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Theory of ferroelectricity: The polarizability model
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We consider ferroelectric compounds created by relative ionic displacements between two or more
sublattices ("displacive" phase transitions). For these ferroelectric materials the nonbonding p orbit-
als of oxygen (0 ) or chalcogen (S, etc. ) ions play a central role, which is taken into account in

the dynamical theory. It turns out that the fourth-order polarizability of the chalcogen ions is the
main mechanism responsible for specific dynamical properties such as phonon dispersion curves and
their anomalies ("soft modes"), Raman scattering, etc. The self-consistent phonon approximation is

shown to give good results at all temperatures, particularly at T =0 ("quantum limit" ) where this ap-
proximation is consistent with renormalized-group theory, and at very high temperatures ( T && T, ).

I. INTRODUCTION

In a review of the lattice dynamics of ferroelectricity
Gillis and Koehler end their discussion with the ques-
tion: ".. . why, for two crystals of the same lattice struc-
ture, is one ferroelectric and the other not?" They add
the remark that the answer to this question is "intimately
tied to a realistic description of the interatomic forces in
insulators. "

The present paper is mainly concerned with this prob-
lem. We are going to show that an essential part of the
microscopic origin of ferroelectric phase transitions may
be found in the intrinsic electronic instability of the 0
ion and its homologues, S, etc. , which in ionic com-
pounds are stabilized by long-range Coulomb forces only.
This hypothesis is supported by the observation that about
99% of the known ferroelectrics are chalcogenides and
97% of them oxides. We start with a short discussion of
the oxygen-ion polarizability (Sec. II) and then describe a
semimicroscopic vibrational model ' (Sec. III) which de-
scribes the effect of the outer nonbonding p electrons of
the chalcogenide ions in terms of a fourth-order electron-
ion potential. This strongly localized, repulsive potential
turns out to give the main part of the second-order Ra-
man spectra in simple and in perovskitic oxides. Furth-
ermore, it leads to a quantitative understanding of the
temperature dependence of soft modes in KTa03 and
SrTi03. In a simplified lowest-two-modes version the
model is able to explain the temperature behavior of soft
modes in very diff'erent systems such as SbSI (Ref. 5),
K2Se04 (Ref. 6), and SnTe (Ref. 7) and related com-
pounds. Here, a self-consistent (one-loop) approximation
to the interaction potential' is used which seems to work
for second-order phase transitions as well as for (weakly)
first-order cases, i.e., it fits the data nearly within the lim-
its of experimental errors. The main result of this investi-
gation is that simple mean-field behavior, with a value
y= 1 for the critical exponent of the static susceptibility,
is only an intermediate case; at very high temperatures y
tends to zero (saturation) and at very low temperatures y
approaches a value of 2 (quantum limit), except for loga-

rithmic corrections. In this quantum regime, the upper
critical dimensionality (d =4) becomes equal to the
dimensionality of the system which is enhanced, by quan-
tum effects, from d=3 to d =4. Therefore, the mean-
field exponent of the soft-mode frequency is the critical
(static) exponent of the Landau-Ginsburg-Wilson theory
of a tbsp model. In the high-temperature regime, on the
other hand, the polarizability model exhibits a changeover
from the P4 to a $2 model in marked contrast to the stan-
dard type of one-component P4 models.

For the interested reader, we mention (among the
numerous reviews and articles on ferroelectrics) four re-
cent books on the subject, the first by Mitsui et QI. , pro-
viding a comprehensive introduction and survey; secondly
the most useful thorough monography by Lines and
Glass, thirdly an investigation of photoferroelectrics by
Fridkin, ' and fourth a review on ferroelectric IV-VI corn-
pounds by Bussmann-Holder et al. "

II. THE OXYGEN POLARIZABILITY
AND ITS ROLE IN FERROELECTRICS

At present, more than 450 ferroelectric and antifer-
roelectric substances are known (see Ref. 12 and Lines
and Glass ) nearly all of them being chalcogenides. They
may be phenomenologically divided into two classes: a
first one of the "order-disorder" and a second one of the
"displacive" type. This distinction is by no means as
clear as it seems at the first glance: some ferroelectrics
such as the KHzPO4 family seem to exhibit features from
both types. We shall, nevertheless, use this conceptual
division into two types, one built of molecular groups
with permanent dipoles (order-disorder type), and a
second one where the dipole moments are induced during
the phase transition so that the soft-mode concept be-
comes important (displacive type). We are only con-
cerned with this second type of ferroelectrics, and we shall
try to understand the intrinsic relation between the forma-
tion and orientation of electric dipoles in the ferroelectric
phase transition.

