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Strong-coupling theories for superconductors containing local spin fluctuations
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Theories for isotropic and anisotropic superconductors containing transition-metal impurities
which give rise to local spin fluctuations are developed by use of the Migdal-Eliashberg formalism.
The multiplicative renormalization method is used to obtain the normal and anomalous d-electron
propagators. The decreases in the transition temperatures of the isotropic and anisotropic supercon-
ductors due to the local spin fluctuations are obtained within the framework of the square-well-
model version of the Midgal-Eliashberg formalism. Different approaches are used to obtain the de-

creases for the two cases. The effects of the local spin fluctuations on the jump in the specific heat
at T, of the strong-coupling anisotropic superconductors are also calculated.

I. INTRODUCTION

For certain transition-metal (TM) impurities dissolved
in host metals, the Coulomb repulsion between the d elec-
trons of opposite spins which are localized about an im-
purity site may not be strong enough to cause the forma-
tion of long-lived magnetic moments, or the widths of the
impurity states may be so broad as to delocalize the mo-
ments. For these impurities, the localized spins may, in-
stead, fluctuate in time with a frequency 1/~sF where ~sF
is the localized spin-fluctuation lifetime. If this lifetime is
greater than the thermal fluctuation lifetime, the TM im-
purities will still give rise to magnetic behaviors. Howev-
er, if the spin fluctuation lifetime is smaller than the
thermal lifetime, the impurities will give rise to nonmag-
netic behavior. The resistivity of the metals containing
these types of spin fluctuations will vary as 1
—(T/TLDF) where TLsF is the temperature equivalent
of TsF e

When the host metal is in the superconducting phase,
the local spin fluctuations (LSF's) will cause the transition
temperature to decrease almost exponentially. ' The ob-
served decrease of T, due to the LSF's appears to follow
the modified exponential decrease predicted by Kaiser for
superconductors containing nonmagnetic localized excited
states, the precursors of the LSF's. Most of the earlier at-
tempts ' to develop a theory for the LSF's in the super-
conductors were based on the random-phase approxima-
tion (RPA) treatment of the Coulomb repulsion term in
the Anderson Hamiltonian used to describe the TM im-
purities in the host system. A more successful attempt
was by Schlottrnann who applied the multiplicative re-
normalization technique of Iche which is known to pro-
vide for an exact treatment of the LSF's in the normal
metal. In a series of papers, I was able to obtain ex-
pressions for several transport properties of superconduc-
tors containing LSF's. I showed that the observed
thermal conductivity' and transverse attenuation coeffi-
cient" of the dilute ZnMn superconductors could be fit-
ted by the expressions derived in Refs. 8 and 9.

All of the theoretical studies mentioned above are based
on the weak Bardeen-Cooper-Schrieff' (BCS) theory of
superconductivity. The rather large electron-phonon mass

enhancement seen in certain metals indicates the need of
taking into account the renormalization of the diagonal
part of the self-energy corrections due to the electron-
phonon interaction (in the BCS theory, only the off-
diagonal part of the self-energy correction due to the in-
teraction is considered) when formulating a theory for the
superconducting phase of these metals. The Eliashberg'
theory, which is an extension of the Migdal theory' for
phonons in a normal metal, treats in an explicit manner
both the strong electron-phonon interactions and the
Coulomb repulsion between the opposite spin electrons
forming the Cooper pair when calculating the diagonal
and off-diagonal parts of the self-energy corrections.
Therefore, the Eliashberg theory' should be used to
describe the strong-coupling superconductors. This for-
mulation of superconductivity has been used to calculate
the transition temperatures of several strong-coupling su-
perconductors' ' using only measured information
about the normal phases of the metals.

