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Effect of spin scattering and magnetic order on the electronic heat capacity
of magnetic superconductors
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An expression for the difference in thermodynamic potentials 0,, —Q„of the superconducting and
normal states is derived by use of thermodynamic Careen's functions. The change in the heat capaci-
ty C, —C„ in the normal-to-superconducting phase transition in the presence of a periodic magnetic
order and spin fluctuations is obtained. The jump 5C in the specific heat at superconducting transi-
tion temperature is calculated. The variation of electronic heat capacity C with temperature for
T +& T, is studied. It is noted that the presence of magnetic order reduces the jump in specific heat
at T.

I. INTRODUCTION

The electromagnetic and thermodynamic properties of
rare-earth (R) ternary superconductors have been studied
extensively' in recent years. Ever since the discovery of
coexistence of superconductivity and magnetism in ter-
nary rare-earth compounds of the types RMo~&
(X=S,Se) and RRh4Bq, a large amount of experimental
and theoretical work' ' has been carried out. The study
of upper critical field and the heat capacity ' of ter-
nary superconductors has been a problem of considerable
interest. Theoretical works ' in these problems have
tried to provide understanding of the mechanism involved
in the coexistence phase in order to explain some of their
interesting properties. The rare-earth ternary compounds
exhibit two phase transitions at low temperature. The
first phase transition occurs at an upper critical tempera-
ture T, at which the system undergoes transformation
from the normal paramagnetic state to a superconducting
paramagnetic state. The second phase transition takes
place at a lower critical temperature TM at which the sys-
tem goes from the superconducting paramagnetic state to
either a superconducting antiferromagnetic (AF) state or a
normal ferromagnetic state. In the case of ferromagnetic
superconductors ErRh4B4 and HoMo6S8, superconductivi-
ty and a periodic magnetic order are seen to coexist only
in a narrow range of temperature above TM while in AF
superconductors RMo6Ss (R =Cxd, Dy, Tb) and RRh484
(R =Nd, Sm,Tb) the superconducting order coexists with
antiferromagnetic order below T&.

The variation of the heat capacity' of these com-
pounds at low temperature is marked with characteristic
anomalous features. The chief sources of such anomaly
are (l) the crystalline electric field effect (CEF) associated
with the Schottky anomaly and (2) magnetic order which
gives rise to a jump in specific heat at lower critical tem-
perature. In ferromagnetic superconductors ErRh4B4 and
HoMo6SS the jump in heat capacity is observed at the

upper critical temperature T, superimposed on the
Schottky anomaly. Near the second phase-transition
point a spike-shaped feature is observed superimposed on
another anomaly associated with the long-range magnetic
order at TM. The low-temperature specific-heat measure-
ments performed on AF superconductors reveal a pro-
nounced A,-type anomaly at the magnetic phase transition
near the lower critical temperature besides the jump at T, .
Considering the heat capacity of a system to be comprised
of lattice and electronic contributions a reasonable esti-
mate of the effect of magnetic ions on these contributions
is necessary in order to understand the observed
anomalies. Recently there have been attempts on the ex-
perimental side to separate the CEF effects from the mag-
netic phenomena. On the other hand, recent theoretical
works so far have dealt with the effects of paramagnetic
impurity on the specific-heat jump at T, . Zarate and Car-
botte' have used Eliashberg equations to study the
specific-heat jump in the presence of paramagnetic impur-
ities. They conclude that the jump at T, decreases in the
presence of scattering from impurity spins. Sihota and
Nagi' have studied the effects of uniform magnetic field
on specific-heat jump of a superconducting alloy contain-
ing paramagnetic impurities described by the Shiba-
Rusinov model. However, there is no theoretical result
available to estimate the effects of magnetic order and
spin scattering on heat capacity of magnetic superconduc-
tors at low temperature.

In this paper we present a theoretical study of the tem-
perature variation of heat capacity of magnetic supercon-
ductors in the presence of magnetic order and spin
scattering. Our formulation is applicable to systems with
Tc & TM.