The rich phenomenology of ferroelectrics which differs
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in many chemical and physical properties supports the
opinion that several different microscopic mechanisms are
responsible for the appearance of ferroelectricity in
different materials. We hope to be able to demonstrate
that many ferroelectrics with induced dipoles can be de-
scribed by the same microscopic mechanism, i.e., the non-
linear quartic polarizability of oxygen or chalcogen ions.

The problem of the oxygen ion 0 and its homolo-

gous S, etc. can be traced back to investigations by
Biltz and Klemm. ' They found that the ionic radius of
0 cannot be defined by a Goldstein rigid-ion radius.
Instead space "increments" have to be introduced to de-
scribe the peculiar properties of 0 in a crystal. A
justification of this flexible description of the oxygen ion
was phenomenologically given by Tessmann et al. , who
investigated ionic polarizabilities as functions of different
crystalline lattices. ' While a fixed polarizability e can be
ascribed to most of the investigated ions, the oxygen-ion
polarizability was found to be strongly dependent on its
surroundings. For instance, in simple-cubic oxides such
as MgO, CaO, SrO, etc. a(O ) depends linearly on the
ionic volume. In tetrahedrally bound oxides, covalency
enhances this effect to a volume-squared dependence
while in spinels and ferroelectric oxides the anisotropic
configuration of 0 leads to a = V

The probability of 0 has been calculated quantum
mechanically within the Watson model. As 0 is
configurationally unstable as a free ion, Watson' intro-
duced as a stabilizing potential a sphere with a uniformly
charged surface to simulate the crystalline Coulomb po-
tential. The Watson potential V has to fulfill the follow-
ing conditions (refer to Fig. I).

(i) The depth of the potential well is given by the
Madelung potential at an oxygen lattice site and thus
defines the Watson radius R which simultaneously is
proportional to the lattice constant.

(ii) For large radii the crystalline Coulomb potential V,
is asymptotically compensated by the Watson potential
V .

Thus wave functions and charge densities can be comput-
ed as a function of the Watson radius R, which are used
to calculate the polarizability by ~cans of the formalism
of Thorhallson et al. '

In Fig. 2 the results of the isotropic model calcula-
tions' are shown. The polarizability of 0 as a function
of the Watson radius is compared to the polarizability of
the "well-behaved" ion F . While in the limit R ~ oo,a
of F converges to a constant value, the 0 polarizabili-
ty diverges. Within the physical relevant range of R„,
a(O ) is proportional to R consistent with the above-
mentioned dependence of a on the cell volume phenome-
nologically found in simple oxides. '

To calculate wave functions and polarizabilities of par-
tially covalent and anisotropic oxides one has to go
beyond the Watson model. The potential is no longer
spherical but should exhibit ellipsoidal features. We have
simulated the effect of anisotropy within the Watson mod-
el by taking a weighted average over Watson spheres with
different radii R&,R2. ' The closure approximation was
used and a rotational ellipsoidal polarizability assumed.
This procedure led to an additional volume dependence of
a(O ) as compared to the isotropic case. Including co-
valency, a further enhancement should be achieved, thus
eventually leading to the observed nonlinear polarizability
of oxidic ferroelectric perovskites.

An interesting result about the effect of anisotropy on
the 0 ion has been obtained by Prat. ' He calculated
the energy levels and total energies for different
configurations and symmetries using the unrestricted
Hartree-Fock method. Prat found that an ellipsoidally
distorted charge distribution could lead to a (meta)stable
0 configuration, though the total energy of this aniso-
tropic charge distribution is higher than that of the unsta-
ble isotropic 0 configuration. Inspection of these re-
sults points to the importance of "in-out" correlations of p
electron pairs with opposite spins and suggests why 0
has mainly a twofold or fourfold coordination in solids as
known from chemical structure data.

1.5—

1.0-

1.5-

~ 00
I

L-0.5- -~2~

-1.0—

1.0 2.0 2.5 0

FIG. 1. The Watson sphere model for the O ion: Coulomb
potential V„exchange potential V„, Watson potential V, result-
ing potential V,z, and energy level of 2p electrons Epp.

FIG. 2. Polarizabilities a of 0 and F ions as a function of
Watson radius R
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III. THE POLARIZABILITY MODEL

A. The three-dimensional model

The lattice dynamics of cubic perovskite (ABO3) fer-
roelectrics based on a shell model was developed by
Cochran and his co-workers (Ref. 21 and references
therein). The inelastic neutron scattering data on SrTi03
have stimulated further detailed investigations by Cow-
ley and Stirling. The shell model they used includes
axially symmetric short-range forces which couple the
shell of each oxygen ion to those of its nearest A, B, and
O ions [refer to Fig. 3(a)]. All ions, A, B, and 0, were as-
sumed to be isotropically polarizable, each one with shell
charges y; and core-shell coupling constants E; (i = 3, B,
0).

