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Condensate fraction in superfluid He
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Recently, a relationship between the chemical potential and the condensate fracton no(T) has
been derived for all temperatures in the superfluid region. An analysis of liquid He chemical-
potential data yields no(T =0)=0.062, and no(T) is in excellent agreement with the empirical re-
sults of Svensson, Sears, and Griffin.

I. INTRODUCTION

In 1938, London' proposed that the lambda transition
in liquid He might be related to the phenomenon of
Bose-Einstein condensation, but only in the past ten years
have condensate fractions, no(T), been determined experi-
mentally. Measurements of no(T) from inelastic high-
momentum neutron scattering, and neutron and x-ray
diffraction experiments are shown by the solid circles and
squares in Fig. 1. Analyses of these data carried out by
Sears and Swensson indicate that no(0)=0. 13 at absolute
zero. ' However, by reconsidering the procedure of ex-
tracting the condensate fraction from inelastic neutron
scattering studies, Griffin has used the values represented
by the solid squares ' in Fig. 1 to come up with new ones,
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as shown by the open circles in the same figure. Al-
though higher accuracy is still needed in both the experi-
ments and the analysis procedure, one can now be rather
confident about the existence of the condensate in super-
fluid He, as first advanced by London more than four de-
cades ago. '

From the theoretic side the first calculation of the con-
densate fraction at absolute zero is due to Penrose and On-
sager' who found no ——0.08 by assuming a plausible
ground-state wave function. More recent calculations
have yielded values of no(0) that vary from" 0.09 to'
0.119, depending on the interatomic-force and calculation
method. '

An empirical relationship between no(T) and the super-
fluid fraction n, (T) were derived by Svensson, Sears, and
Griffin, ' for all temperatures T(T~, namely,

no(T)[2 —no(T)]
n, (T)=

no(0)[2 no(0)]

A least-squares fit of Eq. (1.1) to the data yields
no(0) =0. 126 and corresponds to the dashed curve in Fig.
1, where use has been made of the measured values of
n, (T) obtained by Maynard. '

Recently, a theory based on generalized Ward identities
has shown that, in addition to n, (T), the condensate frac-
tion depends also on the atomic interaction and the chem-
ical potential. '

The aim of the present paper is to further investigate
the results of this theory. In Sec. II we compare it with
the empirical approach. By fitting superfluid He chemi-
cal potential data, we show in Sec. III that no(T) turns
out to be close to the new values found by Griffin. We
conclude with a discussion in Sec. IV.
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II. COMPARISON WITH
THE EMPIRICAL APPROACH

FICx. 1. Condensate fraction vs temperature. Dashed curve:
empirical Eq. (1.1) (from Ref. 14), no(0)=0. 126, Solid curve:
Eq. (2.7) no(0) =0.124. Dashed-dotted curve: Eq. (2.7),
no(0) =0.062. Solid circles and squares are experimentally
determined values in superfluid He from Refs. 2—6. Open cir-
cles are the measurements corresponding to the solid squares, as
recalculated in Ref. 9. A typical experimental error is indicated
at T=0.47 K. b =(1—g)' ct +(gn' )' (2.1)

In order to compare the microscopic and empirical for-
mulations of the condensate fraction we first outline brief-
ly the former.

The broken gauge symmetry of the interacting Bose
system is accomplished by the following prescription re-
garding the zero-mode amplitude, '
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such that the ensemble averages satisfy the condition

&~p& = &~o& =o . (2.2)

Hence, it follows that

&bP. & =(I—g)& ~t.&+g~.'. (2.3)

and

n, (T)=np(T)[1 —2Upn (T)p(T) '] (2.4)

p( T) =(Upn(T)[np(T) —2], (2.5)

where p(T) is the chemical potential, n (T) the total den-

sity, and Up the interaction constant. Since n, (0)=1, it
follows from Eqs. (2.4) and (2.5) that

no(0)

[1 no(0—)][1——,
' no(0)]

(2.6)

Hence, np(0) specifies g and conversely; either one serves
as an adjustable parameter and we choose np(0) on ac-
count of the empirical expression (1.1). Thus, from Eqs.
(2.4)—(2.6) we finally have

np(T) I2 —np(0)[1 —np(0)+np(T)] I
n, (T)= (2.7)

np(0)[2 —np(T)]

