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Theory of nuclear spin-lattice relaxation of spin-polarized hydrogen
on liquid-helium-coated surfaces due to magnetic particles in the substrate
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A theory is presented for the nuclear spin-lattice relaxation rate 1/T& for electron-spin-polarized H
atoms on or near a liquid-He-coated surface due to magnetic particles in the substrate below the He
film. The H-atom motion is assumed to be free-particle-like for atoms on the surface, while atoms in

the gas are assumed to be reflected elastically by the surface. 1/T& is found to exhibit a minimum at
low temperatures due to two competing tendencies. 1/Tl decreases with decreasing temperature be-
cause lower thermal velocities give a smaller density of fluctuating magnetic fields at the NMR fre-

quency co. However, at lower temperatures, the atoms spend more time on the surface so that even-

tually 1/T~ -e, where P= 1/k+T and Ee is the binding energy of H to liquid He. For atoms onPFg

the surface, the dominant frequency dependence of 1/T 1 is given approximately by
exp[ —3(Pm to' d' /2)'~'] which predicts a very strong dependence of the relaxation on co. For atoms
reflected by the surface, the dependence is co, which agrees with the classical calculation of Purcell
as reported by Kleppner, Goldenberg, and Ramsey.

I. INTRODUCTION

At low temperatures and high magnetic fields, a gas of
hydrogen atoms becomes electron-spin polarized in the
sense that all of the atoms are in the two lowest hyperfine
states,

~

a)=[
~

tk) —e
~

Tt)]/+2 and
~

b) =
~

tt),
where l, t (t-4) refer to electron (proton) spin states and
E=(253G)/H results from hyperfine mixing. ' Since atoms
in the

~

a ) state preferentially recombine into molecules,
then if T&, the time for a-b relaxation, is sufficiently long,
the gas will become nuclear-spin polarized, i.e., the ratio
of the number of b atoms to the number of a atoms can
become very large. This so-called "Tj bottleneck" was
predicted by us in 1980 (Ref. 2) and first confirmed exper-
imentally by Cline, Greytak, and Kleppner.

An earlier experimental attempt to study the T
&

bottleneck by van Yperen et al. failed to observe this
effect, apparently because of fast relaxation due to macro-
scopic impurities in the cell walls. Surface relaxation due
to substrate magnetic impurities has also been observed by
Yurke et al. , and in our own laboratory, where we were
able to measure, for the first time, the temperature depen-
dence of this one-body relaxation mechanism. We also
succeeded in suppressing the one-body relaxation by de-
positing several hundred Angstroms of solid molecular H2
on the impure copper substrate. For sufficiently thick
coatings, probably several thousands of angstroms, this
mechanism could be made unobservably slow.

In this paper, we present a detailed theory of surface
spin relaxation of H atoms due to substrate magnetic im-
purities. Parts of this theory were summarized in our ear-
lier work. The theory is a variation on and in some ways
an extension of the work of Chapman and Bloom on sur-
face spin relaxation of He. The main differences are that
they treated the case of classical diffusive motion in the
long- and small-jump limits while we concentrate on the

quantum-mechanical free-particle limit. In the extreme
free-particle limit for a perfectly smooth surface, atoms
are only scattered by the inhomogeneous surface field
which Aips the spins. This type of motion is appropriate
for a low-density gas of H atoms moving on a liquid He-
coated surface where the picture of atoms being bound to
the surface with a binding energy Ez but otherwise free to
move seems well established. The mean free path, which
is mainly determined by H-ripplon scattering, is predicted
theoretically to be very long. The conditions under
which these approximations are valid and the effects of a
finite mean free path will be discussed later in the paper.