As discussed in the preceding section, this shell model
had to be extended to take into account the nonlinear an-
isotropic polarizability of the oxygen 0 ion. Since the

FIG. 3. (a) The perovskite (ABO3) structure. Slashed circles
represent the A sublattice, open circles the oxygen ions, and
solid circles the B sublattice ions, respectively. (b) Location of
oxygen ions in the perovskite structure. The ellipsoid at the
oxygen-ion site represents the symmetry of its polarizability.
The springs within the ellipsoid refer to the anisotropic core-shell
couplings. The shells of A and B ions are isotropically coupled
to the respective cores.

oxygen-ion polarizability depends strongly on its crystal-
line environment, two independent core-shell force con-
stants were considered for this ion: KQ& for shell core
displacements directed towards its neighboring B ions and
KQ& for those lying in the plane where the oxygen is sur-
rounded by four A neighbors [Fig. 3(b)]. This model was
developed by Migoni, Bilz, and Bauerle, who successfully
calculated the soft modes of SrTi03 and KTa03. In their
model the lowest term of the nonlinear core-shell interac-
tion at the oxygen-ion site is of fourth order because of in-
version symmetry in the paraelectric phase. It includes
four independent parameters KQg g KQg g KQQ g and
KQz z where each 3 or B corresponds to a pair of core-
shell displacements, as a consequence of the oxygen site
symmetry. However, it has been shown ' that the tem-
perature dependence of the soft mode and other low-
frequency modes as well as the Raman spectra depend on
KQg g only. This corresponds to the modulation of the
oxygen-ion polarizability in the direction of the neighbor-
ing transition-metal ions (Ti,Ta) and indicates that the
phonon-induced change of the transition-metal —oxygen
bond, i.e., the hybridization of oxygen p and transition-
metal d electrons, plays an essential role for the dynami-
cal properties of ferroelectrics ("dynamical covalency, "
refer to Bilz et al. ).

The importance of the p-d hybridization represented by
Kog ( T) has recently been demonstrated for the mixed
crystals of KTai Nb 03. The hyper-Raman data on
these compounds have been interpreted on the basis of
the above-described model. It was shown that the tem-
perature dependence of the soft modes as a function of
composition x is only due to the e6'ective core-shell cou-
pling Eoz(T). On the basis of these previous analyses it
becomes clear that the relevant dynamical and critical
features of perovskites and other ferroelectrics are con-
trolled by a limited number of parameters, much less than
required in a three-dimensional treatment. A physically
more transparent form can be achieved by considering
only the crystalline ferroelectric axis as the lattice dynami-
cal relevant one.

The technical procedure for this reduction is simple and
straightforward and can be exemplified for a perovskite
structure without loss of generality. In a first step of this
procedure the B03 unit is lumped together to one large
highly polarizable mass m &. The intracluster forces KQg
and KQg g are replaced by local core-shell couplings g2
and g4, where g2 also includes the attractive Coulomb
forces which destabilize the ferroelectric mode. This
means that gz, unlike KQ&, is a negative quantity. Stabili-
zation is achieved via the fourth-order attractive core-shell
interaction g4, which plays exactly the same role as
KQg g In the next step the three-dimensional "pseudo-
NaCI" structure is projected onto the ferroelectric [100]
direction. The three-dimensional character, important for
the calculation of critical properties, is, nevertheless,
maintained in the phase-space integrations.

B. Layer model of cubic and uniaxial ferroelectrics

The Hamiltonian of the model reads

H=T+ V,



35 THEORY OF FERROELECTRICITY: THE POLARIZABILITY MODEL 4843

where

T= —,
' g (miu I„+m2u 2„+m, lu I„+m,2U 2„),

m2u2n f(u in +uln+I 2n + In +win+I 2W2n )

+f2(u2„+I+u2„, —2u2„),

p'=
—,
' g Lf'I(uI„—u,„,) +f2(u2„—u2„1)

+f( V 2„—U I„) +f( V2„—U I„+I )

+R2 (Uln u In ) +R2 (U2n 2n )

o=(2f+R2 )Wln+R4W ln

—f(u2„+u2„, —2ui„+w2„+w2„ i),
(2f+R2 )W2n

—f(uln+u in+ I 2u2n+ win+ Win+I)

(9)

(10)

+ T~R4(V 1n
—u I„) ] (2)

and m1, m, 1, m2, and m, 2 are the core and shell masses
of atoms 1 and 2, respectively; u1„, v1„, u2„, and v2„are
their displacements in the nth cell; f, f, and R2' (i=1,2)
are shell-shell, core-core, and internal shell-core harmonic
force constants (Fig. 4) while the anharmonic constant R4
accounts for the nonlinear polarizability of atom 1. In
general, only one of the two ionic species of the diatomic
lattice exhibits a strongly nonlinear temperature-
dependent polarizability. From the definition

;„=v;„—u;„(i= 1,2 )

we have

,' QLf-i(ui. —ui. i)'+f2(u2. —u2. -i)

Here we discuss the approximate solutions in the self-
consistent phonon approximation (SPA) in order to ana-
lyze explicitly the temperature dependence of soft modes
and related quantities. It is important to mention that
this model admits exact nonlinear solutions in the form of
traveling waves which have been treated in a separate pa-
per.