Recently, much interest has been drawn to strong-
coupling (SC) superconductors containing magnetic and
nonmagnetic impurities. Allen' and Carbotte and co-
workers' ' have studied the decrease in T, of the SC su-
perconductors due to normal scattering by nonmagnetic
impurities and to the spin-flip scattering by weakly in-
teracting paramagnetic impurities. Schachinger and Car-
botte ' and Yoksan and Nagi have studied the effects
due to strongly interacting paramagnetic impurities. The
Shiba-Rusinov treatment of the spin-flip scattering was
used in both of these studies. Both studies found interest-
ing behaviors due to the formation of impurity states
within the energy gap of the superconductor. Recently,
Yoksan and Nagi studied the effects due to Kondo im-
purities in the SC superconductors. The purpose of the
present paper is to formulate a strong-coupling theory for
superconductors containing transition-metal impurities
which give rise to local spin fluctuations. The multiplica-
tive renormalization method of Schlottmann is used to
treat the Coulomb repulsion between the d electrons of
opposite spins which are localized about the impurity
sites. In order to avoid the need to numerically solve the
Eliashberg equations and to be able to obtain analytical
expressions, the square-well model A, for the spectral
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distribution function will be used. Both isotropic and an-
isotropic superconductors will be considered. Expressions
for the transition temperatures of the isotropic and aniso-
tropic supercondcutors containing the LSF will be ob-
tained. An expression for the jump in the specific heat at
T, for the anisotropic superconductor will also be ob-
tained.

II. FORMALISM

A. d-electron propagators

As is well known, the Hartree-Fock treatment of the
Coulomb repulsion between the d electrons of opposite
spins which are localized at the impurity sites, breaks
down close to the magnetic-to-nonmagnetic transition re-

gion, and so, other treatments must be used in this region.
Iche has pointed out that in the random-phase approxi-
mation, many diagrams in the perturbative expansion of
the self-energy correction due to the Coulomb interaction
are neglected in the summations of the ladder and bubble
diagrams which lead to the local spin fluctuations. Iche
has developed a new approach, the multiplicative renor-

malization method, to treat the Coulomb interaction in
the region close to the nonmagnetic-to-magnetic transition
point. This method is based on the requirement that
many quantities in nature should be invariant under e
change in the energy scales. This requirement would then
guide one in deciding which diagrams should be kept in
the summation. Iche showed that the diagrams which
should be kept would be those which gave an expression
which satisfied a Lie differential equation. Schlottmann
extended the multiplicative renormalization method so
that it could be applied to the superconducting phase. He
realized that a scale invariant anomalous d-electron prop-
agator could be achieved by separating the diagrams of
the perturbative expansion of the anomalous propagator
into two subsets and then requiring each subset to obey
the multiplicative renormalization requirement (i.e., each
set be the solution of an appropriate Lie differential equa-
tion).

Following the steps used by Schlottmann (see also Ref.
25), I obtain

l~. I+id
Gd(i Cu„) =

(I .I+Id)'+Ed'

U,rfX(0)
Fd(ice„)= — '

2 2 2 2 2vrk~ T
~ I+Id) +Ed Id+Ed

dn' ~ (&') d n' ~.(&')
X

2 2 i ]/2 +4~ [ I
~

I
+~ (& )] ~[(~.

I
+I d) +Ed] 4~ [ I

~„ I'+g„'(II')]»' (2)

X(0)=exp(U/~rd)/~rd . (4)

In writing down Eqs. (I) and (2), I have left the integra-
tions over the solid angles undone in order to allow for the
possible dependence of the renormalized energy gaps in
the solid angle. My results are slightly different from
those of Schlottman in that I have not identified the surn-
mation

where Ed is the energy of the d electrons and is taken to
be zero in all further calculations, I d is the half-width of
the impurity state and is equal to vrN(0)

I
V

I
with N(0)

being the density of states at the Fermi surface of the host
metal, and V is the potential which leads to the mixing of
the conduction electrons and the d electrons. U,~~ is the
effective Coulomb energy defined as

U ff —U/[ I +Nd (0)U]

with Nd(0) being the density of states of the d electrons at
the Fermi surface. +(0) is the static susceptibility due to
rapid spin fluctuations and is taken to be equal to the nor-
mal state expression obtained by Iche, i.e.,

change in the g scale, they should be the proper propaga-
tors for the d electrons in the region close to the
nonmagnetic-to-magnetic transition point.

B. Eliashberg formalism

The basic Eliashberg equations' result from the expli-
cit treatment of the electron-phonon interaction and the
Coulomb interaction between the electrons belonging to
the Cooper pair when calculating both the diagonal and
off-diagonal part of the self-energy corrections of the
propagators for the superconducting phase. The Eliash-
berg equations for the superconductors containing
transition-metal impurities which give rise to local spin
fluctuations (LSF's) are obtained by adding to the basic
equations, the corrections due to the mixing of the impur-
ity electrons with the host system's electrons. The modi-
fied Eliashberg equations (written on the imaginary axis)
are

dO, ' ~m
cl7n =Cog + 7rkg T y A, kk'(n ~) 2 2, //p4~ [co +b, (II')]'