The most interesting results of our theory have to do
with the dependence of 1/T& on the thickness d of the
nonmagnetic film and on the temperature T. These
dependences are most easily understood if we think of
1/T, as being a sum of contributions of spatial Fourier
components, with wave vector q in the plane of the sur-
face, of the inhomogeneous transverse field due to a mag-
netic particle a distance d below the surface (see Fig. 1).
The magnitude of this field is proportional to e, and
an atom moving with velocity v will see the field fluctuat-
ing at a frequency ~=q v. If co,b is the frequency of the
a-b splitting, then the probability that the atom will see a
field oscillating at this frequency is proportional to

—(1/2)P ( / )e '' '~ "' q', where P=l/kttT and m is the mass of
an H atom. Of course, the complete theory involves a
configuration average and sum over the positions of the
magnetic particle in the substrate.

Our main result can be expressed in terms of the
configuration averaged rate of transitions from b to a.
The result is

(Rt, , ), =(3rr y~/8)M2a (8) I Ct, , (q, O)p dq
0

where Ay~ is the transition dipole moment for the a-b
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Expressions for the two correlation functions on the
right-hand side of Eq. (1.2) are given in Eqs. (3.17) and
(3.20). For reasonably thick films, the correlation func-
tions are described by the approximate expressions

, L 4He

H~E J

Ci"( O)=b, q
7r I9 n Crab

(1.3b)

IMPURITY

)i LOC

(a)

where A is the thermal de Broglie wavelength, Nb is the
total number of b atoms in the sample and Ez is the bind-
ing energy of a or b atoms to the surface.

Substituting the surface correlation function, Eq. (1.3a)
into Eq. (1.1) and dividing by Nb, one obtains the rate of
surface b ~a transitions per b atom,

322
r = M mA —a(0)e

377 j J 2A PE,
sr ' v

—Pm cu, b /2qe e '
qdq .

0
(1.4)

The q integration in Eq. (1.4) is not analytically tractable.
A very rough approximate evaluation may be done as fol-
lows. The exponential in Eq. (1.4) is peaked at q =qo
where

qod =(Pm', „d /2)' ' (1.5)

(b)

FIG. 1. (a) Situation where a hydrogen atom with velocity v

bound to the liquid-helium surface, is moving close to a magnet-
ic impurity in the substrate. The substrate has a coating of solid

H2 and liquid He of combined thickness d. Both the magnetic
moment of the atom and the impurity magnetic moment lie

along the externally applied field Ho. The dependence of the lo-
cal field H], (x) seen by the atom as it moves is shown schemati-
cally, together with the spatial dependence of a single Fourier
component Hq(x). Transitions between the a and b states occur
when v q=co &. (b) Same arrangement as in (a) except that the
atom belongs to the gas phase and is scattered (rejected) from
the surface. Here there is a discontinuity in the slope of H vs x
(or t) and it is this feature that gives rise to the co dependence
of this relaxation process for large co. A scattering event for an
atom on the surface (e.g. , by a ripplon) produces an analogous
discontinuity in slope. The corresponding ~ contribution may
dominate the contributions from the collisionless encounters de-
picted in Fig. 1(a), which have a stronger frequency dependence,
exp( —co ). (See discussion in Sec. IV.)

Ct, , (q, O) =Ci', ,'(q, O)+Ci, ,'(q, O) . (1.2)

transition, a (0) is a weak function of order unity of the
angle 0 between the external field and the normal to the
surface [see Eq. (2.16)], and M2 is the average of the
squared magnetic moment of the magnetic particles in the
substrate per unit volume of substrate, M2 ——( g, m; )/V.

The correlation function Cb, (q, O) contains two contri-
butions, one from atoms bound to the surface and the
other from atoms in the gas which scatter elastically from
the surface

(G)
rb a

2
'3

9zi~2 A —a(0) .
16k'co4i, d ' P

(1.6)

The complete expression is given in Sec. III. The temper-
ature dependence of this contribution is rb ', —T and
hence one would expect this contribution to dominate for

If the exponential is replaced by a Gaussian of the
appropriate width peaked at q0, then the temperature
dependence at the rate in Eq. (1.4) is roughly
exp[PE~ —3(/3m', &d /2)' ]. For co,& -27'& 10 s

and d=300 A, the quantity mes, bd /2 is equal to 2.15 K
whereas Ez is about 1 K, and so the relaxation rate has a
minimum somewhat below 1 K. The thickness and fre-
quency dependence are of the form exp[ —3 (cu, b d ) ],
where A —T ' . Thus the relaxation rate for surface
atoms, which is almost but not quite exponentially depen-
dent on d, can be greatly suppressed by increasing the
thickness of the insulating layer.