C. Self-consistent phonon approximation (SPA)

The SPA for Eqs. (7)—(10) corresponds to a lineariza-
tion of the cubic term in the displacement coordinate w1„,
1.e.,

R4(win ) =3R4W in ((Win ) )T:RT W ln—

where

+f(u2„—u I„+IV2„—W I„)2
2w 1(qj )coth

B
(12)

2+f(u2n —u in+i +W2n —

Win+�i�

)

(1) 2 (2) 2 i 4+R2 W ln +R2 W2n +TR4 ln ]

Taking into account the adiabatic conditions

5V
5v ln

The dynamical information enters (12) through the
SPA eigenvalues co~ and related eigenvectors WI(qj) for
all phonon branches j and all wave vectors q in the first
Brillouin zone. Taking this average in the equations of
motion is of course not equivalent to a similar average in
the free energy. We shall discuss this point in a later sub-
section, and proceed for the moment to a direct solution
of the equations of motion. We shall see that this pro-
cedure is very close to the rigorous one. In this approxi-
mation Eq. (9) now reads

5V
5v2n

=0, (6) (2f+R'")w I„——f(u,„+u,„,—2u, „

we write the equations of motion as follows: +W2n +W2n —I ) (13)

m I u i„f(u2„+u 2„1—2u I„——+W2„+W2„1 —2W ln )

+f I (u in+ I+ u In —I 2u ln )

where

(1) (1) + (1) (2) (2)
2 T p 2 (14)

In the paraelectric regime (T & T, ), R'" is positive and
changes sign at the transition temperature T, . At the
transition temperature,

lYI ~
(&)

foal 2
(2) ( W ln ) T, R2 ~3R4 =W0~3 (15)

where wo ———g2" /g4 means the relative shell-core dis-
placement at the potential minima. With this condition,
we now obtain stable solutions from the equations of
motion. Using standard Fourier transform, we obtain the
following equations in q space:

FIG. 4. Layer model of cubic and uniaxial ferroelectrics.

m1 0
2

0 m2

U1 U1
=D(q)

2 2
(16)
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with a force-constant matrix

1+A1sin (aq)
D(q) =2j' —cos(aq )

—cos(aq )

1+A2sin (aq)
(17)

rigid-ion limit (T ~ )

200 — 2
0

We have defined the T- and q-dependent effective force
constant

with

1+2f/g„+(4f /g"'g' ')sin (aq)
(18)

gg(1)g(21/(g(1I+g(2))

2f'1 2f 2f 2 2f
] (2) 2 (1)f g g

(19)

(20)

&00

2f

The shell-core eigenvectors 8 ] and 8 2 are related to the
eigenvectors U& and Uz by the equations 2f

1

W', = „, U2cos(aq) — 1+, ,
sin (aq) U1

2f 2f . 2 (21)

W2 ——
2

U1cos(aq) — 1+, sin (aq) U2
2f 2

The dispersion relation can be written explicitly as
T

o2+(q) =f . [1+A1sin (aq)]+ [1+A2sin (aq)]
mm)

(22) FIG. 5. Comparison of theoretical (solid lines) and experi-
mental (Ref. 31) (dots) dispersion curves for T=20 K (solid dots)
and T=300 K (open dots) for KTaO3 ~ Dotted lines represent
the temperature and q-dependent interpolated ferroelectric mode
[Eq. (31)], while dashed lines reproduce the rigid-ion limit, i.e. ,
g —+ oo.(&)

1 [1+A1sin (aq)]

1 [1+A2sin (aq)]
m2

2

2

m2 1+2f/g(21
+2f,'

At the zone boundary (aq =sr/2) we have
r

2
CO+

2Q
(26)

1/2
4cos (aq)+ ~ ~

m&m2
(23)

CO

2a
f

m, 1+2f/g'" (27)

Figure 5 shows the fitting of these dispersion curves to the
experimental data of KTa03. ' The model parameters are

m& ——2. 88X10 g, m2 ——0.649X10 g,
f=4.067 X 10 gs, f '1 ——0.581 X 10 gs

g2" ———0.828 X 10 gs

g4 ——0.255 X 10 gs cm (f2
——g2

' =0) .

