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Collective mode and structure factor of a Ferrai-Bose mixture at tricriticality
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The collective oscillation frequencies and structure factor in the tricritical region of a mixture of
weakly interacting bosons and fermions have been calculated by use of effective boson Hamiltonian
derived in a previous publication. The collective mode corresponds to a phonon-type dispersion rela-
tion with a damping constant proportional to the magnitude of the wave vector q. The structure
factor exhibits divergence for q~0. Experimental investigation at tricriticality of a 'He- He mix-
ture is worth attempting to confirm the latter.

Most of our present knowledge about dynamic proper-
ties near the tricritical point (TCP) in He- He mixtures
comes from classical, phenomenological approaches'
based on mode-mode coupling theories and Langevin-type
stochastic equations. These approaches are reasonably
good to describe experimental data for tricritical indices.
An investigation of tricritical dynamics starting from an
appropriate quantum-mechanical basis, nevertheless, is
desirable, for, unlike statics, dynamics is not completely
independent of the microscopic detail in an atomic Hamil-
toni" n.

A theory of tricritical behavior in a mixture of weakly
interacting bosons and fermions has been developed re-
cently by Singh and the author. ' The system serves as a
model for a He- He mixture. The theory reduces the sys-
tem to that describable by an effective, low-momentum
boson Hamiltonian where momenta involved have magni-
tude less than or equal to a cutoff p, small compared to
the boson thermal momentum Az '( T)= (m 4/4srP) '

The order parameter in the theory is the boson field.
Since the correlation length g of order-parameter fluctua-
tions is singular in the neighborhood of the TCP and
therefore large compared to A.z(T), in this theory p, may

be regarded to be of the same order as g
' in the tricriti-

cal region. A move is initiated to study the tricritical
dynamics of the system under this assumption starting
with the effective Hamiltonian in Ref. 4.

This article reports two new features of the tricritical
behavior of the system. These are, in the neighborhood of
TCP, the following: (i) the collective mode of the system
corresponds to a phonon-type dispersion relation with
damping constant proportional to the magnitude q of the
wave vector q rather than q, and (ii) the boson structure
factor S(q) —

~

T T,
~

'~ for—fermion chemical poten-
tial p3 ——p3„where (T„p,3, ) are the coordinates of the
TCP in the T lI, 3 plane. -These features refer to q «g
At first sight, the divergence in S(q) for q~O may ap-
pear to be inexplicable, for this deviates from the corre-
sponding prediction of classical theories. ' In the lattice-
gas model of tricritical behavior, for example, S(q =0) is
nonsingular for small T —T, and p3 ——p3, . As will be
seen below, these features are consequences of Bose statis-
tics. Their revelation therefore cannot be expected in clas-
sical approaches.

The effective boson Hamiltonian (in units such that
6=1) is

2

H, =Cp+ g m4

I

—p4 bb+ b b b b 54 q q y ql q2 q3 q4 ql jq2, q3+q4 ql q, —q', q2 q2 —q2 q3 q3 —q3 ql+q2 —q3
'

q4
I I I

Co= V[ —,u3(n3 ) +u34n3n4+2u4(n4) +O(u 34

p4 p4 u34n 3 +0(u 34 ), —— —
(2)

n3 ——2V g exp@ —p3 +1F jc

k m3

F
2 Bn3 3u4=u4 —

2 u34 +O(u34)
p3

(4) n4 ——V exp/3 —p4 —1P
m4

3 g2 F
934 n3

Q6 (5) Here p4 denotes the boson chemical potential and u3 04,
and u 34 respectively, correspond to fermion-fermion,
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boson-boson, and boson-fermion interactions. The Hamil-
tonian was derived under the assumption that u4 is of
O(u 34Bn 3/Bp3). The quantity u6 is positive definite.