2nk~ Tg.
m ~m

appearing on the right-hand side of Eq. (2) as being pro-
portional to the order parameter A~h defined in the BCS
theory. ' Since the propagators are invariant under a and

+ 2 2 1/2+ ' V Gd l
2r 4m' [~„+b,„(Q')]'~2
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dA' & (&') I qII a„(n')
Ps(co„)=~k~T g [Akk (n —m) —p']

z 2, + J +n; V
~

Fa(ice„),4~ [
2 +g2 (~i)]1/2 2& 4~ [ 2+g2(IIi)]l /2

(6)

where Ps(co„) is the unrenormalized energy gap, b.„(Q) is
the renormalized energy gap, p is the pseudopotential
describing the Coulomb repulsion between the electrons of
opposite spins forming the Cooper pair. The electron-
phonon coupling parameter Ak k (n —m) is defined as

[a F(co ) ]k k
A.k p (n —m ) =2 J co des

~ +(~n —~m)
(7)

where [a F(co)]k~ is the electron-phonon spectral density
for the scattering of an electron pair (k, —k) into the pair
(k', —k') due to the virtual exchange of a phonon of ener-

gy co. ~ is the lifetime due to the normal scattering by the
nonmagnetic impurities. In writing out Eqs. (5) and (6), I
have again left the integration over the solid angle undone
to allow for the presence of anisotropy in the supercon-
ductor.

The spectral distribution function [a F(co) ]kk is
presently treated as an experimental input. It is not possi-
ble at the present time to calculate the form of this func-
tion from first principles. The form of the spectral distri-
bution function for a particular metal is obtained from the
study of the current-voltage characteristics of proximity
effect tunnel junctions. Since these studies do not yield

an analytical form for the distribution functions, the
Eliashberg equations have to be solved numerically. To
avoid the need for having to do numerical calculations
and in order to be able to obtain analytical expressions,
the coupling parameter is often approximated by a
square-well model A,

~k, k'(n m) ~k, k'e(~D —
I
~.

I
)e(~D —

I
~~

I
) .

This approximation would correspond to the weak-
coupling limit of the Eliashberg theory of superconduc-
tivity. This limit is not equivalent to the weak-coupling
BCS theory of superconductivity due to the presence of
the additional term in Eq. (5) arising from the inclusion of
the electron-phonon contribution to the diagonal part of
the self-energy correction.

III. ISOTROPIC SUPERCONDUCTORS

Using the BCS formulation of superconductivity,
Schlottman showed that the decrease in the transition
temperature due to TM impurities which give rise to local
spin fluctuations follows a modified exponential decrease
of the form

TCO wc

Na(0)
N (0) N (0)g,fr

I+ U,ffX(0)/N(0)g, ff

Na(0)
1 —n; N(0) U, rfg(0) /N (0)g,rf

This decrease is similar to the decrease in T, predicted by
Kaiser for superconductors containing TM impurities
which form into nonmagnetic resonant states. The simi-
larity is not unexpected since the nonmagnetic resonant
states are the precursors of the local spin fluctuations.
This similarity explains why it was possible to fit the ob-
served decreases in the transition temperatures of the LSF
superconductors, RuFe, ' AMn, and ThU (Ref. 27) to
Kaiser's expression.

If the electron-phonon mass enhancement in the normal
phase of the superconductor is large, the BCS formalism
would no longer be appropriate for describing the super- and

I
~.

I
+I a

+n; f
Vi'

(
I
~n

I
+I a) +Ea

( l0)

conducting state of the metal containing the TM impuri-
ties which give rise to the LSF's. Instead the Eliashberg
formalism should be used. To obtain the transition tem-
peratures of these superconductors, only the linearized
versions of the Eliashberg equations are needed, i.e.,

1
co„=co„+mk~T g A, (n —m)sgnco + sgnco„

2X

b,s(co„) I hs(co„)
P, (cu„)=rrkg T g [A,(n —m) —p']

+n; fV/' U,rrX(0) I a ~s(~ I g as(~. )

~ I
+I a) +&a f'a+Fa

I I [( I ~ I
I a) +Fa]

2mk~ Tg-
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Nd(0)
1+k+n;

N(0)
As(co„)

Nd(0)
A, —p* —n; N(0) U,rrX(0)

a, (~ )
X2~&~TQ—

m

Defining an "effective Coulomb pseudopotential p, ff,
"