This result is to be compared with Eq. (1.1). By fitting
least-squares to the data, Eq. (2.7) yields np(0)=0 124.
and the solid curve in Fig. 1.' One can easily see that
np(0) furnished by Eq. (2.7) cannot exceed that from Eq.
(1.1). As np(0) «1, we can neglect terms of the third
power in Eq. (2.7), so that

The real parameter 0& g'( 1 is interpreted as the probabil-
ity of finding particles with negligible fluctuations in the
zero-momentum state, the annihilation and creation
operators keep their usual commutation relation,
[ap, ap] = 1, and No is a finite fraction of the total number
of particles. Thus, Xp ——gXo is the number of particles in
the condensate. The gauge symmetry-breaking parameter

g renders the continuity equation with a source term that
contributes to the associated Ward identities. In the
shielded potential approximation the relevant identities
give"

III. CHEMICAL POTENTIAL
AND CONDENSATE FRACTION

The resolution of the available measurements, as seen in
Fig. 1, precludes an accurate direct determination of the
condensate fraction. Since the chemical potential of su-
perfluid He is known, ' it is then natural to make use Eq.
(2.5) in an attempt to find out np(T). Moreover, this ap-
proach serves as a further test of the theory.

By integrating some thermodynamic relations whose
variables were measured experimentally, Maynard' has
determined the chemical potential per unit mass of super-
Auid He in 0.05 K steps from 1.20 to 2.10 K, and in 1

bar steps from the saturated vapor pressure (SVP) to 25
bar, within an accuracy of 0.01 Jg '. The values of May-
nard at SVP are plotted in Fig. 2.

Now I denote by P(T) the chemical potential per unit
mass. Substituting (2.6) in (2.5) and dividing by the mass
m I obtain

no(0) [2 no( T—) ]
p, (T)= —g

[1—n p(0) ][1——,
'

n p(0) ]
(3.1)

where g—:nUO/m. Strictly, the quantity g depends on the
temperature through n ( T), but since the density of liquid
He varies by less than 1% below the lambda point, one

may consider g as T independent. The adjustment of Eq.
(3.1) to Maynard's data at SVP (Fig. 2) involves two pa-
rameters, np(0) and g, and goes as follows.

I I I I I I I I I I I I I I I
I4.

n p(0) )n p (0). In particular, the two fittings above show
that np(0) —np'(0) =0.002, a difference that is 1 order of
magnitude smaller than the experimental error (0.03).

Finally, as the critical temperature T~ is approached,
both Eqs. (1.1) and (2.7) imply that n, and np have the
same critical exponent in the neighborhood of T~. In
constrast, according to Josephson' no ~ (Ti„—T) ~ and
n, cc (T& —T)2~ "" near T~. However the exponent rlv' is
believed to be small ( —0.02). '

n, (T)=,

np(T)[2 —np(0)]
(n,' « I),

no(0)[2 —no(T)]

no(T)[2+no(T)]
(no «1) .

no(0) [2+no (0)]

(2.g)

(2.9)

I, for a moment, denote by n o and n o' the fractions,
respectively, given by Eqs. (1.1) and (2.8). For the same
np(0) in both equations I have

CS 4
1

1

I I I I I I I I I I I I J I

T (K)

no(T)

no'(T)

[2—np(0)] &1,
[2—n p ( T)][2—n p'( T)]

[n o(0) =no (0)] . (2.10)

Hence, by least-squares fitting one must have

FIG. 2. Chemical potential per unit mass vs temperature at
SVP. Dashed curve: Eq. (3.1), for np(0) =0.124 and

y =0.339 20. Solid curve: Eq. (3.1) for n p(0) =0.062 and
y=0. 15825. Solid circles are the experimentally determined
values from Ref. 15. Open circle is the value obtained in Ref.
22.
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np(0) g (Jg ') p, (Jg ') p (K)

TABLE I. The parameters y and g, and the values of
p( T =0) and p( T =0), for np( T =0)=0.062 and 0.124.