Natural oscillation frequencies of the system are given
by poles of the density-response function (b)

D (q, co) = i f—dt e' '([pq(t), pq(0)] )8(t),

where

(8)
(c)

pe(0) = X be, b.+.,
(9) (e}

pq(t) = exp(iH, t)pq(0) exp( iH, t—), (10)

and the angular brackets ( ) denote thermodynamic
average calculated with H, . To calculate D (q, cu), it is
convenient to introduce the temperature function

&(q,r)= —(TIpq(r)pq(0)) ), (1 1)

where

FIG. l. Graph (a) represents lowest-order contribution to
M~(q, z) and graphs (b)—(g) first-order contributions. A square
vertex corresponds to u 4 while a hexagonal one to u6.

pe(r) = exp(Hr)pq(0) exp( Hr) . — (12)

The Fourier coefficient
P

N(q, z)= f dre' N(q, ~), (13)

where z =2~ni/P with n =0, +1,+2, . . . , is related to
D (q, co):

N(q, z)
~

. ~=D (q, co) . (14)

(17)

In what follows we first calculate &(q,z) in the normal
phase of the system. This will lead to oscillation frequen-
cies in the tricritical region.

The perturbation expansion of &(q, r) in terms of the
unperturbed propagator

9', (q, r) = —( T I bq(r)bq (r) ) ), (15)

where the angular brackets denote the thermodynamic
average defined with ( g [(q /m4) p4]bqbq—), provides
a scheme to calculate N(q, z). It will be seen that the ex-
pansion does not make sense in the critical region. In the
tricritical region, however, it does. This is not surprising,
for even a mean-field approximation (MFA) has been
found inadequate to describe ordinary critical behavior of
the system (see second article in Ref. 4). The expansion
is also valid when one is far away from critical and tricrit-
ical regions.

Contributions to &(q,z), calculated using the perturba-
tion expansion of W(q, ~), are represented graphically in
Figs. 1 and 2. The lowest-order contribution, involving
the product of the noninteracting Matsubara propagators

9 ~(q, z) =(z —Eq+p4) ', Eq q /m4, ——
corresponds to the Fig. 1(a) and is typical of a polariza-
tion insertion. The contribution may be written as
[—VIIO(q, z) ], where

3
—1 0IIo(q, z) =P— , gW~(q+qi, z+zi)9'~(qi, z, ) .

(2m )

A typical term of the frequency sum in (17) is of order

~

z,
~

as
~

z&
~

~oo. The sum therefore converges ab-
solutely. The term IIO(q, z) may also be expressed in the
following form:

0 0
(nq+q —nq )

IIo(q, z)= f (2~)' z —ceo+„+Eo

where

nq =
I exp[P(se —p4)] —1I

(18)

(19)

FICx. 2. A few typical graphs representing second-order con-
tributions to ~(q, z).

The first-order contributions to N(q, z) correspond to
Figs. 1(b)—1(g). A square vertex represents u 4 whereas a
hexagonal one u 6. We have assumed that u 4 is of same
order of smallness as (u6n'), where n'= V ' g ne. On
calculating contributions of these graphs, one finds that
W(q, z), correct to first order, is given by the expression

—VIIo(q, z)[1 P(4u4n'+18u6n' —)
P(4u4n'+—18u6n' )IIO(q, z)IIo '(q, z)]

+4V(u 4+ 9u6n ') IIO(q, z), (20)

where
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&3q, [(nq+q ) —(nq ) ]
2& z —E,

q ~q +Kq

In the limit
~

z
~

~ ao, one obtains
3

IIp(q, z)= 0 0 0 0
nq (l~nq~q )(sq —Eq~q ),

3

Hp(q, z)= o o o o
3 nq (l~nq+q )(nq +nq+q )

(21)

(22)
2 2 2

Q 34m 3k+ T,
Q4~ (T —T()

48(m 3@3,)'
(30)

The condition of validity of the expansion, along the line

p3=p3t, is thus

This condition is difficult to be satisfied even though
u 4 /u 34 « 1 (see Ref. 4). In the tricritical region, for

(u 3 —(M3( g is obtained from (28) replacing Ti by T,
and p3 by (M3, . The quantity u4 is of order T —T, [cf.
(A. 10) in Ref. 5]:

0 0
X(sq, —eq~q, ) . (23)

nq 4m'——&(.T.)(q +g ) (24)

in (22) and (23). Here g[ =( —m4(u4)
'~ ] is the correla-

tion length of order parameter fluctuations in the normal
phase [cf. Eq. (50) in Ref. 5]. With the help of (22)—(24)
we now examine validity of the expansion of W(q, r).
This expansion may be regarded satisfactory provided
that the third term in the large parentheses in (20), in par-
ticular, is small compared to unity.