The contribution from atoms in the gas which are
rejected by the surface has the much weaker frequency
dependence r,' 'b-co, b which results from the discon-
tinuous change in velocity of atoms striking the surface.
This ~ behavior for the high-frequency limit of spin re-
laxation of atoms which are scattered in the presence of
an inhomogeneous magnetic field was first considered by
Purcell and reported by Kleppner, Goldenberg, and Ram-
sey' in their paper on the theory of the hydrogen maser.
Although Purcell's calculation was purely classical, the
physical content was identical to that of the quantum-
mechanical result derived here. For large layer thickness,
the transition rate per b atom of atoms scattered by the
surface is approximately
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large T.
The remainder of this paper consists of a more formal

and detailed presentation of the theory whose qualitative
features are discussed above. In Sec. II, a general formal-
ism is presented which relates the relaxation rate to the
spin-spin correlation function of atoms near the surface.
Specific expressions for the spin-spin correlation functions
for atoms on or near the liquid He surface are derived in
Sec. III in a way which allows for the possibility that the
density of a- and b-state atoms might be out of equilibri-
um. The results are specialized to simple limiting cases,
and finally, numerical evaluations are given and compared
to the approximate expressions discussed above. Finally,
Sec. IV contains a brief discussion of the effects of scatter-
ing of surface atoms on the surface spin-relaxation rate.

II. GENERAL FORMALISM

In this section, we derive the expressions for the
configuration averaged transition rates (Rb, ), and
(R, b ), for H atoms in the two lowest hyperfine states a
and 6 moving on or near a liquid-He-coated surface and
interacting with magnetic particles in the substrate. The
magnetic particles are assumed to be fully saturated by
the external field and are randomly distributed in a half-
space which extends to within a distance d below the
liquid-He surface. The inert region of thickness d corre-
sponds to the combined thickness of liquid-He film and
solid H2 on the metal substrate.

We consider H atoms moving on or near a liquid-He
surface with unperturbed, single-particle energies

E „(k)= E—so„,+A' k /2m +afuu, b/2, (2. 1)

V = —fd x [fiyiSi(x) Hi(x)+fiy, S, (x)H, (x)], (2.2)

where S, (x) and Si(x) are longitudinal and transverse
spin-density operators in the spin space defined by the a
and b states,

S,(x)= ,'[Pb(x)P—b(x) —f, (x)P, (x)],
S+(x)=gb(x)g, (x)

S (x)=g, (x)gb(x),

(2.3a)

(2.3b)

(2.3c)

where, as usual, S+ (x) =S (x)+iS~(x) and S~(x)
=[S„(x),S~(x),0] and ft(x) and g (x) are field operators
which create and destroy atoms in spin state o; at position
x. Then for a particular configuration of dipolar fields,
the rate of transitions from spin state o. to state —o. is
given by

where v=s for atoms on the surface or g for atoms in the
gas and a= + 1 ( —1) for atoms in the b (a) state. k is a
two- or three-dimensional wave vector, as appropriate, for
atoms on the surface or in the gas.

The atomic spin states are assumed to be weakly per-
turbed by their interaction with a dipolar field
[H (ix), H, ( x)] due to magnetic particles in the substrate.
This interaction has the form

R =2rrirt(yf/4) fd'xd'x'QP(i)(i lS (x)H (x)
l
f)(f S (x')H (x')

l
i)o(E; Ei), —

i,f
(2.4)

where H (x)=H„(x)+iaH~(x) and P(i) is the probabili-
ty that the system is in initial state i Note th.at P(i) need
not correspond to an equilibrium ratio of a and b atom
populations. In particular, we will assume separate chem-
ical potentials p, and pb for the two species in order to
describe the effects of the T& bottleneck.

ln the usual way, Eq. (2.4) can be rewritten as the tem-
poral Fourier transform of a two time correlation function

