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Electron mean-free-path calculations using a model dielectric function
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The inelastic electron mean free path as a function of energy is calculated for Cu, Ag, Au, and Al.
The calculations are based on a model dielectric function e(q, co), which is obtained from a modifica-
tion of the statistical approximation. In this approach e(O, co) is determined by the experimentally
measured optical dielectric function. Calculated mean free paths are compared to experimental data
and to other theories.

I. INTRODUCTION

The inelastic electron mean free path (MFP) plays an
important role in surface physics. It is required for quan-
titative surface analysis by Auger electron spectroscopy
and x-ray photoemission spectroscopy and determines the
surface sensitivity of photoemission experiments. More-
over, the MFP plays a role in the interpretation of almost
any experiment in which an excited electron moves
through a solid, for example, low-energy electron diffrac-
tion, bremsstrahlung isochromat spectroscopy, etc.
Despite the importance of the inelastic MFP, experimen-
tal values for a given material are generally available only
in a limited energy range and the measured values are sub-
ject to uncertainties due to difficulties associated with the
experiments. On the theoretical side the situation is no
better. With the exception of free-electron materials such
as Al, the MFP has not been calculated from first princi-
ples. The primary missing ingredient is the dielectric
response function which depends on the energy and
momentum lost by an electron in a collision. Thus, exist-
ing calculations are semiphenomenological and, because
of experimental problems, it is difficult to assess how well
the theories actually work.

In this paper a method is proposed for calculating the
MFP based on a model dielectric function whose form is
motivated by the use of the statistical approximation.
This approximation was first applied to MFP calculations
by Tung et al. ' who approximated the MFP directly rath-
er than the dielectric function. In the limit that the
momentum transfer is zero, the model dielectric function
is set equal to the measured optical dielectric function
which is presently available for a wide variety of materials
largely from synchrotron radiation studies. The idea of
using optical data in MFP calculations was first intro-
duced by Powell. Our results are calculated values of the
MFP for electron energies in the range of 5 to 10 eV.

where r, is the average distance between valence electrons
in units of the Bohr radius ao, and r, =( 4

trn)'r ao ',
where n is the electron density. The imaginary part of the
electron self-energy is given by Quinn as
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where EF is the Fermi energy and eL is the Lindhard
dielectric function. This approximation neglects the ver-
tex correction, self-consistency, and exchange and correla-
tion, but gives reasonable values for the MFP in free-
electron-like materials. A free-electron-like material is
one in which the loss function —Im[1/e(q =O, co)], as
determined from optical or electron-energy-loss experi-
ments shows a predominant peak due to well-defined
volume plasmons which have an energy close to the free-
electron value or&

——(47rne'/m)'r .
The dielectric function has not been calculated from

first principles for non-free-electron metals such as the
transition and noble metals. Consequently, Eq. (2) cannot
be employed to determine the MFP. Tung et al. ' have
used the statistical approximation developed by Lindhard
and co-workers to calculate the MFP. The statistical ap-
proximation as applied to calculating the electron MFP
assumes that the inelastic scattering of an electron in a
volume element d r of the solid can be approximated by
the scattering appropriate to a free-electron gas of the
electron density n(r), in that volume element. Thus, the
statistical approximation gives the inverse MFP as

II. THEORY
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The MFP for an electron of energy Ek ——A k /2m in a
free-electron gas is

and the region of integration in Eq. (3a) is a Wigner-Seitz
cell of volume A. For simplicity, the charge distribution
is assumed to be spherically symmetric and the Wigner-
Seitz cell is replaced by a sphere of volume A.

In order to take advantage of the generally available
values of e(co ), the experimentally determined optical
dielectric function, the response function of the material
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under consideration e(q, co) is approximated rather than
'(k). In analogy with Eq. (3a) it is assumed that
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Here, n~(r) is a pseudo-charge-density chosen to ensure
that
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Obviously Eq. (9) can be obtained directly from the as-
surnption that

Im
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where g is to be determined by the condition that Eq. (5)
is satisfied. However, the statistical approximation serves
to motivate the present approach.

The imaginary part of the self-energy is now obtained
by replacing Im(1/eL ) in Eq. (2) by Im(1/e). The resul-
tant equation can be written as

where N is the number of electrons per unit volume in the
solid. It also follows directly from Eq. (9) that
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where eL(q, co;co&(r)}=eL{q,co;r~(r)}. Use of Eq. (7) in
Eq. (8) yields the result

Equation (7) determines co&(r) and hence nz(r). It is pos-
sible to proceed without actually finding nz(r). The in-
tegration variable in Eq. (4a) is changed from r to co&(r) to
obtain

Ace =Ek —Ek (14)

restricts the region in (co,q) space over which the integra-
tions in Eq. (13) take place. Equation (14) describes a col-
lision in which an electron of energy E~ makes a transi-
tion to the state Ek q and loses energy co. In this paper
we assume that Ek and Ek q are free-electron-like. This
assumption would fail for energies near EF in the case of
transition metals because of the unfilled d bands, but it is
a reasonable approximation for the noble metals. Equa-
tion (14) then gives