As already stated, the cutoff momentum p, may be re-
garded to be of order g

' at criticality. For p, g- 1 and
q/p, « 1, one finds from (22)—(24) that

Since momenta q in (1) are such that 0&q &p, and

p, Aii( T) « 1, one may use for nq its approximate form

p3j u 34m 3

kiiT, Aii(T, )
(31)

D (q, co) = —Ve '(q, p~)H*(q, z)
~

e( q, co) =[1+4(u4+9u6n')H*(q, z)
~

. +],
II*(q,z) = IIp(q, z)

—P(4u n~'+1 8u n6' )[IIp(q, z)+IIp(q, z)]

(32)

(33)

This condition is definitely satisfied in the weak-
interaction approximation. The conclusion is that
whereas in the critical region the expansion of W(q, r) is
probably meaningless, in the tricritical region it is not so.

Upon examining also the second- and higher-order con-
tributions to &(q,z) (see Fig. 2), one finds that D (q, co)
is given by

m4q g
Hp(q, z)= — Iarctan (p, g)

3 z P
+ ~ ~ ~ (34)

—[V,K) '+~,k] ']

4m 4q
H;(q, z)= — . . . , [V,k)-'+1]-'.

3mz Pp,

(25)

(26)

The function e(q, co) may be identified as the dielectric
function of the system in the normal phase. It is clear
that natural oscillation frequencies of the system are
determined by zeros of e(q, (p). The ellipses in (34)
represents higher-order terms. To the lowest order, from
(18) and (34), one finds that

Upon taking n'-O(As (t)), it is clear from (25) and (26)
that the third term in the large parentheses in (20) is of or-
der

m4u4$
a( T,p3,p4) =

3
A,s(T)

(27)

The second term is of order [m4u4/kii(T)] and small
compared to the third term. In the high-density fermion
limit p3 ~~kz T, it has been shown' that

Fi(q, (p)—=Re[H*(q,z)
~

. +]

dq] 0
3

~q +(1/2}q ~
(2m. ) co —2q. q1m 4

—1

co+ 2q.q1m 4
—1

(35)

2 2
m4&34m 3k/ Tg

(T —Ti )
12(m3p3)'

(28)

Fq(q, (o)—:Im(II (q,z)
~

.p+)

3
g1 —1—7T

(2n. )
n ~(, g~) [5(co~2q.qim4 )

for small T —T~ and T& T~. Here T~ stands for a k
transition temperature of the system. Thus the condition
of validity of the perturbation expansion, in the critical re-
gion, is

—6((o —2q qm4 )] .—1

(36)

T —Tg Q4 P3
Tg &34 k~ Tg

1/2

(29)
Here H denotes a Cauchy principal value. In view of
(24), the right-hand side of (35) can be approximated fur-
ther. One obtains
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Fi(q, co)= 2 f qidq, f d8
eke( T) I qi I st', 0

sinO
2

qi + +g +qqicos8 co —2qq1cosOm 4
—1

. (37)
co+2qq1cosOm 4

'

m 4'
I i(q, co) = 2 0

dt
2 m2 22

t+ y +~2
4 4p

The integration relative to O followed by the introduction
of a new variable t, defined by q, =v tp„yield

m4
F, (q, co)= —

2 %[I,(q, co)+I2(q, co)],
m.kii( T)q

X dXK (q)= f z

+A, —yx+x
4

m )0. (46)

It is quite straightforward to evaluate Iz(q, cu) with the
help of the relations

2

J +,(q)=m ' —yJ (q) — +A, ' J,(q), m &1,
4

(47)
m 4' +yet
2pc

&& ln (39)

K~+ i(q) =m '+yK (q)
2

4
+A, K i(q), m&l .