In the limit q~0 the acoustic mode dispersion is

co+(q) =[(2f+4f2 )/m2]sin'(aq ),
co (q) = (4f 1/m1)sin (aq )

(28)

(29)

It is important to remark that the limits q~0 and g„~0
cannot be interchanged. At the phase transition (g, =0,
o2F 0) the ferroelectric ——branch degenerates into a pseu-
doacoustic branch, since our system splits now into two
independent chains. Thus, for g'"=0 and small q

~o' (q)=
2 (f+2f', +2f2)sin (aq), (24)

D. Temperature dependence and critical regimes

m&m2

while the ferroelectric mode tends to

2 1
co+(0)=o2F ——

—=coo/(1+2flg„) . (25)

We now proceed to a calculation of the thermal aver-
ages of (w1„)T [Eq. (12)] by means of Eqs. (21) and (22).
Since (w1„)T is a function of roF and T we obtain from
Eqs. (11), (12), and (25) a single self-consistent equation
giving the implicit relation between coF and T,

g2 ( ~F/~O)+ 3g4( ~F/~0) IF(~F~ ) P~F

(30)

Here, p is the reduced cell mass and coo is the rigid-ion
limit of co+, when both g "~oc.

where IF is an integral over the three-dimensional Bril-
louin zone containing all the dynamical information.
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Here we want to discuss the analytical behavior of cuF for
various temperature regimes. To this purpose we use in
the calculation of ( ur 1„)r only what is analytically
relevant, that is the ferroelectric branch with some simpli-
fying assumption, i.e., g' '= oo and an isotropic dispersion
with a Debye-like behavior at large q:

rof (q )-co~+ (4f ', /m 1 )a q (31)

m~ U&+m2U2 ——1 .2 2 (33)

This dispersion relation connects the zone-center fer-
roelectric mode to the T-dependent zone-boundary mode.
For m» m2 the latter is the acoustic mode, and therefore
Eq. (31) neglects the noncrossing between optical and
acoustic modes. In the opposite case (m1 & m2), Eq. (31)
just describes the T-dependent optical branch. For this
branch [Eq. (31)] we have in all cases a relationship be-
tween the core eigenvectors

m2 U2 —— rn1 U1 c—os(aq )

with the normalization condition

where coD=(fD/p)' is a Debye frequency and fD is the
related force constant. The reduced mass p is used in-
stead of m& in order to account for the temperature-
independent branch neglected in the integration. This is
enough to ensure completeness, and therefore to give a
correct description of cof also in the high-temperature lim-
it. The analytical behavior of IF determines the T depen-
dence of coF in different regimes.

3kB T
Ip(cop, T)=

2
1—

PcoD

COF
arctan (36)

and when ~F &&coD the arctan term drops out, the mean-
field relation,

E. High-temperature regime (2k& T & Aco27 )

For large T, i.e., 2kB T & AcoD, the hyperbolic cotangent
can be replaced by the reciprocal of its argument, which
gives

By inserting Eqs. (32) and (33) in Eq. (21) and using the
approximation g' '~go [all apices (1) are dropped], we
have

2

cop —— (T T, ) (T—& T, ),
pTc

(37)

W1(q) = m)
1 + cos (aq)

m2
(34)

is obtained, where

Consistently with a Debye behavior, the integral can be
rewritten as

fD I g2 I

kBT, = 2kBTc )~D
9g4

(38)

IF( coF, T ) = 3A t ~D co
3 JO ( 2+ 2)1/2

g( 2 + 2)1/2

& coth
B

de, (35)

is mass independent. It is interesting to note that the ex-
pression for T, in the classical limit can be worked out
exactly for our model restricting to the simplified assump-
tion made in Eq. (31). The expression of T, involves an
integral over both acoustic and optical branches:

kBT, = 1

9g4 V, /3 J dqq [(1/f)cot (aq)+(1/2f1)csc (aq)]
(39)

~F-~a[1 (fD/3g4ka»'"—l . (40)

where V, is the cell volume. The integral in the denomi-
nator defines the inverse of an effective force constant,
which, according to Eq. (38), is just fD. For increasing T,
coF deviates from linearity and tends to the rigid-ion value
(saturation) according to the asymptotic expression 1/x, x &1

cothx =
1, x)1 (41)

(2k&T, &RcoD) by making use of the approximations for
the hyperbolic cotangent

When the mass m& refers to a polarizable cluster, e.g. ,
the 803 units in ABO3 perovskites, the shell mass m, &

cannot be neglected anymore. This nonadiabatic treat-
ment changes the asymptotic critical exponent from —,

' to
approximately —,', which also has been verified experirnen-
tally 327 33729

The behavior of co+ near the phase transition (T=T„
co~ ——0) can be derived analytically for the quantum
(2k T, 2&1RcoD) as well as the classical mean-field regimes