Mt(y)= y m, n(y —R, ), (2.7)

and m; is the moment of the particle at R;, a random po-
sition in the substrate. The transition rate, Eq. (2.5), thus
involves the quantity Mt(y)M&(y'), and the configuration
averaged rate (R ), , for uncorrelated impurity posi-
tions, depends on

R =(yi/4) fdt fd xfd x'H (x)H (x')

X(S (x, t)S (x',0)),

(Mt(y)Mt(y') ),
= V g m; —g m; +5(y —y')V ' g m;

(2.5)

where ( ) is a thermal average over the distribution
P(i). The inhomogeneous field due to a density distribu-
tion Mt(y) of fully saturated magnetic particles in the
substrate is

(2.8)

where V is the volume of the substrate. The first term in
Eq. (2.8) has no spatial dependence and hence will not
contribute to the relaxation rate. The second term in-
volves the quantity

(24m/5)' f d yMt(y)Y'2, (x y)/
l

x y Mp=V 'gm (2.9)

where
the average squared moment per unit volume of substrate.
The configuration averaged relaxation rate is then
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Y~ (y —x)* Y~ (y —x')
(R ), =(6n/5)y'~M2 fdt fd xd x'd y (S (x, t)S (x', 0)) . (2.10)

The y integral is most easily done in a coordinate system with the origin at the surface and with the y3 axis normal to
the surface. Then

Y2 (y —x)*Y2 (y —x') Y2" (y —x)*Y2(y —x')
y D."' (0, 8,0)*D"'.„(0,8,0) (2. 1 1)

where 0 is the angle between the magnetic field and the
normal to the surface, and vectors on the right-hand side
are measured in the new coordinate system. Defining

CI „(x,x')= —,', 3 3„f q~d q~e' *

Xe i (m —n)8 —q) (x3+x3)'e (2.13)
Y2 (y —x)* Y2(y —x')I „(xx')= dy

y —xJ /y —x'~' (2.12)

where the integral is over the half space y3 &0, we find
that if x3 and x 3 are positive,

where Ao ——1, A» ——v 2/3, 3+2 ——1/&6, q~ is a vector in
the plane of the surface and Oq is the angle between qz
and the y~ direction which is perpendicular to the external
magnetic field and to the normal to the surface. Then

(R ), =(3~/16)yiM2 g A A„D' ' (0, 8,0)*D' '„(0,8, 0)
m, n

X fdt jq~d q~e ' f d xd x'e ' ' ' e
" '(S (x, t)S (x', 0)) (2.14)

An important simplification results from the fact that the factor in square brackets, the unperturbed spin-spin correlation
function, does not depend on the direction of q~. Therefore the angular part of the qz integral can be performed, yielding

(R ), =(3' /8)y~M2a (8)f q~dq~ f dt fd xd x'e ' e ' ' ' (S (x, t)S (x', 0)), (2.15)

where

a (8)= g A
~

D', ' (0, 8,0)
~

is the weakly angular-dependent function

a (8)=—,'(sin28) + —,
' (4 cos 8—3 cos'8+ 1)

+ —,', (1+cos 8)sin 8 .

A plot of a (8) is given in Fig. 2.

(2. 16)

(2.17)

L (1,2)=L „(1,2) = i (S (1—)S (2) )

for t » t 2, (3.2a)

L (1,2) =L ~ (1,2) = —i (S ~(2)S (1) )

for t, & t2 . (3.2b)

It is then straightforward to show that I satisfies the

0.7

III. SPIN-SPIN CORRELATION FUNCTIONS

A. Relationship between the correlation function
and the susceptibility

0.6—

L (1,2)= i(, T(S (—1)S (2))), (3.1)

where (l)=(x, t), (2)=(x', t'), and T is a time-ordering
operator:

Vr'e would like to relate the correlation function
(S (x, t)S (x', 0)) to the time and space dependent sus-
ceptibility which describes the linear response of the mag-
netization to a weak perturbing magnetic field. Our ap-
proach is based on that of Kadanoff and Baym, " but is
modified to describe the "nonequilibrium" situation in
which the a and b atoms have different chemical poten-
tials. We begin by defining the imaginary time Green s
function