Nd(0)
Peff=P +ni N(0) U,rrX(0),

(12)

(13)

I can rewrite Eq. (12) as

l~l, ~n + 1

~—P,rt I
~m

I

(14)

where n =n;Nd(0)/N(0). Evaluating the summation, I
get

T, = 1.13AcuDexp
1+A, +n
k —Jeff

(15)

It should be remembered that the dependence of T, on the
impurity concentration enters in two places in the ex-
ponential factor appearing in Eq. (15), through the n in
the numerator and p, ff in the denominator. Combining
Eq. (15) with the expression for the transition temperature
of the pure strong-coupling superconductor

T,Q
——1.13AcoD exp (16)

I get

1 1+ „U,rrX(0)1+~ X—p'
1

Tc 1+X=exp
c0

1 n„—U,re(0)
A. —p

(17)

In the limit of small electron-phonon mass enhancement,
I+A~i and Eq. (17) reduces to the result obtained by
Schlottman, Eq. (9).

In the square-well approximation, only the phonons of
frequencies less than the Debye frequency play a role in
determining the nature of the superconducting state. As-
suming that I d is greater than RcoD, Eqs. (10) and (11) can
be simplified and be combined to give

IV. ANISOTROPIC SUPERCONDUCTORS

A. Formalism

Comparing the expressions for the transition tempera-
ture and the specific-heat jump at T, of the pure anisotro-
pic superconductors and of the anisotropic superconduc-
tors containing (normal) nonmagnetic impurities obtained
on the basis of the BCS formalism ' with the expres-
sions obtained on the basis of the Migdal-Eliashberg for-
malism, ' ' one sees that the two sets of expressions
differ only in the replacement of the mean-square pairing
anisotropy (a ) in the BCS-based expressions by the
mean-square energy gap anisotropy (a ) defined as

[~'F(~)]kk' [I+uk«)]~'F(~)[I+uk «')1 . (19)

Other dependences of [a F(co)]kk on (2k(Q) and ak (II')
have been proposed. Equation (19) is the most common-
ly used form.

Substituting Eq. (19) into the nonlinear Eliashberg
equations and then using the square-well approximation, I
get

(~'& = (u'& (18)
(1~A, ) (A. —p, ")

in the Migdal-Eliashberg expressions. It was hoped that
the strong-coupling expressions for these properties in an-
isotropic superconductors which contained magnetic im-
purities could be obtained by simply replacing the (a )
factor in the equivalent BCS expression by (a ) since the
BCS expressions are much more easily obtained. This
hope was not realized. Ashraf and Carbotte and Zarate
and Carbotte showed that the strong-coupling expres-
sions for the anisotropic superconductors containing
weakly interacting paramagnetic impurities contained
modifications to the BCS expressions that go beyond the
simple substitution given by Eq. (18). Yoksan and Nagi~~

found that the strong-coupling expressions for the aniso-
tropic obtained within the framework of the Shiba-
Rusinov treatment of the spin-flip scattering by the
paramagnetic impurities could not be obtained from the
BCS expression by the above substitution.

To see if a connection exists if the nonmagnetic impuri-
ties in an anisotropic superconductor give rise to local
spin fluctuations, I will now calculate the strong-coupling
expressions for T, and the specific-heat jump at T, for
the superconductor. Since I am interested in the specific-
heat jump, I will need to work with the complete (non-
linear) forms of the Eliashberg equations, Eqs. (5) and (6).
To represent the anisotropy, I have taken the spectral dis-
tribution function to be of the separable form

(0')
4s(con) = [I+ak(Q)]A2rrkz T g ( I+ak (0'))

z 2 ]&&
[] [co 4-b (0')]'

(0') 1 b,„(Q')
t [Ql +6 (((')]' 2&.ff [Ca„+(l„(n')]' ' (20)
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and

Nd(0)
& =~„/c0„=1+n; N(0)

+ [1+a(Q)]A,
Ano=

1
0o+ 2jeff

1+ C„
1

jeff

(30)

(21)

Nd(0)
+n; ld .

