensity increases, reaching a maximum at about 10 K,
and then decreases and disappears above 40 K. On the
other hand, the one-magnon scattering is dominant at low
temperatures as expected; its intensity decreases with in-
creasing temperature and disappears in the two-magnon
background for T & 10 K.

HI. THEORY

The anisotropy term with D &0 forces the spins into the
xy plane. Qn the basis of Eq. (2) we obtain the following
expression for the spin-wave dispersion of a triangular an-
tiferromagnet with ordering wave vector ko= ( —,', —,', 1)

fico(q) =2S&u (q)U(q),

with

~'

u (q)=4
l
J

l
sin +

l

J"
l
[3—f (g„,g' )],

U(q)=4
l
J

l
cos

2
+ !J"

I [3+2f(4 4, )l+D (4)

f(g gy) cos(2irg )+ cos(2irgy)+ cos[2ir(g +g )]

The neutron cross section has the following form

Following Eq. (1) and restricting the exchange to
nearest-neighbor intra- and interchain interactions J and
J", respectively, the relevant spin Hamiltonian for
CsMnBr3 reads

&=—2J g S; SJ —2J" g S; SJ +D g (S )

-F'(Q) g 5 p—,ge ' ' +pi I dre ' '(A, lS; (0)Sj~(t)
l

A, ),
,o . Q'

where F(Q) denotes the form factor and pi the population of the state
l

A, ). Terms with a&p vanish. For a=p=z we

have

d20.
' QQ @co
L

' 22

-F (Q) 1— u (q)
u(q)

' 1/2

fn (coq)+ —,
' T —,']5(co+coq)5(Q —~kq) .

where n (coq) is the Bose occupation number. The upper and lower signs denote processes in which a single spin wave of
energy coq is annihilated and created, respectively. For a=p=x and a=p=y expansion of the operators S; and Sf in
powers of I/S yields in first order

xx,yy
cf cT

lQ Jco

'2

-F'(Q) 1+ [n (coq)+ —,
' + —,']5(cokco )

U (q+ko) v (q —ka)
x g 5(Q —&+ko+q)+ g 5(Q —v —kokq)

u (q+ ko) u (q —ko)

Equations (6) and (7) suggest that for a given scattering vector Q realized, e.g., in the neutron energy-loss configuration
three spin waves with different energies are created, namely fico(Q ~), fico(Q ~+ko), and fico(Q r ko), whic—h ca—n
readily be identified according to the polarization factors in the cross-section formula. For CsMnBr3 we have

D, l
J"

l
«

l

J l, thus strong spin-wave intensities are expected for scattering vectors Q with the z component Q, close to
any odd integer.

Expanding the spin operators of Eq. (5) up to second order yields the neutron cross-section for two-magnon scattering:
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2 magnons
d cT

dQ dco
-F'(Q) 1+

2

X P P [—,
' sinh(28«) sinh(28Q+i, q)+ sinh 8« sinh 8Q+i, q]

q k= +k0

&(n (coq)[n (coQ+i, q)+ 1]5(co+coq coQ+i, q)

+ [—,
' sinh(28«) sinh(28Q+i, q)+ sinh 8« cosh 8Q+i, q] n (coq)n(coQ+i, q)5(co+ coq+coQ+i, q)

+[—,
' sinh(28«} sinh(28Q+i, «)+ cosh 8« sinh 8Q+i, q] [n (coq)+ 1][n (coQ+i, q)+ 1]5(co—co« —coQ+i, q)

+[—,
' sinh(28«) sinh(28Q+i, q)+ cos11 8q cosll 8Q+i, q] [n (coq}+1]n (coQ+i, q)5(co coq+coQ+i, q),

with

41 J
I

cos(~4. }—3
I

J" if(k. k, )+D
4

I
J

I
+

I

J"
I
[6—f(k 4, )]

(9)

Since there is no fixed correlation between the scattering
vector Q and the magnon wave vectors, two-magnon
scattering does not give rise to well-defined excitations,
but broad distributions are expected in the energy spectra.