(i) (2k/A') T & coD »co+ (classical ferroelectric, e.g.,
SbSI),

3kB T
F— NF COF

1 —— +
2 coa coD

'2

(42a)

therefore for small coF, i.e., coF «co&, we distinguish the
following cases
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3~D 2k' T 2

4fD ficoF

2k~T aF
ACt)D COD

2
2k~ T

1+ln
ficoD

(42b)

(iii) coD »coF &(2k/R)T ( incipient ferroelectric, e.g.,
PbTe),

3fKt)D Q)F
IF= ~ 1+

COD

2
COF

—,'+ln
2COD

(42c)

(ii) coD » (2k /R) T & co~ (quantum ferroelectric, e.g. ,
KTa03),

to be valid].
According to the mean-field behavior, but for

coF & T, /F, q, the critical exponent becomes larger than 1

and is 2 at coF ——0. In most cases F, q &&1, so that such
deviation occurs only at small coF and is not observed.
Figure 6(a) shows a calculation of coF and of (coi) as
functions of T for KTa03 as derived from the fitting men-
tioned above (Fig. 5). Deviations from the mean-field be-
havior (dotted line) occur in the quantum regime and at
high temperature due to saturation. However, the cross-
over between the quantum and the mean-field regimes is
much more evident in the logarithmic plot of Fig. 6(b). A

It has to be pointed out that no T dependence is left in
the expansion for the incident ferroelectric case, Eq. (42c).
By diff'erentiating Eq. (30) and using the expansions (42a)
and (42b), we find

UJF

lO rad/s

3

(a)
K Ta03

(w„)
(l0 cm')

dT
dNF

F,coF +aT
(classical ferroelectric),

2')D —'TTCc7 F
(43a)

d T Fq coF +mT (ficoF /. —kg )ln(2kii T/ficoD )

dNF 4k' T/A —nmF

( quantum ferroelectric), (43b)

where

4T,
F, = (2p —1),

COD
(44a)

2A'

k,
2k~ T,

1+
D

p —1- (44b)
0

I

100
I

200 300 T(K)

and

p= 1—
S2

The respective transition temperatures are given by Eq.
(38) or (39) for the classical regime, and by

' 1/2

ln
Pc

(46)

for the quantum regime. The quantum limit (T, ~O)
occurs when p approaches from above the critical
reduced-mass value

1
Pc=~

'2
9Ag4

482
(47)

In this limit the zero-point fluctuations are

3
(W 1 ) T=O 4 PQ)D

(48) 2 3 5 6
ln T

If p &p„we have the incipient ferroelectric case with an
imaginary T, .

By inspection of Eq. (43) we see that, for any finite T„
coF grows proportionally to T—T, if cuF is greater than
AT, /F, ~ [but still smaller than 2T for the expansions (42)

FICi. 6. (a) Calculated temperature dependence of co~ (solid
line) and (wf ) (dashed line) for KTa03. The mean-field regime
is indicated by the dotted line. Experimental data (crosses) have
been taken from Ref. 31. (b) Double logarithmic plot of coF as a
function of temperature for KTa03.
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systematic analysis of other ferroelectric materials whose
T-dependent phonon data are accessible will be given in a
subsequent paper.

F. Comparison with renormalixation-group theory

-8(kii T/A) /I n(ficoD/kii T), (49)

In the quantum limit (T, =O), T and coF go to zero
simultaneously. One can easily prove that the logarithmic
term in (43b) is the leading one that coF has to vanish fas-
ter than T. This yields the quantum behavior mF-T
with a logarithmic correction. More precisely,

kBT
coF 8coD El 2 ln

h coD

rithmic corrections are approximation holds (i.e., the loga-
rithmic corrections are approximately the same for all n),
and below which critical fluctuations take place and
mean-field approximation breaks down. For n = 1,
Tg =0.1 10p and for n =3, T& ——0.00190p. Above Tg the
logarithmic correction has always exponent —1 as our
three-dimensional SPA correctly predicts. For T & T&
the logarithmic exponent tends to the exponent appropri-
ate to the number of components n. For n =3, e.g. , the
exponent is —

—,', . However, the domain where critical
fluctuations take place is very small compared to the De-
bye temperature, and tends to zero as n —+co. For this
reason we believe that it would be very difticult to check
the logarithmic correction in the extreme quantum limit.
Figure 7 shows the expected behavior of In(coF/T ) versus
In~lnT

~

for the cases discussed above.

where Ei is the exponential integral.
The presence of a logarithmic correction is consistent

with the result of renormalization-group theory for the
number of field components going to infinity. The
renormalization-group theory predicts in the quantum
limit

co —
~

lnT
~

'+

G. Transition temperature and isotope e6'ect

It is useful to have at hand a quantitative picture of
how the transition temperature depends on the model pa-
rameters such as the ionic masses and the shell-core linear
and nonlinear force constants (while keeping gz ' ——oo and
g2" ——g2). Let us reconsider Eq. (30) at the transition
temperature (T =T„coF——0):

coF —
/

InT
/

'(I+51n
/

lnT
/
+ . . ),

we note that the leading term is the first one when

5((ln '
~

lnT

(51)