2rgff 2r ' N(0)
(22)

where ( )' denotes an average over the solid angle.
The effective Coulomb pseudopotential p, ,rr is the same as
before, i.e., Eq. (13), and r,rr is the new electronic lifetime
defined as

and

Ani=
1+ C„

1

eff

A.o
1+A, +n

A„i
An2 ———

1+k+n
eff

(31)

(32)

Equations (20) and (21) can be combined into a single
equation for the renormalized energy gap, i.e.,

Substituting Eq. (29) into the definitions of Po, P„P„,and
C„, Eqs. (24)—(27), and then substituting the resulting ex-
pressions into Eqs. (30)—(32), I get

b,„(Q)=

where

do+a «)4l+
jeff

1+1,+n+a(Q)k+ C„'
1

eff

(23)

h Iso„
I

1 —(a')p ", e
1+~+n (

I

o1
I
+p)

+ —,
' (a2)H2„e', (33)

(Q')
Po A2rrk& T——g [1+a(Q')]

[co +b, (Q')]'
(Q*)

2~k Z. Wjeff a (24)

where

1+A,+n
ph

( Io1
I

+p)'

2ph

I
~.

I
(

I ~.
I +s )'

—1
I

own
~

(Q')
p'1 A2nk&——T g [1+a(Q')]

2 2
m=0 [co +b, (Q')]'/

b,„(Q')

[ 2
+ g2 (Q~)]1/2

1 I

[ 2 +g2 ( Q~ ) ]1/2

(25)

(26)

(27)

with P = 1/2weff and

1+n+pe
(1+k, +n )(1, p,rr)—

(35)

The coefficients A„& and A„2 are obtained by substituting
Eq. (35) into Eqs. (31) and (32). Since these coefficients,
when they appear in the expressions for T, and the
specific-heat jump, are multiplied by (a ), only the iso-
tropic part of these coefficients need to be known. They
are

Dividing the numerator and denominator of Eq. (23) by
(1+A+n ), I get

(i)
An] = h co„

I hE'+ 2P
I ~.

I +p '
(

I ~.
I

+p)'
I
~.

I

(36)

5„(Q)=
1do+a«)41+

2&eff

1+ C+ a
1

27eff 1+g+n

and

(,.1

AnZ =— e+p e
1+A, +n (

I
oi„

I
+p)' (

I
o1„

I
+p)'

where the lack of the primes on the P's and C„ indicates
that the division of Eqs. (24)—(27) by (1+A, +n ) has been
performed.

Following Zarate and Carbotte, I now make the ap-
proximation that

Substituting Eqs. (35), (36), and (37) into Eq. (29) and then
substituting the resulting expression into the definition of
the pseudo-order-parameter, a self-consistent equation for
the pseudo-order-parameter is obtained.

h„(Q)=A„o+a(Q)A„1+a (Q)A„2 . (29)

I now identify Po as being the pseudo-order-parameter e.
Substituting Eq. (29) into Eq. (28) and after expanding the
denominator in powers of a (Q ), I find

B. Transition temperature

Carrying out the substitution mentioned above, I obtain
after lengthy algebra
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1+k+n —7T
~—jeff ( &roD) I n

—~kB T
) ro„( &roD ) I

~n
I

1 3
I
~.

I +2p+(a )h rckiiT g irk—sT
( &m D)

n +p (cu„( &roD) I~n
I

( I~n I +p)

1+k+n
~—jeff

nD —1

1

n=O n+ 2

nD —1

+(a')h' g
n=0

2wkB Tc

(39)

where the summations over co„have been converted to
summations over the n appearing in co„=(2n +1)irk&T.
The upper limit in the summations is nD —1 where
nD ——~D/2m. kB T, . Performing the summation, I get

Since the pseudo-order-parameter vanishes at T = T„ I
find that Eq. (38) at T = T, becomes

2e C~D
(1+(cc ))ln

'7T B Tc0
(42)

Te 1+A, 1
ln

T.o ~—(u' 1+(a')
1+k,+n
A, —Peff

1

1+(a') h'

(a')h' p
1+ (a )h 2irk~ T,

—it'( —, ) (43)

where (a ) is the mean-square energy gap anisotropy de-
fined by Eq. (18), I get

I+k+n
~—

(M erf
2kT+'B c

r

+''" ~ 2kT+2kT+
p

2~kB T,
(40)

The dependence of T, on the impurity concentration
enters in three ways, through its explicit appearance,
through the dependence of —,'~,ff on n and through the
dependence of p, rf (leading in turn to the dependence of h)
on n.