0.4
0

1

vr/4 vr/2

FIG. 2. Plot of the function a (0) defined in Eq. (2.17), which
describes the dependence of the impurity relaxation on the angle
between the substrate normal and the applied magnetic field.
The magnetization of the impurity has been assumed to be sa-
turated and always along H.
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boundary condition

L ~(1,2) ~, , p
e——" " L (1,2} ~, , ;p . (3.3)

dte'"' S x, t S x', 0

=2MQP(i)&i ~S (x}~f &

To check this, note that L (1,2) has the same form as
G (1,2) = i &

—T(g (1)g+ (2)) &, with respect to the
field operators g

Fourier transforming in the time variable, Eq. (3.3) im-
plies that

L ~ (x, x', cp)=i f dte'"'L ~ (x, t;x', 0)

(3.4)

The Fourier transform of the Green's function has the
spectral representation

d cp L ~ (x, x', cp) L~ —(x, x', cp)
L (x,x';Q) = 2' 0—co

(3.5)

for arbitrary complex A. Then for real 0,

x&f ~S .(x') ~f&5(e +E, E—f), (3.8)

which is analogous to Eq. (2.4).
In the following subsections, we evaluate the spin-spin

correlation function of noninteracting atoms for the two
cases of interest: (i) atoms in the surface state and (ii)
atoms which are scattered quasielastically by the surface.
In each case, we calculate the correlation function

C (q, cp) = f" dt e'"'fd'xd x'
r

iq (X—X') —6 (X3+X3)
)&e e

X &S (x, t)S (x', 0) &,

(3.9)

L ~ (x,x';0)= —P(bio —p ~+p~)

where q is a two-dimensional wave vector. In terms of
this quantity,

X [L (x,x';Q+ie)

L(x,x—', fI ie)]—
&R &, =(3m /8)y~Mza (8) f q C (q, 0)dq .

0

(3.10)

—2 ImL (x,x', 0+ie)
—p(fiQ —p +p~)

1 —e
(3.6)

f dte' '&S (x, t)S (x', 0)&=— ImX (x,x', co)
—~(~—I -~+I ~)

Kadanoft' and Baym also show that the Cireen's function
L (x, x', 0) for Q in the upper half of the complex
plane describes the linear response of the system to a
weak external field. That is, L is the susceptibility

Combining Eqs. (3.3), (3.4), and (3.6) yields

B. Free surface atoms

Surface atoms are described by a product wave function
which is a plane wave for motion along the surface and a
bound-state wave function 8, (x3 —d) for motion normal
to the surface. The form of the argument of O„x3—d, is
chosen to make 0, independent of the thickness d of the
helium film. (Recall that the origin of x3 is the surface of
the substrate. Thus d represents the thickness of an insu-
lating layer which is free of magnetic impurities. ) In this
basis, the field operator may be written as

(3.7)

Thus the correlation function on the left-hand side of Eq.
(3.7) can be calculated from the Green's function, Eq.
(3.1), or it can be obtained by calculating the susceptibility
from a Boltzmann equation for the spin density. ' Alter-
natively, the left-hand side of (3.7) may be calculated
directly from

(3.1 1)

where c,(k) is a Bose annihilation operator. The corre-
lation function [Eq. (3.9)] may now be calculated directly
from Eqs. (2.3), (3.8), and (3.11). The result is

'2 2
C' ' (q, tp) =2vrAAe ~" f" dz

~
O, (z)

~

e ~' f n [E,(k)]j 1+n [E,(k —q)] I
QO (2')

X 5[fm+E„,(k) E,(k —q)], — (3.12)

where 3 is the area of the surface, and

[E (k)]=( " " —1) (3.13)

In this paper, we will ignore the q dependence of the form factor f" dz
~
O, (z)

~

e ~' by setting
~
O, (z)