1

I2(q, cu)= f

m 4'
2pc

dt (t +y'l4+ A, ')
2 2 2m 4't+ y +~2

4 4p,

On assuming y « 1, in view of (38), (42), and (43) one ob-
tains

2 2
m4 2pc 4Fi(q, co)= [y fi(~) —y f~(~)

4rcp, k~( T) m 4~

+O(y )], (48)

)& ln
t +y'l4+ A,

' y~i-
t+y /4+X +yv t

(40) where

fi (A, ) =3+8K, arctanA, + 7+ 15K,

3( 1 +A, ')
(49)

y q g p g)
—i

pc
(41)

f (g) 1
g( 1 ~i)z 1 +31 +6k.

(1+A, ) 3( 1+k )
(50)

It has been seen above that in the limit
~

z
~

~ Do, the ex-
pansion of &(q, r) is meaningful in the tricritical region.
We therefore assume m4

~

co
~
/2p, &&1 which yields

16p, q
(42)

3m 4'
Ii(q, co)=—

As long as a in (27) is small compared to unity, one does
not need higher-order contributions to Fi(q, co).

We now consider the dielectric function e(q, co) in (33).
Zeros (coq —iI ~) of this function are determined by the
equation

4p,
I2(q, co)=-

m 4'
2

2 4
—+ +A, ln

2

1+ +A, —y4
2

1+ +A. +y4

I+4u4 [F,(q, ca~ i I ~ )+—iF2(q, ~~ —iI
~ )]=0, (51)

where u4' ——(u4+9u6n') We assu. me that damping con-
stant I q « ~

co&
~

. One then obtains

+ I2(q, co) '4" and

2
CO&

——+Cq, C =
Aii( T)

1/2
u4'p, fi(A, )

(52)

2

+y +A, [Ji(q)+K2(q)],

X dXJ (q)= f
+A, +yx+x

4

m&0,

I2(q.~)= [Js(q) Ks(q)]+—[J4(q)+—K4(q)]
2

2

+2 +A, [J3(q)—K3(q)]

(44)

(45)

I ~ =2u4'co~F2(q, co~ ) (53)

in the first approximation. In MFA, ' the equation of
the A, line is p4 ——0 and the endpoint of the X line, viz.
p4 ——0, u 4 ~O+, corresponds to TCP. In the region
p4, u4 (0 of the T-p3 plane, a coexistence of the normal
and condensed phases is possible. Obviously enough,
when u4 becomes zero or negative, the term (9u6n') plays
a very significant role—it does not allow c to vanish or
become imaginary.

To ascertain whether I q is positive, we calculate
Fz(q, co). It is clear from (36) that Fz(q, co), to the lowest
order, is an odd function of co. The fact that (q, g' ') are
small compared to Az '( T) enables us to write
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F,(q, co)=k~ '(T) f qidq, f d8 sinO
5

q&+ +g' +qq&cos8

2qq&cosO

m4

2qq]cosO—5 co — — . (54)
m4

Simple change of variables and use of the definition of the unit step function 8(x) yield

2m 4'
F2(q, co)= 2 qidqt

A,s( T)q

2
2 —1

qi+ +g —( —,comp)
2qqi

0 Q)+
m4

2qqi—0 co—
m4

(55)

I q +pcq
4f, (z)a' (p, z, (T))'

nm4 [1+(p g) ]
(57)

As expected, I q is positive. Since

2f 1/2(g)a3/2 (p g ( T))3/2

[(p.k) '+p. k]

Iq
(58)

the assumption of small damping is fully justified. A
proper study of hydrodynamical equations of the present
system is necessary to establish a relation between the
damping coefficient v and thermodynamic functions.

