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A new method is described for obtaining effective pair interactions (EPI) in transition-metal alloys
from density-functional-theory total-energy calculations for supercell compounds. The calculated to-
tal energies are used to obtain explicit concentration-independent cluster interactions, through an in-
version scheme [J. W. D. Connolly and A. R. Williams, Phys. Rev. B 27, 5168 (1983)]. Using a
truncated form for the higher-order interatomic correlation functions, the cluster interactions are
resummed into concentration-dependent EPI. The EPI are interpreted within the established
perturbation-theoretic framework. The method offers a treatment of electron-electron interactions
that is more accurate than in existing perturbative methods, although the long-ranged oscillations in
the EPI are much more difficult to obtain. Furthermore, the method can be used with density-
functional calculations which supersede the muffin-tin approximation, and can generate a variety of
types of EPI depending upon the particular truncation scheme employed. Results are presented for

the Ni-Al and Nb-Y systems. In Ni-Al the EPI is strongly concentration dependent, with the order-

ing tendency much stronger at the Ni-rich end. The elastic strain energy contributes significantly to
the ordering energy. In Nb-Y the EPI favors phase separation most strongly at the Nb-rich end of
the phase diagram.

I. INTRODUCTION

A great deal of progress has been made over the past
two decades in understanding the energetics of bulk and
defective transition metals, largely because the advent of
density-functional theory as a method for treating
electron-electron interactions. However, existing theoreti-
cal techniques are still not capable of calculating
transition-metal-alloy phase diagrams from first principles,
except in very few cases. These phase diagrams involve
complicated atomic configurations which necessitate the
use of simplifying concepts such as effective interatomic
potentials, instead of fully quantum-mechanical descrip-
tions of the total energy. Existing methods for obtaining
such potentials nonempirically are not yet sufficiently ad-

vanced to quantitatively treat incoherent phase diagrams.
However, for coherent phase diagrams the simplification
resulting from the periodicity of the underlying lattice al-
lows one to define effective pair interactions (EPI), which
describe only substitutional rearrangements on this fixed
lattice, at a fixed concentration. The EPI are most
straightforwardly obtained for cases in which the scatter-
ing potential (the difference between the effective one-
electron potentials associated with the constituent atoms)
is weak. They can, however, be obtained' even for sys-
tems with strong scattering potentials through the use of
the "generalized perturbation theory" (CsPT). In this
method a completely random medium described by the
coherent-potential approximation (CPA) is used as a start-
ing point and concentration-dependent EPI are obtained
by expansion of the total energy in powers of the various
short-range-order parameters. The OPT was originally
developed within the tight-binding approximation but was
subsequently extended to include systems describable by

one-electron potentials of the muffin-tin form, using the
Korringa-Kohn-Rostoker (KKR)-CPA formalism. It is
also possible to build on the KKR-CPA by treating con-
centration Auctuations to higher order or by calculating
energies associated with specific clusters embedded in an
effective medium defined by the KKR-CPA. To date, im-
plementations of the CPA-based methods include only
changes in the one-electron energy sum in the EPI, al-
though the CPA treatment of the completely random
medium includes electron-electron interactions in an aver-
aged way. While the one-electron effects are undoubtedly
the dominant contribution to the long-ranged oscillations
in the EPI, the electron-electron terms can be important
at small separations; for alloys with sufficiently weak EPI,
the inclusion of these terms could actually change the sign
of the EPI.

On the other hand, it has recently been shown that by
matching to the results of self-consistent supercell total-
energy band calculations one can obtain physically
reasonable cluster interactions which are concentration in-
dependent, except for the indirect concentration depen-
dence mediated by lattice-constant changes. The price
paid for the concentration independence of the interac-
tions is that three-atom and higher-order terms must be
included to obtain a reasonable description of the phase
diagram. In this paper we establish an explicit connection
between the concentration-independent cluster interactions
and the concentration-dependent EPI, and use it to derive
a new method for obtaining EPI. The connection is sim-
ply that the EPI are obtained by resumming the higher-
order cluster interactions at fixed concentration, assuming
a decoupled form for the higher-order interatomic correla-
tion functions; this form corresponds to a lowest-order ex-
pansion of the total energy in powers of the short-range
parameters. In fact, if sufficiently long-ranged cluster in-
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teractions are taken into account, the interactions ob-
tained by the resummation procedure are exactly the GPT
EPI plus additional terms resulting from electron-electron
interactions and higher-order terms not included in the
GPT treatment of the random alloy response functions.
It is thus possible to obtain accurate EPI's from cluster
interactions, which are in turn obtained from ordered su-
percell total-energy calculations. The main strengths of
the method are discussed in Secs. I A —I F.