~

=5(z) so
that the integral is equal to unity.
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It is useful and instructive also to derive the correlation function from the spin density response function X' ' (q, co),
which is a straightforward generalization of the density response function Lo(q, co) derived in the appendix of Kadanoff'
and Baym. "

Then, following Eq. (3.6),

n [E,(k)] —n [E,(k —q)]
(2~)~ fuu+E, (k) —E,(k —q)

(3.14)

—2 Imr'0) (q, co+i e)C's' (q, co) =a, —a q —P(fice —p +p )
1 —e

n E,(k) n—E,(k —q)

(2~ —P(Ace —p +p )
(3.15)

and Eq. (3.12) follows directly by using the 6 function to
eliminate Ace from the denominator on the right-hand side
of (3.15).

Equation (3.15) is particularly convenient for perform-
ing the d k integral. For the rest of this paper, we will
assume that the surface density of atoms is low, e " ~~1,pp

and hence that

Simple limiting cases of this expression will be discussed
in Sec. III D below.

C. |"as phase atoms which are scattered by the surface

To simplify this part of the calculation, we treat the
surface as a Oat hard wall. The field operator is then

n. (E.„(k))=e "e (3.16)
dkz

P (x, t) =U'2AL f f ™ 2 e'" "sin(z'k, )(2~)'

Then —iE~(k, k, )b/R (k k )

~(g) i i ~ —2qd ~(Pa+ EP —(a/2)~ah ]C~ q~i= e e
A

Xe
—(Pm /2q )(co+ acutely

—Aq /2m) (3.17)

(3.18)

where L is the size of the sample in the direction perpen-
dicular to the surface. The correlation function for the
gas phase atoms is then

(G) 27TA Ae
—2qd

C (q, co) = dkz dPz

, —@~ —~--+~-) 0 ~ 0

q q

(k, —p, )'+q' (k, +p, )'+q'
2

d k
&& f [n [E„(k,k, )]—n [E (k —q,p, )]I(2')'

X6[ficu+E (k, k, ) —E (k —q, p, )] . (3.19)

Using the result, Eq. (3.17), in the low-density limit, we find

CI G)
)

m A 2qd t3[p~ —Ia/2)Rcu~b l m Z bc pzdk d
Ca, —a q~cd e e

A 0 77 0 77

q q

(k, —p, ) +q (k, +p, ) +q

2

—pfi k, /2m ( —/3m /2q )I~+aco,b+(R/2m)(k, —p, —q )])&e ' e (3.20)

The integrals in Eq. (3.20) are not particularly tractable. The limiting cases of interest will be treated below.

D. Simple limiting cases

To simplify the discussion, we specialize to the case of large d, so that the factor e q" restricts q to be small. Then
we can neglect fiq /2m compared to co,&. The rate of transitions from b to a depends on the two correlation functions

{S)t ~i ~ ~ —2qd ~(Ea —(1/2)ficdab+pb] —(/3m/2)(t'~„b/q)
e (3.21)
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C(G)( 0)
m + 2qd P[)z~ —() /2)fur, b l ~ z ~ Pzdk d

b, q, = e e
Afiq 0 & 0

q

(k, —p, ) +q
q

(k, +p, )'+q'
2

—pR k, /2m ( —pm /2q )[cu,b+(A/2m)(k, —p, }]Xe ' e (3.22)

(3.23)

We evaluate the integrals in Eq. (3.22) approximately as follows. If q is sufficiently small, then the Gaussian factor on
the right can be approximated by a 6 function:

' 1/2
Pm/iq )[~,b+(A'/2~)(k Pz )] — 2irq 5[, (A/2 )(k2 —2)]

rn

Then q can be neglected compared to k, +p, and Eq. (3.22) is approximately given by

C(G)( ())
~q —2 d P[(z ( i/2)~oo l P& k*

b[ + (g/2 )( k 2 2) ]
2 dk d, (4k, )

o rr o ir (k,i p,i)~

pfizer pfico

p fi co,i,
(3.24)

where K] is a. modified Bessel function. The factor
[ ] on the right-hand side of (3.24) is equal to 1 for
Plies, b /2 ((1.