C. Jump in the specific heat at T,

where P(x) is the digamma function. If p (=1/2r, fc) is
small (much less than 2irk&T, ), I can expand the digam-
ma functions in powers of p/2~kB T, to get

r

EKED=(1+("»') lt +-,'
A, —Peff 277kB T~

By keeping the higher powers of the order parameter in
Eq. (38), we get

(1+A.+n)l(A, —p, ff) —A (T)—(a )h B(T)
2~kB T C(T)+(a )h D(T)

(44)

+ (a2)h&
2~kB T,

AGED~' 2k, T+
where

A (T)=it(
AGED

+ —, —1(( —, ),2~k T (45a)

(41)

where g' is the trigamma function. In the limit
fuuD ))2mk~ T„p(ficuDl2i. rkz T, + —,

'
) —1t)( —, ) varies as

ln(2e RcoDlm. ki) T, ) where C is the Euler constant. Com-
bining Eq. (41) with the expressions for the transition
temperature T o of the pure anisotropic superconductor and

ficoD p, p
2m.kii T 2irkii T ' 2m.ks T

2+kB T

(45b)

(45c)

D(T)=
2 IT

2
%coD p ) p

2irkii T 2irkii T ' 2irkii T ' 2irkii T

(45cl)
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where

A'(T, ) +(a )h B'(T, ) z 2 T
C(T, )+(a )h D(T, )

'
T,

(46)

where 1t' '(x) is one of the higher polygamma functions.
The explicit dependence of the order parameter on the
temperature is obtained by expanding all the functions ap-
pearing in Eq. (44) about the transition temperature T, .
Doing this, I get

get

(1+k+ n )N (0)
= —,e (T)[C(T)+(a )h D(T)], (48)

I get

a AI',
c~s = ' aT' T=T,

' (49)

where e is given by Eq. (46). Using the definition of the
specific-heat jump at T,

and

A(T) T ~ (»
aT T,

AC~s ——(1+k+n )6. N(0)~ ks T,

[A'( T) +(a )h B'(T, )]
X

C(T, )+(a )h D(T, )
(50)

B (T)= —T, aT

In the limit hcoa ~&2mkBT„ the upper limits in the
summations in A (T), B (T), C( T), and D( T) can be ex-
tended to infinity. With these extensions

The difference between the free energies of the normal
and superconducting phase is given by

N(0)
=m.ktt T g I [co„+P„(Q')]'~—co„I

A'(T, ) =1,

B'(T, )=1— p p p
2WkB Tc 2mkB Tc

(51a)

(51b)

—0

X 1- (47)
[

2 +y2(IIi)]lf2

where co „and P„(Q) are given by Eqs. (20) and (21). co „
is the renormalized frequency in the Migdal theory' for
the normal phase. Expanding the square-root terms in
Eq. (47) in powers of the anisotropy parameter ak(Q), I

and

C( T)=8k.(3) .

If in addition, —,~,ff is much less than 2 kBT„ then

D(T, )=6C(T, ) .

With these approximations, I get

(51c)

(51d)

2

b, C~s ——(1+A,+n)8N(0)m T,
B c B c

8A,(3)(1+6(a )h )
(52)

This expression is very similar to the expression obtained
by Yoksan and Nagi for the specific-heat jump at T, of
a strong-coupling anisotropic superconductor containing
non transition m-etal impu-rities By setting Nd. (0) to zero,
Eq. (52) reduces exactly to Yoksan and Nagi's expression.

V. DISCUSSION

In Secs. II—IV, I have developed strong-coupling
theories for superconductors containing transition-metal
impurities which give rise to local spin fluctuations. Us-
ing the Migdal-Eliashberg formalism, I have obtained ex-
pressions for the decrease in the transition temperatures of
both isotropic and anisotropic superconductors due to the
LSF's and an expression for the jump in the specific heat
at T, of anisotropic superconductor containing LSF's. It
should be pointed out that the expression for the specific-
heat jump does not become the expression for the
specific-heat jump of an isotropic superconductor when
the mean-square anisotropy parameter (a ) is set to zero.

The reason for this is that in the limit (a ) =0, the ex-
pansion for the renormalized energy gap, Eq. (29), would
not contain sufficient information for the calculation of
the specific-heat jump. One would have to use, instead,
an expansion of the form a&a+a &e '. I will return to
this problem in a future study.