1
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Thus, a knowledge of the optical dielectric function e(co)
is sufficient to obtain 1m[1/e(q, co)]. It is trivial to show
that the f sum rule is satisfied

where k is the initial momentum of the scattered electron.
Our expression for k '(k) obtained from Eq. (9) and

Eq. (13) is not the same as that given by the statistical ap-
proximation as used by Tung et al. , Eq. (3), even when
n (r) in Eq. (3) is replaced by the pseudo charge density
nz(r) This is becaus.e FF appearing in the upper limit of
the integral in Eq. (13) denotes the Fermi energy of the
actual material under consideration. To be more explicit,
Eqs. (13) and (9) yield

MI(k)= f dco&G(co&) f d()rico) f Im 5(fute Ek+E), z) . —2'' q EL (q, co;co )
(16)

Only if E~ appearing in the limit of the integral in Eq. (16) is replaced by EF(co&), the Fermi energy of a free-electron
gas with plasma frequency co&, would our approximation to the MFP give the same results as using a pseudo density
nz(r), in the approach of Tung et a/. ,

' Eq. (3a).
The angular integrations in Eq. (16) are trivial and yield
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Mc(k)= f dco&G(co&) f d(fico) f Im
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We find empirically that when Ek is 200 eV or greater
the quantity Im(1/eL ) in Eq. (17a) can be replaced by the
single-pole approximation with a resulting loss of accura-
cy in the computed MFP of less than 3%. The one-pole
approximation is

2
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where
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where vF(co~) is the fermi velocity of a free-electron gas
with plasma frequency equal to co&. Use of Eq. (18) in Eq.
(17) yields
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where co~ =co&/E~, q =q/kF, and co~(q) =co~
+ —,q +q . The quantities qI, qz in Eq. (19) depend on

co& and are the values of q for which co~(q) intersects the
boundary of the region given by co & 2k q —q and
co&k —I corresponding to the limits of integration of
the second and third integrals in Eq. (17a). Analytic ex-
pressions for q& and q2 are given in Appendix A. Thus,
for energies Ez above 200 eV the MFP can be found from
Eq. (19) rather than Eq. (17) and only a single integration
rather than a triple integration is required.

III. RESULTS

The present theory, making use of experimental values
of 1m[1/e(co)] from Ref. 6, will be compared only with
other theories that give the MFP for electrons of arbitrary
energy. Several theories, all but one of which apply only
to energies above 200 eV, have been compared in a de-
tailed review by Powell. There are only two previous
theories that are applicable to both free and non-free-
electron-like solids at both high and low electron energies,
the statistical theory of Tung et aI. ' which we have dis-
cussed in detail, and a purely phenomenological theory by
Seah and Dench. The latter is based on fitting existing
experimental data to a form A, (E)=AE +BE.
where A, B are determined from simple physical data.
This work has been critiqued by Powell and by Wagner
et aI.

Figures 1—4 as well as Table I show the MFP versus
energy for Cu, Ag, Au, and Al, respectively. The results
of various experiments are also indicated. Most of the
data come from the overlayer type of experiment. An in-
teresting exception is the MFP data for Cu by Knapp

a~ &o and by Himpsel et al » that are obtained from
photoemission line broadening. The theory of Tung
et al. ' gives rather large values for the MFP at low ener-
gies. This is because the Gz(co) that would enter their
theory [see Eq. (13) and the discussion following it] is de-
rived from the true metallic charge density and for small
values of co, GT(co) & (2/rico)1m[1/e(co)]. Thus, they
predict less scattering than is dictated by Eq. (9b).

From the figures it appears that the theory of Tung
et a1. ' gives values of the MFP that are too large at low
energies and those given by the present theory are some-
what low, while that of Seah and Dench gives values of

30— 40— I I I I I I II]

10—
U
Q)

P I I I

10' 1 0+1
I I IIil I iiil I

10 1 0+4

20—

10—

Energy Above Fermi Level (eV)

FIG. 1. Inelastic electron mean free path versus energy above
the Fermi energy for Cu. Solid curve is present theory. Dotted
curve is theory of Tung et aI. (Ref. 1). Dashed curve is from
Seah and Dench (Ref. 8). Experimental data: solid circles,
Refs. 10 and 11; open squares, Ref. 14.
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FIG. 2. Same as Fig. 1 but for Ag. Experimental data: open
circles, Ref. 15; solid triangles, Ref. 16; open squares, Ref. 17.
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FIG. 3. Same as Fig. 1 but for Au. Experimental data: open
squares, Ref. 15; open diamond, Ref. 17; open circles, Ref. 18;
solid triangle, Ref. 19.
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the MFP that are too low at high energies. Because of ex-
perimental difficulties there exists an uncertainty in the
data that makes comparison of theory and experiment
somewhat problematical. Also, the experimental values
determined by the overlayer method (i.e., the values at
high energies in Figs. 1—4) are not directly comparable to
theory due to the effects of elastic electron scattering in
these measurements.