The factor e "' " is determined by
P(Pb —Ace, b/2) .

P(Pb —~ab /2) (3.27)

In this limit, the surface and gas correlation functions for
co=0 are given by Eqs. (1.3a) and (1.3b).

PFa p /A2+ V/A3) P((zb ~ah/2) (3.25) E. Numerical evaluation of the relaxation rates

or

P( ~ /2) 1VbA /V3

(A/I /V)e + 1
(3.26)

where 2Vb is the total number of b atoms in the sample.
At moderately high temperatures, when most of the

atoms are in the gas

The complete result for the surface and gas relaxation
rates is obtained by substituting Eqs. (3.17) and (3.20) for
the correlation functions into the integral of Eq. (3.10).
Except for the assumed form of the wave functions, Eqs.
(3.11) and (3.18), the only approximation which has been
made is that the H gas is nondegenerate. Then the b-to-a
transition rate is

R(, , ——(3' /8 )yiM2a (H)(m 3 /Afi)e

e PEa oo ~ —2qd —Pm (,crab —% /2m) /2q
qdqe e

0

f ~
d —2qd f dk f dq

o o ir o rr (k —p)2+q 2
q

(k +p)'+q'

2

Xe PP2k2/2~ —Pm [Crab+A(k —P —q )/2m] /2qe (3.28)

If the fraction of atoms on the surface is small, one can make the further approximation, Eq. (3.27). It is also useful to
change integration variables so that the various wave vectors are dimensionless, pA' q /2m ~q, etc. , and to define

Q =pfico, (, ,

d, =(2md /P)ri )'

Then

(3.29a)

(3.29b)

R (, , /N), = r o G (PEii, d, (r, II ),
where

(3.30)

r() —(3ir /2)yiMia (9)m/I /fiV, (3.31)
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G(PE, d, , Q)=e ' f qdqe "e0''
fco d

—
2d„qqf.

~ dk fm dp
0

q qe
o ~ o rr (k p) +q2 2 (k+p) +q

2

—[A+k2 p2 q2]2/4q2Xe (3.32)

Note that all of the temperature dependence is contained
in the dimensionless function G (PE~,d, fr, 0). The prefac-
tor r0 is sensitive to the experimental parameters such as
the size, shape, and magnetic inhomogeneity of the sub-
strate and also, through yea (0), to the magnitude and
direction of the applied magnetic field. The ESR experi-
ments of Ref. 7 were performed in a field of 40 kG, and
hence y~=yz+ey, =5.2@~. The 3 /V ratio was 30
cm

In order to fit the one-body relaxation data, it was
necessary to assume an iron impurity of 0.1 at. % in the
form of 75-A-diameter particles. The mean-square mo-
ment per unit volume may be written as

M~=(p nF) /NU, , (3.33)

where p F,——2.22@& is the magnetic moment of an iron
atom, ' n is the number of iron atoms in a cluster, N is

the number of copper atoms in a region containing one
iron cluster, so that X =n /N is the fraction of iron atoms
in the substrate, and v, is the atomic volume of copper
which is essentially identical to that of iron, '

1/v, =8.5)&10 cm . For 0.1% of iron atoms in the
form of 75-A particles, the dimensionless factor nX=18.8,
and M2 ——pF,nX/vz. Thus for the parameters of Ref. 7,
the rate ro ——29a (0) s '. From Fig. 2, we see that an an-

gular average of a (0) will yield a value of 0.3 —0.4 and
hence the average relaxation time 1/(r )ois about 0. 1 s

for these parameters.
Next, we consider the dimensionless function

G(f3E~,d, tr, Q). The qualitative behavior of this function
is as follows. For fixed d and cu, &, G increases rapidly as
a function of increasing f3. We argued in the Introduction
that this increase goes roughly as exp[PEs
—3(Pm', &d /2)' ] at low T where the relaxation is

predominantly due to atoms on the surface. At higher T,
the contribution of atoms in the gas dominates and G in-

creases with increasing T. A numerical evaluation of Eq.
(3.32) is shown in Fig. 3 for d=300 A, co,s ——2rr X 10 s

and Ez ——1 K. We note that the effective activation ener-

gy, which is about 0.88 K at T=0.1 K, is not nearly as
small as that of the approximate formula given above.
This means that the gaussian approximation to Eq. (1.4)
is not very accurate for these parameters.