IV. ANALYSIS OF RESULTS

For the scattering vectors Q = ( Q„,O, Q, ) realized in the
present experiments the spin-wave energies fico(Q r+ lcp)—
and fico(Q —v —

leap) are degenerate, thus we expect to ob-
serve two spin-wave branches with energies fico(Q ~) and-
%co( Q —~+kp ) corresponding to longitudinal (zz) and
transverse (xx,yy) excitations, respectively, as shown in
Figs. 1 and 2. For Q=(O, O, Q, ) the longitudinal mode
disappears due to the polarization factor of Eq. (6), and
the transverse excitations are roughly degenerate except
for Q, close to any integer. The energy spectra were ana-
lyzed in terms of Gaussian fits to the observed spin-wave
peaks, whose widths are essentially determined by the in-
strumental resolution as given by the elastic line for spin
waves propagating along the (100) direction, whereas the
widths of the spin-wave peaks propagating along the
(001) direction were considerably broadened due to the
steep slope of the dispersion. The two-magnon contribu-
tions were also approximated by a Gaussian, although the
corresponding cross section, Eq. (8), may yield a more
complicated form. The experimental spin-wave energies
at T =6 K (Fig. 3) were interpreted on the basis of Eq. (3)
which provided the following least-squares fitted model
parameters:

J = —890+10 peV,
J"=—1.7+0. 1 peV,

D = 12+1 peV .

The calculated spin-wave dispersion is in excellent agree-
ment with the experimental data as shown in Fig. 3.

Although the two-magnon scattering contributions can
be calculated from Eq. (8), its application to interpret the
present data is made di%cult for the following reason.
Most experiments were performed for scattering vectors

Q=(Q„,0, 1), thus we have from Eq. (9) tanh(28«)=1,
since

I

J" I,D «1. This means that the argument 28« is
not well defined due to the statistical uncertainties of the
model parameters, and consequently the cross section (g)
cannot be reliably determined. Nevertheless Eq. (8) quali-
tatively predicts the observed features of the two-magnon
scattering contributions. The main contributions to the
two-magnon scattering come from magnon pairs with
wave vectors lying both in reciprocal planes with integer
values of g, and corresponding magnon energies in the
range 0 & Ace & 1.5 meV. Therefore the two-magnon
scattering is expected to cover the energy range 0&Ace & 3
rneV, in agreement with our observations. For scattering
vectors with noninteger values of Q, the two-magnon
scattering drastically decreases; it is already absent for
Q=(0, 0, 1.1) as illustrated in Fig. 2.

V. DISCUSSION

The exchange parameters of CsMnBr3 determined in
the present work essentially agree with the results of ear-
lier INS experiments, and the anisotropy parameter com-
pares well with D =+12 peV derived from EPR measure-
ments of CsMgBr3 doped with Mn + ions. ' From our
experiments we clearly obtain D &0, so that the Mn +
moments are forced to lie perpendicular to the c axis in
agreement with the neutron diffraction results.

Our model parameters may be used to calculate various
physical properties of CsMnBr3. For the Neel tempera-
ture Hennessy et al. ' derived the following relationship:

T~ —— S(S+ ) (JJ")'~
B

(10)

Inserting the exchange parameters obtained in the present
work yields T& ——8.2 K, which is in excellent agreement
with the observed Neel temperature of 8.3 K. The ob-
served magnetic susceptibility is well reproduced by our
model parameters in the high temperature region, whereas
considerable discrepancies arise for T & 100 K. The
agreement can be markedly improved by the inclusion of
biquadratic exchange interactions, ' which will be dis-
cussed in detail in paper II.

Finally our model parameters may be used to interpret
the spin-wave energy gap of 1.7+0.2 meV observed for
CsMnBr3 in the one-dimensional state. ' The spin-wave
dispersion of a one-dimensional magnet is given by'
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'
t

fico(g, ) ='4
~

J
~

S 1+ 8J
—

I cos(2n.g, ) I

1/2

From our model parameters we obtain a spin-wave energy
gap (g, =0) of 0.52 meV. Another source of anisotropy
lies in the dipolar forces between the spins which has been
calculated for the one-dimensional Heisenberg antifer-
romagnet. ' This calculation has no disposable parame-
ters and predicts an energy gap of 1.2 meV for CsMnBr3.
The sum of the single-ion and dipolar anisotropy gap thus
amounts to 1.7 meV as experimentally observed. '

In conclusion, we have shown that the spin-wave
dispersions of CsMnBr3 are well reproduced by the

effective Hamiltonian (2), in which the exchange coupling
is restricted to bilinear nearest-neighbor interactions
within and between the chains. The quality of the data
did not warrant an inclusion of more distant neighbor in-
teractions. Higher-order interactions can principally not
be determined from spin-wave dispersion data. ' In paper
II we will demonstrate that next-nearest neighbor as well
as biquadratic two- and three-spin interactions contribute
to the effective intrachain parameter J in Eq. (2).
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