We consider a system of localized 4f electrons of the
rare-earth ions and the superconducting 4d electrons of
transition metal atoms interacting with each other via an
exchange interaction. The Hamiltonian for the system in-
cludes the reduced BCS interaction and the exchange in-

35 4781 1987 The American Physical Society



4782 SIMANCHAL PANIGRAHI AND NARAYAN C. DAS 35

teraction between superconducting (4d) electrons and the
(4f) electrons responsible for magnetism. The system is
described by Careen's-function matrices. We formulate the
self-consistent gap equations in terms of normal-state
Green's-functions following our earlier work. We obtain
the difference in thermodynamic potentials 0, —A„of the
superconducting and normal states. We derive an expres-
sion for the change in heat capacity 6C in going from nor-
mal to superconducting state. The effects of magnetic or-
der and spin fluctuations arising out of the exchange in-
teraction on the heat capacity of magnetic superconduc-
tors are discussed in detail. The temperature variation of
the electronic specific heat and the jump in the electronic
specific heat at T, are calculated for a few systems using
our formulation.

The structure of the paper is as follows. In Sec. II we
give a general formulation of the problem in terms of nor-
mal state Green's functions. In Sec. III we obtain an ex-
pression for the change of heat capacity. In Sec. IV we
report numerical calculations an discuss our results.

II. GENERAL FORMULATION

We consider a magnetic superconductor in the presence
of a magnetic induction field described by the vector po-
tential A(r). The Hamiltonian is given by

where
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The exchange interaction V(r) between the conduction
electron of spin cr and local spin SJ at lattice site Rz is as-
sumed to have the form

V( r) = — g 1SJ o.(r)5(r —R~ ) .
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In the above 4' is the electron field with spin o., 5 is the
gap function, p =p —o

~ pz ~

H, Ir = + 1, and H is the ap-
plied external magnetic field. p is the chemical potential
and pz is the Bohr magneton. The differential equa-
tions ' for the matrix Green's functions which describe
the system are
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where co„ is the Matsubara frequency co„=(2n +1)irlph'.
From Eq. (5a) we obtain the equation for the normal-state
(b, =O) Green's function
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where g is electron-phonon coupling constant,
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From Eqs. (5a), (5b), and (6) the solutions for the Green's
functions G and ~ are obtained ' in terms of the
normal-state Green's function S.

We use the relation
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and substitute the solution for ~ ~(r, r, co„), obtained in
terms of normal-state Green's function, in Eq. (7). We
take the l & matrix element of the resulting expression for
A*~(r) and use eikonal approximation for 8' to obtain the
gap equation '
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a = Ag/2eg,

JMg JMg
AQ

— +((S'&)+(S&))
16 8

(13)

(14)

b =@+a, So——(So —(S')) is the spin fluctuation with
wave vector Q, co„=co„+5,5 is defined by

J' X +(q)+X (q)+ ifi5=
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n is the number of magnetic ions per unit volume, gJ is
the Lande g factor, P +(q),X (q) are staggered suscepti-
bilities,
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From Eqs. (19) and (20) we get
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To obtain the expression for 6 we use the values of a
&

and a2 which have been evaluated from Eqs. (9) and (10).
We have

length at T =0. Considering the gap function h(r} to be
uniform' in space in the absence of an external magnetic
field (i.e., B=0) the difference in the thermodynamic po-
tentials' of the superconducting and normal states is
given by
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Q» is obtained by replacing 9 and S, the normal-state
Green s function, in zero magnetic induction field. The
evaluation of S has been done in the presence of periodic
magnetic order and spin exchange scattering. The expres-
sion for self-energy has been obtained in Ref. 9.