A. Improved treatment of electron-electron interactions

Since the electron-electron interactions are treated fully
self-consistently in the supercell calculations their effects
on the EPI are incIuded (within the particu1ar approxima-
tion for exchange and correlation effects used in these cal-
culations), in the sense that an atomic species is allowed
to have several different charge states with relative weights
determined by the local environment, which in turn de-
pends on the short-range order. Even if one assumes that
the Madelung energy in the completely random system is
small, the Coulomb contribution to the EPI contains the
deriUative of the Madelung energy with respect to the
short-range-order parameters and ean thus be appreciable.
This effect has been included in tight-binding-model calcu-
lations but not in more sophisticated treatments of EPI.
%"hile a disordered metallic alloy environment undoubt-
edly contains a continuum of charge states for each atom,
the discrete approximation corresponding to the use of a
finite number of supereell total energies is an irnprove-
ment over the use of only a single, short-range order-
independent, average charge state.

B. Ability to supersede the mu%n-tin approximation

The only inputs for the method are the supercell total-
energy calculations, which can be performed with any
band-theoretical formalism. The full-potential linear
augmented-plane-wave and pseudopotential methods pro-
vide results superior to muffin-tin results many cases,
such as highly anisotropy systems and open structures; at
present, no way is known of implementing the GPT
within these methods. This feature will be particularly
useful in studies of surfaces and layered structures.

C. Inclusion of additional terms in perturbation expansion

As will be discussed in Sec. II, the method described
here includes the EPI a large number of terms which ap-
pear in higher order in the GPT expansion.

D. Flexible treatment of local lattice strain eÃects

In the supercell calculations the atoms can be allowed
to relax in such a way as to minimize the total energy.
%'hile the relaxation effects are small in closely packed al-
loys, they are larger in open crystal structures. Further-
more, this way of treating atomic relaxation effects may
provide useful insight into systems not directly modeled
by the calculations, such as liquid alloys.

K. Flexible treatment of higher-order
interatomic correlation functions

By the simple expedient of using a variety of truncation
procedures to obtain the approximate higher-order corre-
lation functions used in resumrning the cluster potentials,
one can obtain a variety of potentials applicable to
different types of problems. For example, the high-
temperature expansion used in the present calculations
could be replaced by a product form, which would
presumably give more accurate results at temperatures
where the high-temperature approximation breaks down.

F. Conceptual simplicity

Since one only performs ordered supercell total-energy
calculations, there is no need for an elaborate treatment of
disorder effects. The use of calculations for periodic sys-
tems to model disordered systems is best justified for
total-energy calculations, such as those described here,
which average over the electronic density of states and are
not sensitive to the spatial behavior of particular wave
functions. If one were interested in Fermi surface proper-
ties such as conductivity, one would expect poorer conver-
gence since periodic calculations contain no mechanism
for broadening the Fermi surface.

The price paid for these strengths is, of course, that one
must use very large supercells to obtain the large separa-
tion behavior of the EPI. This is a serious problem; in the
fcc structure, a four-atom supercell yields only the
nearest-neighbor EPI, while an eight-atom supercell in-
cludes third neighbors. Since the computing time in-
creases faster than the square of the size of the unit cell,
increasing the range of the calculated EPI by a small
amount can be very costly in computer time. However,
because of the growing availability of supercomputer time,
the treatment of large supercells is becoming a less
onerous task. In fact, the speed of these computers means
that a premium is placed on conceptual simplicity rather
than minimization of CPU time. The present method is
in sense complementary to the GPT: the short-range be-
havior of the EPI, which is sensitive to the electron-
electron terms, is obtained more accurately by the super-
cell method, while the long-ranged behavior is obtained
more accurately by the GPT.