We next turn our attention to structure factor
S(q)[= (p~(0)p~(0))] for the normal phase of the system.
Its behavior near TCP will provide the possibility of test-
ing validity of the present approach by means of scatter-
ing experiment. It is quite straightforward to show that

(pq(r)pq(0) )

The integrand in (55) is nonzero only when

q» i
co

~

m4/2q. Moreover, as already stated, at criticali-
ty p, g- 1 and a « l. In view of these facts, for
q/p, « 1, one obtains

m qcoq(p, g)
Fp(q, coq )= (56)

2k&( T)q(p, +g )

Substituting (56) in (53), one may write

I i(k) = arctanA,
1 i A(A, —1)

4A. (k +1)
(65)

S(q)=

where

2

E(q) = [I+(qk') 'l'"
rn4

(67)

np is the number density of particles in the condensate
and g' is the correlation length of order-parameter fluc-
tuations in the condensed phase. The term
(coth[/3E(q) /2] ) is a consequence of the finite-
temperature formalism used in deriving (66). As
T~O coth[pE(q)/2]~1 and the right-hand side of (66)
assumes the well-known Feynman-Cohen form provided
np is replaced by mean number density of bosons. For fi-
nite T, since q «k~ '(T), (coth[/3E(q)/2]) can be ap-
proximated by 2(PE(q)) '. Near TCP one then obtains

Near TCP A, —1 and, for T) T„g-(T—T, )
'/ along

the line p3 ——p3, . It transpires that along this line
S(q «g ')-(T —T, )

In the condensed phase of this system also, S(q~O)
diverges along the line p3 ——p3, near TCP. To clarify, we
turn to Bogoliubov approximation in Ref. 5 for this
phase. In this approximation

«oq
h

PE(q) (66)
m4E(q) 2

where

(59)

S(q)=
2vn pkg T,

2

m4

(68)

13

N'(q, z)= f dre"N'(q, r),
~'(q, )= —(TIp, ( )p, (0)I) .

(60)

(61)

S(q)= ~ [10(&)——,(q/p, )'Ii(&)+ . ],
A,p( T)

(63)

Io(A. ) = arctanA,
A.2+ 1

(64)

As long as a « 1, it suffices to consider only lowest-order
contribution to W'(q, z). To this order, (59) yields

S(q)= V f (62)
(2n) 1 e~(Eq+q sq )

Using (24) in (62), one finds that for (q/p, ) «1, the ap-
proximate form of (62) is

Since, for T & T, and p3 ——p3„no —(T, —T)' and
g' —( T, T) ', it —follows from (68) that
S(q «g' ')-(T, —T)

In the lattice-gas model of Blume, Emery and Grif-
fiths (BEG) one finds that S(q =0) is nonsingular. To
see how this develops, one may proceed as follows. A
general relation of classical statistical mechanics is that if
Hamiltonian of a classical system contains the parameter
f(r) in the combination [ —f dr f(r)p(r)] and if we let
f(r)~f(r)+5f(r), the increment 5f(r) brings about a
change in (p(r) ) which is given by

5(p(r)) =P5f f dr'g(r, r')=P5fg(q =0) (69)

for 5f independent of r. Here

g(r, r')=([p(r) —(p(r))][p(r') —(p(r'))]) . (70)

In the theory of BEG, f(r) and p(r) correspond to pq and
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the number of He atoms N4, respectively. From (69) one
finds that

k~ d2
S(q =0)= +

4 4

3 d2
(T —TL)

(71) (73)

in this theory. With the help of (71) and Eq. (3.7) of Ref.
6, for the normal phase, one obtains

(72)

where X is the total number of sites and A=p3 p4.
Within the framework of MFA in Ref. 6 it can now be
easily shown that S(q =0) is nonsingular for small
T —T, and A=A, . One finds

Here d2 and d4, respectively, are the derivatives with
respect to temperatures at TCP of coefficients of (order-
parameter) and (order-parameter) terms in the Landau
expansion of a free energy in Ref. 6.

The regular behavior of S(q =0) near TCP in BECr
theory is not quite unexpected, for the divergence in
S(q~0) predicted above is a consequence of Bose statis-
tics. Experimental investigation in the tricritical region of
a He- He mixture alone can decide whether the predic-
tion is meaningful or merely an artifact of the microscop-
ic approach.
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