III. ELECTRONIC HEAT CAPACITY
OF MAGNETIC SUPERCONDUCTORS

a2 ——N(p)a(T),

where
2 T2
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where y0 is Euler's constant and coD is the Debye cutoff
frequency, x = —, +Pft5/2m, z =x +iPb. /2m. , and

In an external magnetic field H along the z direction
and a periodic magnetic order icos(Q. r) in the system,
the effective vector potential which corresponds to the
magnetization density is given by

4mMg
A(r) =yBx +n sin(Q. r),

where n is the unit vector specifying the direction of the
periodic part of vector potential and B=(1+4vrXp)H, Pp
is the average uniform susceptibility. Following our ear-
lier work we take the gap function to be

2a 8naRe[1((z. ) —lt(x)]+ 3 2b p g(3, —,
' +pA5/2m. )

(25)

Here N (p ) and N (0) are the conduction electron density
of states at the Fermi level for the system in the presence
of local spins and absence of local spins, respectively. 5
has been defined in Eq. (15). The value of po ——0. 18 and g
is the Riemann zeta function. We substitute the values of
a

&
and a2 in Eq. (19) and simultaneously use the value of

the resulting expression at T = T, to eliminate coD. We
obtain

eB&*(r)= b, *exp — x
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substitute the expressions for b, *(r) and A(r) in Eq. (8),
and average over the coherence volume. In the limit of
zero external field (i.e., B=0), we obtain
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taking b, to be real. jo(2p) is the spherical Bessel function.
In the above g is the superconducting coherence length
and p=gg. po is the value of p for /=go, the coherence

2
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tt'2 ——a(T) 0 [1—J'0(2p)] .
H, p(0)

(26c)



4784 SIMANCHAL PANIGRAHI AND NARAYAN C. DAS 35

P;,Pz refer to the values at T = T, where f3=/3, = 1/ks T„
a =a„b =b„z=z„x=x„a(T)=a(T, ), MI2 ——M~,
p=p„H, 2(0) is the upper critical field of spin-field BCS
system at T =0.

The change in electronic specific heat at a temperature
( T & T, ) in going from normal to superconducting state is
given by

2.5 '

2.0
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1.0
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6C =C, —C„=—T
aT2

Use of Eqs. (21) and (26) in Eq. (27) yields' '
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FIG. 2. C/yT, for TbMo6S8. M~ ——20 G, p=1 eV, a
=0.001 312 32, b = 1.001 312 32.

P(T)= » + (P P, )+(—P) —P))N(0) T, 4 and P'(T) = 1/T. In this case Eq. (30) reduces to
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B(T) has been evaluated from Eq. (11) using standard
techniques of integration. At T = T„P( T, ) =0 and the
specific heat jump at T, is given by

N5C = — T [P'( T)]B(T) T
(30)

7g(3) N(0)
8 2 k2T2 (31)

IV. RESULTS AND DISCUSSION

Our results for the change in electronic heat capacity
5C in Eqs. (28) and (30) include the effects of periodic
magnetic order and spin fluctuations. We note that in the
absence of local spins in the system (i.e., Mg ——0=5=a)
N(p) =N(0),

which is the well known BCS result for the specific heat
jump at T=T, .

We have used our expression in Eq. (28) to calculate the
temperature variation of electronic heat capacity C of
magnetic superconductors for T & T, . The results for
C/yT, of TbMo6S8, GdMo6SS, and HoMo6S8 are plotted
in Figs. 1—4. Figure 1 shows the temperature variation of
heat capacity in the absence of magnetic order (M& ——0)
but in the presence of spin fluctuation effects (5&0). The
jump in electronic heat capacity 6C at T, for all these
compounds is found to be near about the BCS value 1.42.
Figures 2—4 show the variation of heat capacity in the
presence of both magnetic order (MI2&0) and spin fluc-
tuation effects (5&0). We find that the periodic magnetic
order causes a relatively large reduction in the specific-
heat jump in comparison with the reduction due to the
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FIG. 1. C/y T, for TbMo6S8, GdMo6S8, and HoMo6S& in the
absence of magnetic order (Ma=0). P,fi5=10, N(p)/N(0)
=0.999. The other parameters are shown in Table I.
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FIG. 3. C/yT, for GdMo6S8. M~ ——20 G, @=1 eV, a
=0.001 312 32, b = 1 ~ 001 312 32.
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2.5 Ho Mo6S~ TABLE I. Parameters used for theoretical calculation.
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FIG. 4. C/yT, for HoMo6Sg. Mg ——40 G, a =0.0145814,
b =1.0145814,p=1 eV.