The organization of the remainder of the paper is as fol-
lows. Section II describes the method in detail and
demonstrates the connection between the potentials ob-
tained here and those obtained by the GPT. Section III
presents results for the Al-Ni and Nb-Y systems obtained
using four-atom supercells, including several treatments of
relaxation efFects. Section IV concludes by drawing paral-
lels between the problem discussed here, and that of ob-
taining effective pair potentials for describing the
geometric degrees of freedom in elemental metals.

II. METHOD OF CALCULATION

A. Derivation of EPI

The task of obtaining concentration-dependent EPI
from supercell total energy calculations splits naturally
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into two parts: obtaining cluster potentials from the
total-energy calculations, and resumming the cluster po-
tentials into EPI.

1. Matching cluster potentials to total energy calculations

gc„=&~„Xo„X Xo, & (2)

is a cluster correlation function which couples to Vc .
Here the p; are sites in the cluster. The o.z. are spinlike
variables associated with these sites which take on the
values +1 according to whether the site is an A or B
atom; the average value of o.z. , for example, is a measure
of the concentration. The brackets in (2) denote
configuration averaging.

Given (1), one can obtain the Vc from a finite number
M of total energies for supercells provided one retains
only M types of clusters, and assumes that the remaining
cluster potentials vanish. Two clusters are considered to
belong to the same type if they are related by the transla-
tional or point-group symmetry of the underlying crystal.
Clusters of the same type must then obviously have the
same associated cluster potentials. In Ref. 7, for example,
M=5 was used for a fcc underlying lattice; the cluster
types retained beyond the n=O term in (1) were a single
atom, a nearest-neighbor pair, a nearest-neighbor triangle,
and a nearest-neighbor tetrahedron. The structures used
in the supercell calculations were the pure A and B solids,
the AB compound in the CuAu structure, and A3B and
AB3 compounds in the Cu3Au structure. The Vz are
obtained as explicit linear functionals of the five supercell
total energies E (1 (m & M):

While this procedure has been described previously,
we summarize it here for clarity of presentation. The
basic assumption is that the total energy of an A-B alloy,
at a fixed lattice constant, may be described in terms of a
fairly rapidly convergent series of concentration-
independent cluster potentials. More precisely, we as-
sume that for any configuration of A and B atoms the to-
tal energy of the crystal is given by

&= & g I'c„kc„. (1)
n=o C„

Here n is the order of a cluster, and C„ is a particular
cluster of order n. (The various orderings of the atoms in
a cluster are not counted as new clusters. ) The n=O term
in (1) corresponds to the part of the total energy that is in-
dependent of concentration and order. Vc is the
concentration-independent potential associated with the
cluster C„and

useful for several reasons to transform them into EPI.
(i) Ease of interpretability. The EPI are directly con-

nected to the degree and form of order in the alloy at a
particular concentration, via, for example, approximate re-
lations' of the Clapp-Moss type.

(ii) Practical usefulness .The EPI are the first term in
an expansion of the ordering energy which is much more
rapidly convergent than the expansion based on
concentration-independent potentials. For example, the
convergence analysis of Ref. 3 demonstrated that even
rapid oscillations in the concentration dependence of the
ordering energy are obtained to an accuracy of 10—20%
by the EPI; the convergence is much slower if only
concentration-independent interactions are included. The
present analysis can easily be generalized to obtain
higher-order concentration-dependent cluster potentials as
well; we have not calculated these in the present analysis
because we have access only to fairly low-order
concentration-independent cluster potentials. Since the
inclusion of high-order cluster potentials can lead to con-
siderable numerical difficulties in phase diagram calcula-
tions, the improved convergence obtained by concentra-
tion dependent effective interactions is a substantial ad-
vantage.

(iii) Comparison with other approaches. EPI have by
now become a standard language for describing ordering
energies in alloys, and it is therefore useful to translate re-
sults for ordering properties into this language.

There is, of course, some loss of accuracy when one
translates the cluster potentials into EPI; however the re-
sults to be described later will show that most of the
effects of the higher-order cluster potentials are well ac-
counted for by the concentration dependence of the EPI.