To see what changes to the BCS theory arise when the
Migdal-Eliashberg formalism is used, I have plotted in
Figs. 1 and 2, the decreases in T, of an isotropic super-
conductor as predicted by the strong-coupling expression,
Eq. (17), and by the weak-coupling (Schlottmann's) ex-
pression, Eq. (9). In Fig. 1, I show the decreases by dif-
ferent values of U,ttX(0), while in Fig. 2, I show the de-
creases for different values of the electron-phonon mass-
enhancement parameter A, . For the values of the densities
of states N(0) and Nd(0), I have used N(0)=0. 286
states/eVatom (the density of states of aluminum) and
Nd(0) =0318 states/eV atom (typical density of states for
transition-metal impurities dissolved in aluminum) The
value of p* is taken to be 0.1. The values of the other pa-
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FIG. 1. Decrease in T, of an isotropic superconductor due to
LSF's. The three sets of curves show the decrease in T, predict-
ed by the Migdal-Eliashberg based expression, , and by
Schlottmann's expression, , for different values of U,ffg(0).
The impurity concentrations appearing in Eqs. (9) and (17) do
not include the effects of the orbital degeneracy off the impuri-
ties and so the values of n; appearing in the figure should be
multiplied by 2l + 1 for their use in Eqs. (9) and (17).

rameters are given in the figures. The effective BCS cou-
pling constant N(0)g, rr appearing in Schlottmann's ex-
pression for T, was set at (A, —p*)/(1+X) in order for
both expressions to predict the same T,o, the transition
temperature of the pure superconductor. Looking at Fig.
1, I see that the decreases in the transition temperatures
due to the LSF's become steeper as the LSF parameter
U, ffX(0) becomes larger. The decreases in the T, 's

predicted by the Migdal-Eliashberg-based expression, Eq.
(17), are less than the decreases predicted by Schlottman's
expression, Eq. (9), for a given value of U,re(0). Figure
2 shows the decreases in T, to be less steep as the value of
the electron-phonon mass-enhancement parameter A, is in-
creased. The difference between the values of T, predict-
ed by the two expressions becomes less as the value of k
becomes larger.

To see the effects arising from the presence of an aniso-
tropy in the strong-coupling superconductor containing
local spin fluctuations, I have plotted in Fig. 3, the de-
crease in T, predicted by Eq. (43) for three values of the
anisotropy parameter (a ), 0.011, 0.18, and 0.32. For the
value of the parameter characterizing the LSF's, I have
set U,tran(0)=1. This value is well within the range for
which Schlottmann's theory should be valid (i.e., for
values giving g =U/n. I d &1). For the values of k and
p', I have used A, =0.412 and p*=0.127. While these
values are those for aluminum superconductors, the
curves in Fig. 3 should not be viewed as being those for
aluminum superconductors containing transition-metal
impurities. In plotting the curves, I assumed that the pa-
rameter p= —,r,rr is equal to n;(Nd(0)/N(0))I d where
Nd(0)/N(0) = 1 and 1"d——80 MeV. Looking at the
curves, I see that the decrease in T, becomes steeper for

0.9

&.04
0v

0.011

O

0

= 0.25
'&=0.18

& a'&=0. 32

Q7

4

&;(10 ppm)
2

() . ( t 0 pprn )

FIG. 2. Decrease in T, for different values of X. The curves
in this figure show the decreases predicted by Eqs. (9), -, and
by Eq. (17), , for different values of the electron-phonon
mass-enhancement parameter.

FIG. 3. Decrease in T, of an isotropic superconductor due to
LSF's. The curves show the decrease in T, when only the aniso-
tropy parameter (a ) is changed. Values of the other parame-
ters are either given in the text or in the figure.
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larger values of the anisotropy parameter ( a ) . Addi-
tional computer studies show that for much higher values
of U,ffX(0) (values such that g & 1 where the
Schlottmann's theory is not valid), the anisotropy leading
to a softening of the decrease (i.e., increasing the value of
(a ) leads to less steep decreases of T„ the reverse of
what is seen in Fig. 3). No attempt was made to fit the
data on AIMn to Eq. (43) since the equation is sensitive to

the choice of Nd(0), I d and U, tran(0). For most 3d
transition-metal impurities in aluminum, I d is of the or-
der 1 eV. For Mn in aluminum, however, the experimen-
tal data points to I d being of order 0.1 eV. The uncer-
tainties in the value of I d and in the values of Xd(0)
(quoted values range from 9.4 states/eV atom down to
2.13 states/eV atom) would make suspect any determina-
tion of U,rrX(0) using Eq. (43) to fit the data.
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