The thickness dependence of the relaxation rate is
shown in Fig. 4 plotted as lnG versus d, for T=0.3 K
where the surface contribution is dominant, and

~,b ——2~&&10 s '. The curve fits very well to a function
of the form 3 exp( Bd") with 2=17.6—, B=0.838 for d
in A, and x=0.45. The exponent x is significantly small-
er than the value —', mentioned above.

IV. DISCUSSION

io-4—
.
~/

/ GAS
/

)O-5
0

l l l l I l 1 I l. I 1

5 IO

FICx. 3. Ditnensionless relaxation rate G(PEe, d,s, A), defined
in Eq. (3.32), plotted vs inverse temperature, for E~ ——1 K,

0
d=300 A and ~&b ——2m)&10' s '. The solid line is the total
rate. The dashed and dash-dot curves are the surface and gas
contributions, respectively.

In this section, we discuss the relevance of the T&

mechanism derived above to the physical system of H
atoms in the presence of liquid-He surfaces. Consider
first the contribution corresponding to gas atoms which
scatter elastically from the surface. The main approxima-
tions made in deriving Eq. (3.20) were that the surface
acts like a hard wall and also that the motion is otherwise
free, i.e., that the atom does not collide with other H
atoms or He atoms in the gas. This second assumption
corresponds to moderately low temperatures and densities
of H atoms. The hard wall approximation should be val-
id as long as the region of the actual potential well [e.g. ,
the region in which V(z) & —kT] is very small compared
to A.

The distinctive frequency dependence of the relaxation
rate for atoms rejected by the surface, 1/T& -co,&, is a
much more slowly varying function of co,b than the rate
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for atoms moving freely on the surface
(1/Tt-exp[ —A(ca,bd) ]). This suggests that the as-
sumption of free-particle motion on the surface must be
looked at carefully, particularly for thick films. If an
atom is scattered, for example, by emitting or absorbing a
ripplon while moving through the inhomogeneous field of
a magnetic impurity, then the time derivative of the trans-
verse field will change more or less discontinuously, giv-
ing rise to an co,b frequency dependence for the relaxa-
tion. Thus the assumption of free particle motion might
be inappropriate unless the mean free path of the atom is
much larger than 1/qo, where qo is the most effective
wave vector defined in Eq. (1.5). Typical experimental
values of qo are of order 10 A '. Zimmerman and
Berlinsky have calculated the mean free path I for rip-
plon emission by H on liguid He. They find I ~10 A for
T&0.3 K and l &10 A for T&0.1 K. Therefore the
free-particle picture is probably valid at least for T50.3
K.

The effect of scattering by ripplons may be calculated as
follows. Equation (3.7) relates the spin-spin correlation
function to the imaginary part of the transverse spin sus-
ceptibility. The effect of scattering on the spin susceptibil-
ity may be calculated using the Boltzmann equation. In
particular, if the scattering is treated as a perturbation,
then, to first order, the effect of scattering is to add a term
proportional to (ca —ca,b ) to X(ca) and hence a contribu-
tion which goes like co,b to the spin relaxation rate. '

The physical interpretation is the same as for scattering
from the surface.

A less important effect than ripplon scattering is the
finite time that an H atom spends on the surface. Since
atoms presumably leave the surface after absorbing one or
more high-energy ripplons, such events are relatively rare
compared to those which simply change the momentum
of an atom bound to the surface. The mean time between
adsorption and desorption for an atom is given by

r, =(4A/Su)e

where S, the sticking probability, is of order 2 —4% and U

is the average speed of an atom in the gas. For T& 0.3 K,

l0 2=

CD
LIJ

(
0-4

IO ~
0 200

d (A)

400 600

~, &10 s and co,b~, &200~. Hence ~, can safely be
treated as infinite in this temperature range.
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