The central step in obtaining the EPI is to approximate
the higher-order correlation functions gc, with n ~ 2, by
truncated forms including only the pair correlation func-
tion. %e choose the decoupled form

4c„=(~ X . X~, &

(4)

(The (cr~. ) are independent of p;, by the average transla-
tional symmetry of the alloy. ) This form is readily ob-
tained by expansion of g'c to second order in the concen-
tration fluctuations b,o~. =a~. —(o ), and thus assumes
that

&(o„—&o &)X . X(cr,„—&cr&)&=O (5)

with the coefficients for M=5 given in Ref. 7.

2. Resummation of cluster potentials
into concentration-dependent EPI

%'hile the analysis of Ref. 7 showed that valuable phys-
ical insight can be gained from the V& themselves, it is

if none of the p; are equal. It will be shown below that
this particular method of truncation results in a type of
EPI similar to that obtained by the GPT.

From (1), (2), and (4) it follows that in the approxima-
tion employed, E is a function only of (o ) and the pair
probabilities (crz cr~ ). For .any . two sites pi and pi we
can thus define a fixed-concentration EPI
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BE
B&o o

=4
S I P2

The normalization of Pz, z, is consistent with that in Ref.
1, which is such that in a model completely described by
pair potentials,

—( y»+ y» 2y»)
P& P2

Here V ", V, and V are pair potentials evaluated at
the separation between the sites p& and p2. Thus positive
and negative values of P correspond to ordering and clus-
tering behavior, respectively.

From (1), (2), (4), and (6) we obtain the desired result

&max

n =2 Cn

Here N,„ is highest cluster order included and the
primed sum is restricted to clusters which contain both
the sites pi and p2.

Since &cr & is linear in the alloy concentration c we see
that P~, ~, is given as a polynomial of order (N,„—2) in

c. Thus to obtain EPI that are rapidly varying as func-
tions of the concentration, it is necessary to include clus-
ters of very high orders.

ic reference medium obtained by application of the CPA
to the configuration-averaged one-electron Green's func-
tion of a completely random system. We will denote the
CPA Green's function operator by G . To obtain
corrections due to short-range order and fluctuations, one
considers' the scattering relative to the CPA effective
medium:

Eord

Here E" is the configuration-dependent part of the one-
electron energy, t = g, t;, where t; is the scattering opera-
tor associated with the atom at site i relative to the CPA
reference medium, and G«contains only the intersite
contributions to G . The site scattering operator can be
written in the form

(1+o;) „(1—o.;)
2 ' 2

where t;
' ' is the scattering operator associated with an

A (B) atom on site i Sinc.e the CPA eff'ective medium is
defined by

(10)

B. Perturbation theoretic analysis we have

We now demonstrate that the method described results
above in a type of EPI similar to that obtained by the
GPT, provided that sufficiently high-order clusters are
taking into account. In the GPT one starts with a period-

defining b, t;. Thus, expanding (8) in powers of t, one ob-
tains

E&&'= —2 J dE y
7T n=2 P»P2&P3 .

&(oq, —&o &)X ' ' X(crp —&cr &)&Tr(htp, cp, p, btp, btp Gp p, ) . (11)

EPI can be obtained from Eq. (11) in two ways. The simplest way is to truncate the series at n=2, in which case E"
is manifestly given entirely in terms of pair contributions. This is the method that has been most commonly used in
physical applications. By (10), this approximation would provide exact results for a hypothetical system which satisfies
Eq. (5), for all possible (p„. . . ,p„), including even those consisting entirely of repetitions of two sites. A more accurate
type of EPI is obtained if one retains all terms in (11) containing only two sites. Then (5) is assumed to hold only for
(pi, . . . ,p„) containing three or more sites, while the higher-order correlation functions involving only two sites are
treated exactly. However, neither of these approximations is physically realizable, since, for example, no term involving
only squares of the (o ~,

—
& 0 & ) can vanish.