6„/m„ is invariant for all temperatures in the superfluid
region, ' the best fit subjected to the condition (3.2) is
achieved by

0.062
0.124

0.158 25
0.339 20

112.54
52.506

—14.878
—14.865

—7.160
—7.154

g =5„/m, . (3.4)

Second, the value of the chemical potential of superfluid
He at T=0 is known to be p(0) = —7. 16 K.

Firstly, for a series of no(0) trials the parameter g is so
chosen that the value furnished by Eq. (3.1) at SVP and
T= 1.2 K coincides with Maynard's, i.e., '

P(SVP, 1.2 K) = —14.891 Jg (3.2)

The choice of this point ( T= 1.2 K) is due to the observa-
tion that P(T) becomes approximately constant around
T=1.2 K. This is expected since the relevant mass densi-
ties of superfluid He display negligible variation for
T&1 K.

Secondly, no(0) is determined by the best fit to
Maynard's values in the range T & 1.2 K. One notices
that no(0) specifies the temperatures dependence of p, (T)
through no(T), Eq. (2.7), once the value at T=1.2 K is
made to agree with (3.2) by means of g.

In reference to the adjustment of g, we proceed as fol-
lows. The hard-sphere parameter (a =2.556 A) gives
nUo-=8. 5 K but for reasons that will become clear short-
ly, we choose instead nUo ——5, =8.S738 K, which is the
roton energy gap at SVP and T=1.2 K. In additon, we
interpret m as an effective mass, namely m =ym H„
where m H„ is the mass of the He atom. Therefore, we
have

g=h„/ym„„b, „/m„, =17.810 Jg (3.3)

and the adjustment of g to the prescribed value (3.2) is
achieved in terms of y.

In Table I we find the values associated with the two
cases: n(0)=0.062 and 0.124, which are represented by
the solid and dashed curves in Fig. 2, respectively. The
former is the result yielded by a least-squares fit, con-
strained by (3.2). The last column displays the chemical
potential, p =pm H„at T=0.

The best fit provides two important results. First, no-
tice the remarkable agreement between the corresponding
y value and the roton effective mass at T=1.2 K, viz. ,
m, =0.15824mH, . Since for a fixed density, the ratio

IV. DISCUSSION

The preceding section indicates that the condensate
fraction of superfluid He is no ——0.062 at T =0. This re-
sult calls to mind the value no ——0.06 estimated by Kerr,
Pathak, and Singwi, and, particularly, the new values for
the condensate fractions as reanalyzed more recently by
Griffin. Hence, I go back to Eq. (2.7) and determine the
corresponding no(T), which is represented by the dashed-
dotted curve in Fig. 1. Likewise, the empirical formula
(1.1) yields condensate fractions that differ by less than
0.001 from those furnished by Eq. (2.7). Consequently,
for such a low no(0)=0.062, Eqs. (1.1) and (2.7) become
indistinguishable in Fig. 1, and they agree reasonably well
with Griffin's recalculated values of no(T).

One notices, incidentally, that a small condensate frac-
tion implies that No, introduced in the prescription (2.1),
is close to the superfluid particle number, rather than the
number of particles in the condensate. Accordingly, I let
no be the density fraction associated with No. Thus,
no ——/no, and from Eqs. (2.4) and (2.5), I have

no(T) = [n, (T)—no(T)][1——,
' no(T)] . (4.1)

Recalling that no/n, =g/(I+/), as T~Tq, ' the ratio
no(T)/n, (T) varies from 0.94(T=T~) to 0.91(T=0),
whereas in dilute Bose systems, where g'= 1 and
no(0) =0.438, ' this ratio decreases from 0.50( T = Tq) to
0.44( T =0).

I finally remark that the g expression in terms of the
Landau parameters, Eq. (3.4), may be justified on ac-
count of the dominant contribution that rotons make to
all properties of superfluid He above 1 K. In contrast,
twice as large a no(0)( =0.124), implying less than half a
g(=52.506 Jg '), give only a variation of 0.08% for the
chemical potential in the phonon dominated region, i.e.,
p( T & 0.8 K)= —7. 154 K. As seen in Fig. 2, the parame-
ters no(0) and g play a crucial role in the roton region
only.
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