(52)

where 5 =—6/( n +8) and n is the number of field com-
ponents. By expanding (50) with respect to 5

g 2
= —3g4IF (0, T, )

9Ag4

4pcoD 2kB T,
where

9'(y):—2y I dxxcoth x
0

(54)

(55)

namely

n+8T &&Opexp —exp
6

with

RcoD
Op

B

(53)
V(y) =coth(y /2)

which permits solution with respect to T, :

&(fDIP)' '
kBT, =

4 arcoth(p'"/p, '")

(56)

is a monotonous function with the limits 9'(IXI)=1 and
V(y)-2/y for y —+0. For an explicit form of T, we can
approximate 9'(y) as

T& represents the temperature above which the self-
consistent quantum approximation holds (i.e., the loga-

A plot of T, as a function of the reduced mass p is shown
in Fig. 8. The saturation of T, for large p, i.e., the mass

0
@laic

3

T2
0.8

Ic 0.6

0.4

0.2

0.0
10

I I

10

I I

0 2
I I

0.1

4/4c
1.0

I I

10'
I

102

FICx. 7. Double logarithmic plot of co+/T as function of
/

lnT
FICx. 8. The critical temperature ratio T, /T, as a function

of the reduced-mass ratio p, /p, .
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independence in the classical limit, is evident. On the
other hand, T, goes very rapidly to zero as the reduced
mass approaches from above the critical value

p, =(911gi4/4g2) /fD. In other words, the isotope effect
on the transition temperature is larger and larger in the
quantum limit and vanishes, as expected, in the high-T,
classical limit. In the quantum limit the mass dependence
of T, exhibits the logarithmic behavior given by Eq. (46).

H. Ferroelectric regime

aF = & w1&T(g2+g4&w I ) T+3g4& w 1 ) T)2 2

c) w1 r
is vanishing for either & w1) =0 (paraelectric phase) or

' 1/2

& w1&r =+ —3& w1&T
gz 2

g4

=+[2(&w 1 ) r, —
& wl) r)]'",

in the ferroelectric phase Sin. ce

(63)

In this paragraph we derive the dynamical parameter
for the ferroelectric phase (T & T, ). We start from the ex-
pression of the free energy as a sum of contributions com-
ing from the rigid-ion potential energy Vo, the potential
energy V due to the static shell-core displacement & w 1 ) T,
and the temperature-dependent dynamical part due to
SPA phonons,

0 V
, =g, + 3g4 & w1 &'r

c) W1
(65)

we can write the shell-core force constant in the ferroelec-
tric phase as

gFE g2+3g4&w1 &r+3g4& w1 &T

ficof (q )F= Vo+ V+ kit T g ln 2 sinh
q 8

V= g22& wl)T+ 4g4&wl )T

(58)

(59)

= —2g 2
—6g 4 & w 1 ) T = —2g PE (66)

As a consequence, the slope of coF, when vanishing for
T~T„ is steeper on the ferroelectric (FE) side as com-
pared with the paraelectric (PE) side.

(60)

where cof(q) is given by (31). By writing

t)cof (q) gg c)cof (q)

c)&w ) c)&w ) c)g
(61)

we have from (18) and (34)

where once more the sum is restricted to the ferroelectric
branch and we set g

' ' = oo. The equilibrium
configuration is given by

0= = &,&,(g, +g.&, &, )
dF 2

c) W1

c)cof(q) ficof (q)
+ coth

2X 2cof(q) c)&WL)T 2kST

IV. SUMMARY

The model described above based on the local nonlinear
chalcogenide ion polarizability provides a comprehensive
description of displacive-type ferroelectric phase transi-
tions. Within the self-consistent-phonon approximation
di6'erent temperature ranges of the ferroelectric soft mode,
i.e., quantum regime, classical mean-field behavior, and
saturation regime, have been obtained and found to coin-
cide with the experimentally observed phenomena. Furth-
ermore, the model predicts logarithmic corrections in the
quantum limit consistent with the results of the
renormalization-group theory. In this paper we have
presented, as an example, an application of the theory to
KTa03. A systematic analysis of further ferroelectric ma-
terials will be given in a subsequent paper.

c)cof (q)

Bg

"df 2

Bg p
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With c)g/c) & w1)2 = 3g4, we find that the driving force

(62)

The authors are gratefully indebted to H. Thomas for
stimulating discussions and to H. Vogt for critically read-
ing the manuscript. One of us (G.B.) acknowledges the
hospitality of the Max-Planck-Institut FKF, Stuttgart,
where this work was completed.