In the present approach, the energy is given entirely in terms of correlation functions involving only distinct sites.
Thus (5) is assumed only for nonrepeating terms with pi, . . . ,p„all distinct. Since

cr"=1 n even,

0 =cr lt odd,
(12)

the configuration averages of the remaining terms are already completely determined by the nonrepeating terms. For ex-
ample, using (5) and (12) we obtain

&(o i
—&o &)(~2—&~&)(~i —&~&)(~3—&~&)

(13)
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Furthermore, the approximations (4) and (5) are physical-
ly realizable in this case; it is straightforwardly shown
that they correspond to the first term in a high-
temperature expansion of the correlation functions, pro-
vided the Hamiltonian generating them contains only pair
contributions. Thus the present approximation obtains
exactly the ordering energy in this limit, provided

sufficiently high-order clusters are included. The terms
with repeated indices are therefore implicitly assigned the
values which are rigorously determined by the values of
the nonrepeating terms. It follows that the present ap-
proximation for the EPI includes in an approximate
fashion many of the three-atom and higher-order terms in
the GPT expansion.

III. RESULTS FOR SPECIFIC SYSTEMS

Before presenting our results, we briefly describe our
treatment of lattice strain effects. We use the following
distinct approaches.

(i) Complete neglect of lattice relaxations. All the su-
percell total energies E in (3) are calculated at a fixed
lattice constant, which is taken to be independent of con-
centration. Thus from M total-energy calculations we ob-
tain P,z, for all c.

(ii) Inclusion of global relaxations. For each concentra-
tion the E are obtained at a fixed lattice constant. How-
ever, for each concentration a new lattice constant is used.
The concentration-dependent lattice constant is obtained
by linear interpolation between the 3 and B lattice con-
stants calculated in the fcc structure. Here the assump-
tion is that at a given concentration, the 2 and B atoms
reside on a perfect undistorted lattice. The number of
total-energy calculations required is M X(number of con-
centrations treated).

(iii) Inclusion of local relaxations. Here we artificially
ignore the constraints on the cluster bond lengths imposed
by the rest of the lattice. Each supercell total energy E
is obtained at the 1attice constant at which E is mini-
mized. It is thus assumed that each cluster in the alloy is
able to relax to its preferred lattice constant. This is not
an accurate approximation for the closely packed alloys
mentioned under (ii), but is likely to be a better approxi-
mation for liquid alloys. Furthermore, extended x-ray ab-
sorption fine structure data" show that in alloys having
very open structures such as the zinc-blende structure,
bond lengths can be closer to the constituent bond lengths
than to the average alloy bond length.

In our calculations we use M=5 and include only
nearest-neighbor clusters of up to four atoms on a fcc lat-
tice, with the cluster interactions obtained from 3, A3B,
AB AB3 and B total-energy calculations as described in
Ref. 7 (cf. Sec. II). Pz, z, is then a quadratic function of c
and is obtained only for p& and p2 nearest neighbors. We
thus drop the subscripts on P. We feel that truncation of
the cluster expansion at the M=5 level is a reasonable ap-
proximation for systems (such as those under considera-
tion here) in which the ordering energy is large in com-
parison with the expected contributions from Fermi sur-
face effects, such as those seen in Cu-Pd alloys. This be-
lief is confirmed by comparison of the magnitudes of the

four-atom interaction V4 and the pair interaction V2 in
the two systems to be studied here, as well as in our pre-
liminary results for eight other Al transition-metal a11oys.
In these systems the average strength of V4 relative to Vz
is 6—7%. Although the relative contribution from V4 to
P is enhanced by a combinatoric factor (this can be as
large as 6 for concentrations close to zero or unity, but is
only —,

' at 25%%uo and 75% concentrations), this indicates a
reasonable degree of convergence already at the four-atom
super cell level. While the resulting potentials cannot
quantitatively treat the competition between different or-
dered phases such as the Cu3Au and A13Ti structures,
they should provide a good description of the overall con-
centration dependence of the ordering tendency. This
type of understanding is essential in a variety of metal-
lurgical problems.

We now display results for an ordering alloy system
and a clustering one. The total energies are calculated
with the augmented-spherical-wave method' using a local
exchange-correlation functional of the Hedin-Lundquist
form. ' Relativistic effects are neglected.

A. Ni-Al

We have neglected the magnetic effects associated with
the Ni atoms for simplicity. This should lead to no
significant errors since the energy associated with spin po-
larization is small (&0.1 eV per atom) even in pure Ni,
and the spin polarization is expected to vanish over most
of the phase diagram. Furthermore, neglect of the spin
polarization energy, which drops with increasing tempera-
ture, is in the spirit of our high-temperature approxima-
tion for the higher-order interatomic correlation functions.