Our method depends on knowing the following: (1) the
experimental values of Im[1/e(co)]; (2) a knowledge of EF
for the material; and (3) a free-electron-like band structure
at energies above EF. Assumption (1) can be relaxed
under the following condition. If 1m[1/e(co)] is known
only up to some energy co,„, then the theory still gives
the MFP for energies less than or equal to co „.Items (2)
and (3) are certainly important only for low electron ener-
gies, say, less than 50 eU. For cases such as transition
metals where (3) fails, it may be possible to replace Eq.
(15) by a more appropriate relationship. Based on secon-
dary polarized-electron experiments and their interpreta-
tion, ' '' it appears that, even for transition metals, Eq.
(15) will not introduce any significant error as long as the
electron energy is greater than 10 eV above the Fermi en-
ergy.

TABLE I. Calculated electron MFP as a function of energy
relative to the Fermi energy.

E (eV)

5

6
7
8
9

10
15
20
40
60
80

100
150
200
500

1000
1500
2000
3000
4000
5000

10000

kc„(A)
30.8
23.9
19.7
17.0
14.8
13.1
8.9
7.2
5. 1

4.8
4.8
5.0
5.6
6.4

10.7
17.3
23.5
29.5
40.8
51.7
62.2

111.7

AA (A)

27. 1

21.0
17.6
15.3
13.6
12.3
9.3
8.1

6.1

5.3
5.0
4.9
5. 1

5.6
9.1

14.9
19.8
24.7
34. 1

43.0
51.7
92.5

A,A„(A)

35.2
28.4
23.5
20.3
18.0
16.4
1 1.9
9.9
6.8
5.6
5.0
4.8
4.8
5.2
8.2

13.2
17.8
22.2
30.4
38.4
46. 1

82.2

kA) (A)

53.9
41.3
33.4
28.0
23.7
20.6
1 1.9
7.8
3.4
3.7
4. 1

4.6
5.9
7.0

12.7
21.4
29.4
37.2
52.0
66.2
79.9

144.9

There are two different sources of error in the present
theory. The first type of error arises from the use of Eq.
(13) for the self-energy. Equation (13) assumes the validi-
ty of the Born approximation, neglects the vertex correc-
tion, self-consistency, and exchange and correlation. At
energies above 100 to 200 eV these effects are estimated to
introduce errors on the order of 10% in the case of a
free-electron gas. At low energies the error is expected to
be larger, particularly in view of the possible failure of the
Born approximation. The second type of error comes
from approximating the actual dielectric function by
means of Eq. (9). Because the inelastic scattering is pri-
marily in the forward direction at higher energies, Eq. (5)
ensures a "reasonable" estimate of the MFP. However,
the calculated MFP is sensitive to the momentum depen-
dence of the dielectric function assumed in Eq. (9) which
is dictated by the statistical approximation. Thus, the
present theory is expected to be more accurate at high en-
ergies than at low energies, but it is difficult to estimate
the degree of accuracy.

20— APPENDIX A

The limits q, and qz in Eq. (19) are determined from
the conditions

0
1PO 1 0+1 p+2 1 0+3

i ii»l &ittl I

1 0+4

q&0,
co~(q) =2k q —q

(A la)

(A lb)

Energy Above Fermi Level (eV)

FIG. 4. Same as Fig. 1 but for Al. Experimental data: solid
circles, Ref. 20.

cop(q) =k —1,
where

co&(q)=co&+ —,q +q

(A 1c)

(A 1d)
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q —Q~q +ap=0,—3 —2

where

(A2a)

Equation (Alb) has either no solutions or two solutions
and Eq. (Alc) has one solution from q &0. The quantity
q, is the smallest solution of (Alb) and qz is the smallest
of the second solution of (A lb) and the solution of Eq.
(Alc). Equations (Alb) and (Ald) give

and for (a~/3) &ao/2:

Qp
q, = '

1+cos
3 3

Qp
q„

3 3

—~3 sin
3

+&3 sin
3

(A3c)

(A3d)

ap ——Gp/4k,

ap ——k— 1

3k

The solutions to Eq. (A2) for (az/3) & ao/2 are:

a&
q, = 1 —cos ~ +csin

3 3 3

(A2b)

(A2c)

(A3a)

where

I ao[(a~/3)' —(ao/4)] I' '
g=tan-'

~

(az/3)' —(ao/2)
~

Equation (A 1c) has the solution

q, =( ——, +I(—', )'+[(k' —1)— ']I' ')' '.

(A3e)

(A4)

Qp
qb = 1+2cos

3 3
(A3b)

If (aq/3) &ao/3 then q, =q, and qz
——minIqb, q, ). If

(aq/3) &ao/3 then q&
——q, and q~=minIq~, q, I.
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