spin fluctuation effects. This happens due to a compara-
tively large modification introduced in the gap function 6
by the periodic magnetic order. In our formulation the
two prominent interactions between local spins and con-
duction electrons considered are the electromagnetic in-
teraction and the exchange interaction. The electromag-
netic interaction involves the momenta of superconduct-
ing electrons and the staggered magnetization and is pro-
duced by the vector potential A(r). The exchange in-
teraction between local spins and conduction electrons can
be decomposed into (1) the molecular field part which de-
pends on the staggered magnetization and (2) the spin
fluctuation part. Owing to the involvement of periodic
magnetic order in both the interactions it plays a dom-
inant role in the modification of gap function. Earlier
works' ' on magnetic superconductors have made simi-
lar conclusions about the reductions in the strength of
pairing interactions due to these two effects. We observe
deviation from the usual shape of specific-heat curves of
BCS superconductors in Figs. 1—4. This departure is
mainly attributable to the effect of interaction between lo-
cal spins and superconducting electrons. We note that
P(T) and B(T) occurring in Eq. (28) for specific heat
contain contributions from periodic magnetic order and
spin fluctuations. Since these contributions are tempera-
ture dependent they introduce deviations, in the specific-
heat value of the spin-free BCS superconductor, which
vary with temperature. It may be seen from Eqs. (28),
(29), and (31) that in the absence of local spins (i.e.,
M~ ——5=0) only the first term in P(T) is nonzero, which
gives the specific heat of a spin-free BCS superconductor.

Although the electromagnetic interaction, introduced
via vector potential A(r), has been treated in a mean-field
approach the scattering effects are treated exactly in our

formulation. The exchange scattering effects appear via
a~ and a2 in the gap equation (8). The parameters a& and
az involve the normal-state Green's function S which
can be exactly calculated in the presence of exchange in-
teraction and periodic magnetic order.

Further, we note that the earlier theoretical works' '
mentioned here have been confined to the systems con-
taining magnetic impurities and have studied the scatter-
ing effect of impurity spins on the specific heat of BCS
superconductors. Our present work differs from these
works in the sense that we have studied the specific heat
of a system containing a lattice of magnetic ions which
undergo magnetic ordering at low temperature. In such a
system the effects of periodic magnetic order on the su-
perconducting state is important in addition to the
scattering effects. We have included both these effects in
our study of the specific heat. In case of the antifer-
romagnetic superconductors TbMo6SS and CxdMo6S8 the
reduction in 5C is found to be small compared to that of
the ferromagnetic superconductor HoMo6S8.

In our calculation we have chosen the parameters from
the available data for the systems. For all these com-
pounds we have taken fjfi6=10 . The parameters are
shown in Table I.

Our expression for 5C in Eqs. (28)—(30) is valid for the
temperature regime T & T, . For plotting the graphs we
have calculated C/yT, for the two regimes of tempera-
ture, namely, T & T, and T & T„separately. In region
T ~ T„ i.e., for the normal state, we assume the periodic
magnetic order to be absent and the effect of spin fluctua-
tions on heat capacity to be small. The value of C/yT,
in this region is taken to be T/T, which varies linearly
with temperature. In the temperature regime T & T, we
have included the effects of periodic magnetic order
characterized by M~ and the spin fluctuations character-
ized by 6. In our calculation we have used a constant
value of M~ although in the actual case M~ varies with
temperature. The jump in heat capacity at T, shows a
reduction from the corresponding value for the spin-free
BCS superconductor. The variation of C/yT, below T,
is nonlinear and shows sharper drop for the systems con-
taining magnetic ions.
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