0.6

0.5

0.4

0.5
O

0.2

0. I

—0.2
0 0.5 I

Ni

FIG. 1. Effective pair interactions for Ni-Al system. Treat-
ments of relaxation described in Sec. III. Triangles denote
values of interaction obtained by matching to calculated heats of
formation for ordered supercell compounds. Circles denote cal-
culated points for locally relaxed potential. (Additional points
are calculated outside the range of lattice constants shown, so
that no extrapolation is performed. )
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Although the lattice constant in this system does not vary
linearly with concentration, as is assumed in obtaining the
globally relaxed potential, the resulting corrections to the
EPI are small and are neglected here.

The globally relaxed EPI, shown in Fig. 1, displays a
strong concentration dependence. Its large positive value
at the Ni-rich end is consistent with the very strong order-
ing tendency in Ni&A1, which remains ordered up to its
melting point' of 1658 K. At the Al-rich end the value
of P drops rapidly. The unrelaxed curve is obtained at a
fcc lattice constant of 6.64ao, which is close to that of Ni.
This curve shows that even if concentration-induced lat-
tice constant changes are neglected, the concentration
dependence of P is strong. However, the large discrepan-
cy between this EPI and the globally relaxed EPI at 50%
concentration indicates that the lattice constant changes
must be included to obtain a satisfactory description of
the EPI.

The locally relaxed curve lies below the other two for
all concentrations. This type of behavior is expected if
only naively associates P with the heat of formation at a
particular concentration. Then, the value of the globally
relaxed EPI at 50% concentration, for example, corre-
sponds to the energy required to separate the Ala 5Nio z

into constituent elemental Al and Ni, which are con-
strained to have the lattice constant of Ala 5Nio z. The lo-
cally relaxed EPI, on the other hand, corresponds to the
elemental AI and Ni having their preferred lattice con-
stants. The latter clearly requires less energy than the
former, so that globally relaxed EPI must be more posi-
tive than the locally relaxed EPI. Of the three calculated
EPI, this is the most closely related to solid solubilities.
Although our restriction to four-atom clusters prevents a
definite conclusion about whether P changes sign at the
Al-rich end, we note that a negative value of P is con-
sistent with the very low solid solubility' (0.023% at
640 C) of Ni in Al; in contrast the solubility' of Al in Ni
is 10% at 640'C.

The triangles in Fig. 1 denote the values of P obtained
by matching to the calculated heats of formation of Al&Ni,
NiA1, and Ni&A1, with all total energies evaluated at equi-
librium lattice constants. Since the compounds are forced
to occupy a fcc lattice, the Al&Ni and NiA1 compounds
are hypothetical. The discrepancy between these points
and the locally relaxed EPI is a measure of the error in-
duced by the high-temperature approximation (4) for the
higher-order correlation functions. Even in this case,
where the cluster potentials are evidently large in magni-
tude and the assumed temperature is zero, the discrepan-
cies are quite small. By contrast, comparison of this
curve with the globally relaxed curve shows that in this
system obtaining in EPI from the heat of formation re-
sults in 30%%uo discrepancies.

It is instructive to compare the EPI values obtained
here to those obtained' from a fit to the Ni-rich part of
the Ni-Al phase diagram based on empirical Lennard-
Jones potentials. We expect that the EPI describing the
solid part of the phase diagram should be intermediate be-
tween the globally relaxed and the locally relaxed EPI.
The EPI values obtained from the empirical fit are 0.31
eV at 75% Ni and 0.40 eV at pure Ni. By comparison,

our globally relaxed values are 0.47 and 0.50 eV, and the
locally relaxed values 0.39 and 0.44 eV. Thus the calcu-
lated EPI display semiquantitative agreement with the
empirical ones and the sign of the concentration depen-
dence is obtained correctly. Calculations with larger su-
percells will be required in order to obtain more quantita-
tive accuracy.

B. Nb-Y

IV. CQNCLUSIQN

In this paper we have shown that using a resummation
scheme, one can generate EPI similar in character to
those obtained by the GPT, starting from the supercell

Q. l

globolly relaxed

0

-O. I

0
Y

0.5
C

I

Nb

FICs. 2. Effective pair interactions for Nb- Y system.