Deceased.
Dipartimento di Fisica dell'Universita and Gruppo Nazionale
di Strut tura della Materia del Consiglio Nazionale delle

Ricerche, Via Celoria 16, 20133 Milano, Italy.
N. S. Gillis and T. R. Koehler, Phys. Rev. B 5, 1924 (1972).

2M. E. Lines and A. M. Cxlass, Principles and Applications of
Ferroelectrics and Related Materials (Clarendon, Oxford,
1977).

R. Migoni, H. Bilz, and D. Bauerle, Phys. Rev. Lett. 37, 1155
(1976).

4H. Bilz, A. Bussmann, G. Benedek, H. But tner, and D.
Strauch, Ferroelectrics 25, 339 (1980)~

5M. Balkanski, M. K. Teng, M. Massot, and H. Bilz, Ferroelec-
trics 26, 737 (1980).

H. Bilz, H. Buttner, A. Bussmann-Holder, W. Kress, and U.
Schroder, Phys. Rev. Lett. 48, 264 (1982).



35 THEORY OF FERROELECTRICITY: THE POLARIZABILITY MODEL 4849

7A. Bussmann-Holder, H. Bilz, and W. Kress, J. Phys. Soc. Jpn.
49, A737 (1980).

A. Bussmann-Holder, G. Benedek, H. Bilz, and B. Mokross, J.
Phys. (Paris) Colloq. 6, C6-409 (1981).

T. Mitsui, I. Tatsuzaki, and E. Nakamura, An Introduction to
the Physics of Ferroelectrics (cordon and Breach, New York,
1976).

~oW. M. Fridkin, Photoferroeiectrics, (Springer, Berlin, 1980).
~'A. Bussmann-Holder, H. Bilz, and P. Vogl, Electronic and

Dynamical Properties of IV - VI Compounds, Vol. 99 of
Springer Tracts in Modern Physics, edited by G. Hohler,
(Springer, Berlin, 1983).

t2T. Mitsui, M. Arake, and E. Sanaguchi, in Ferro and An-tifer

roelectric Substances, Vol. 9 of Landolt-Bornstein, edited by K.
H. Hellwege and A. M. Hellwege (Springer-Verlag, Berlin,
1975).

~3H. Bilz and W. Klemm, in Raumchemie d. festen Stoffe (Ver-
lag L. Voss, Leipzig, 1934).
G. R. Tessmann, A. H. Kohn, and W. Shockley, Phys. Rev.
92, 890 (1953).
W. Kirsch, A. Gerard, and M. Wautelet, J. Phys. C 7, 3633
(1974).
R. E. Watson, Phys. Rev. 111, 1108 (1958).
G. Thorhallson, C. Fisk, and S. Fraga, Theor. Chem. Acta. 10,
388 (1968).

A. Bussmann-Holder, H. Bilz, R. Roenspiess, and K. Schwarz,

Ferroelectrics 25, 343 (1980).
R. F. Prat, Phys. Rev. A 6, 1735 (1972).
A. F. Wells, Structural Data in Organic Chemistry, 4th ed.
(Clarendon, Oxford, 1975).

W. Cochran, Adv. Phys. 9, 387 (1960).
R. A. Cowley, Philos. Mag. 11, 673 (1965).
W. G. Stirling, J. Phys. C 5, 2711 (1972).

~4R. Migoni, Ph. D. thesis, Stuttgart (1976).
25R. Migoni, R. Currat, C. H. Perry, H. Buhay, W. G. Stirling,

and J. D. Axe (unpublished).
H. Bilz, H. Biittner, A. Bussmann-Holder, and P. Vogl, Fer-
roelectrics Bull. 1, 8 (1986).
G. Kugel, M. Fontana, and W. Kress, Phys. Rev. B 39, 813
(1987).

2 G. Kugel, H. Vogt, W. Kress, and D. Rytz, Phys. Rev. B 30,
985 (1984).
R. Currat, R. Migoni, H. Buhay, C. H. Perrym, J. D. Axe, W.
G. Stirling, and R. P. Lowndes (unpublished).
G. Benedek, A. Bussmann-Holder, and H. Bilz (unpublished).
R. Comes and G. Shirane, Phys. Rev. B 5, 1886 (1972).
Y. Yamada and G. Shirane, J. Phys. Soc. Jpn. 26, 366 (1969).
R. Migoni, H. Bilz, A. Bussmann-Holder, and W. Kress,
Proceedings of the International Conference on Phonon Physics,

Budapest (1985), edited by J. Kollar, N. Kroo, N. Menyhard,
and T. Siklos (World Scientific, Singapore, 1985), p. 272.

34D. Schmeltzer, Phys. Rev. B 28, 459 (1983).