Since this system does not form a solid solution, we
focus on the liquid part of the phase diagram. Because of
the greater freedom of motion in the liquid relative to the
solid, it is probably modeled best by the locaBy relaxed
EPI (cf. Fig. 2). This EPI is negative for all concentra-
tions, consisting with the observed miscibility gap in the
liquid. The concentration dependence of the EPI is
strong, the magnitude at the Nb end exceeding that at the
Y end by a factor of 3. The miscibility gap in this system
is shifted substantially toward the Nb-rich end, ' indicat-
ing that the interaction favoring phase separation is
stronger at this end. While to our knowledge no detailed
calculations of the effect on the liquid phase diagram of
the concentration dependence of the EPI have been per-
formed, this behavior appears to be consistent with that of
the calculated EPI.

Comparison of the globally and locally relaxed EPI's
shows that the lattice strain effects are very large as is ex-
pected from the large mismatch in the atomic volumes.
(The atomic volume of Y exceeds that of Nb by over
80%.) As for Al-Ni, these effects favor ordering. In this
case, they are large enough to change the sign of the EPI.
Thus if the two constituents were artificially forced to
have the same lattice constant, ordering would actually be
favored over phase separation.
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TABLE I. Analogy between resummation schemes for potentials describing atomic rearrangements in
elemental metals and those describing alloy ordering energies. On the right-hand side, n (r) denotes den-
sity of atoms.

Source of
cluster potentials

Truncation
scheme

Type of potential
obtained by
resummation

Alloy EPI

Supercell total energy
calculations

(oo X . Xo. )=
( o,a, )(o )"
Constant concentration

Elemental pair potentials

Moments of one-electron
density of states

(n(r~)X Xn(r. )) =
(n (r~)n (rz)) (n )" +
Constant volume

method described in Ref. 7. The concentration depen-
dence of the EPI thus obtained has direct manifestations
in alloy phase diagrams. It is instructive to compare the
resummation scheme described here to one analyzed ear-
lier' for "bond-breaking" and "constant-volume" intera-
tomic potentials in elemental metals. The analogy be-
tween the two schemes is illustrated in Table I. Through
analysis of the moments of the electronic density of states,
one can generate' a series of cluster potentials which de-
scribe fairly accurately energies associated with a large
variety of atomic rearrangements in elemental metals (at
least within the tight-binding approximation). For exam-
ple, the pair potential derived from the second moment
describes broken-bond energies. The moment-derived
cluster potentials are analogous to the Vc in Eq. (3). As

in the alloy case, the cluster potentials are somewhat
unwieldy and it is desirable to resum them into an
effective pair potential valid for a small range of atomic
rearrangements. In the elemental case this is accom-
plished through a second-order expansion in the nonuni-
form part of the density of atoms, which is directly analo-
gous to our second-order expansion in the alloy concen-
tration fluctuations. The resulting potentials are of the
same type as those obtained from pseudopotential expan-
sions' about a uniform electron gas. The elemental po-
tentials are valid at constant volume, while the alloy po-
tentials described here are valid at constant concentration.
Unlike the present case, however, the higher-order corre-
lation functions obtained by expansion in the density fluc-

tuations are not physically realizable, since they are miss-
ing, for example, the r& ——r2 5-function terms. Thus there
is no class of statistical behaviors, such as the high-
temperature limit for the EPI, in which they ar rigorously
exact. They do, of course, provide fairly accurate results
for a variety of simple metal systems. The neglect of the
6-function terms is closely analogous to the neglect of
terms with repeated indices in the simplest version of the
GPT.

As suggested in Ref. 17, new types of resummation
schemes may lead to potentials which have a difFerent
range of validity or are more accurate than those de-
scribed here. There are, for example, a number of trunca-
tion schemes for the higher-order correlation functions
which are more sophisticated than that given by (4).
Since the present scheme corresponds to a high-
temperature expansion, the more sophisticated schemes
may be more useful for lower temperatures at which the
short-range order is substantial. These schemes may be
included in the present formalism with essentially no ex-
tra effort.
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