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We derive within the linear-response theory for inhomogeneous Bose liquids the dispersion rela-
tion of a surface excitation (ripplon). It is shown that, in an infinite half space, the ripplon disper-
sion relation is w,(q )~qf[/2, where g is the momentum parallel to the surface. This dispersion re-
lation holds only if the system is not in an external field. For the special case of a Skyrme interac-
tion with a gradient coupling term, we relate the coefficient of proportionality to the surface energy
and thus reproduce the hydrodynamic prediction from linear-response theory. The ripplon-
dispersion relation and the shape of the collective excitations is evaluated and discussed for a nonlo-
cal, phenomenological Skyrme interaction and a microscopic interaction based on variational wave

functions.

I. INTRODUCTION

The advent of accurate microscopic theories of inhomo-
geneous quantum liquids and advances in experimental
technology have opened new perspectives for studying the
surfaces of quantum liquids. Among those, the prospects
of directly measuring the surface response function' and
the layer structure of adsorbed films of “He by electron-
mobility measurements® promise a most exciting field of
experimental and theoretical research. The present paper
addresses a number of problems related to the excitation
spectrum of liquid surfaces, which should lead to both a
deeper understanding of the theory of surface excitations
and to a better interpretation of experimental evidence.

Surface excitations have been historically studied most-
ly within hydrodynamic models (for a review, see Ref. 3).
These studies lead to a dispersion relation for the surface
excitation (“ripplon”) of the form

q (1.1

o

a)z(qH )= A
mp

where o is the surface energy, ¢ the wave number paral-
lel to the surface, and p_, is the asymptotic density. A
derivation of the dispersion law (1.1) from linear-response
theory does not exist according to our knowledge. The
formulation of linear-response theory in the surface is
rather straightforward,“_6 but we will see that some deli-
cate considerations are necessary for a rigorous proof of
Eq. (1.1).

The hydrodynamic dispersion law is rigorously valid
only in the long-wavelength limit. At shorter wave-
lengths, curvature and finite-range effects must be con-
sidered, and finally one expects a level crossing with the
bulk zero-sound mode.3

This paper is devoted to a microscopic study of the
properties of surface excitations. In order to cover a wide
range of cases, we employ two different theories for a
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liquid in an infinite half-space: The first theory is
phenomenological. We start from an energy functional of

the form
E=T+E.= [ d’relp\(),Yp,(r)], (1.2)

where e(r)=1t(r)+€.(r) is the energy density consisting of
the kinetic-energy density

_" 2
tr)= o | VvV py(r) |

and the correlation-energy density €.(r). The explicit
form assumed in Ref. 7 for the correlation-energy density
is

(1.3)

€(r)=~bpy(r)*+ 3cp (DT +d | Vpy(r) |2 . (1.4)

In (1.4), the term proportional to b corresponds to an at-
tractive two-body contact force, the term proportional to
¢ to a repulsive, density-dependent contact interaction,
and finally the term proportional to d to a repulsive sur-
face interaction. The surface structure of liquid “He has
been obtained’ by minimizing the energy (1.2) with respect
to the one-body density for a fixed particle number
N= [ d’rp,(r),i.e., by solving

S(E —uN)

=0, 1.5
Spl(r) ( )

where 1 is the chemical potential. Equation (1.5) can be
written as a Hartree equation

2
RN = SR O o s RV e

o (1.6)

Vy is the local Hartree potential, which is given for the
model Hamiltonian (1.4) by

VH(r)=bp1(r)+2—_’2_}/—cp{+”(r)—2dV2p,(r). (1.7)
Our second approach is based on a variational ansatz
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for the many-body wave function. In that theory, one
starts with the Feenberg form for the ground state

Wo(ry, ..., cn)=exp %

> ouir)+ 3 uy(r,r;)
i

i<j

+ 2 u3(ri7rj7rk)+'.' ’]

i<j<k
(1.8)
and a microscopic Hamiltonian
ﬁZ
H————EEV,?—F 2olln—r]). (1.9)
1

i<j
For given correlation functions u,(r), u,(r;,r;), and
u;(r;,1;,1; ), the energy expectation value corresponding
to the wave function (1.8) can be evaluated exactly by
Monte-Carlo methods.® Due to the complication of
choosing the “best” correlation functions for a Monte-
Carlo calculation, only very simple choices have been in-
vestigated. While it is well known that the energy is only
little affected by improved correlations, it is equally well
known’ that the spectrum of the low-lying collective exci-
tations depends sensitively on the correct inclusion of
long-ranged correlations. One expects therefore that one
must also in the case of surface excitation take the “best
possible” Feenberg function to obtain meaningful results

for the excitation spectrum.
A route that addresses this problem!? is to evaluate the
energy approximately, using the hypernetted-chain (HNC)
theory. In that case, the “best possible” correlation func-

tions u,(ry, ...,r,) can easily be obtained by minimizing
the ground-state energy
f d3r1, e ,d3rN\IJ0(r1, e ,rN)H\I/O(r,, ‘e ,I'N)
H =
o fd3r1,...,d3rN|\I/0(rl,...,rN)|2
(1.10)
by means of Euler-Lagrange equations
H
_ Mw . (1.11)
Su,(ry,...,r,)

The method has the important advantage that one obtains
automatically the correct long-ranged correlations and the
spectrum of collective excitations.® The Euler equation
for the one-body function u,(r) may be rewritten as an
equation for the one-body density p,(r) which is structur-
ally identical to Eq. (1.6); of course the definition of the
Hartree-potential is more complicated. The disadvantage
of the approach is that, once the wave function (1.8), the
microscopic Hamiltonian, and the approximation (e.g.,
HNC) are chosen, there is no way to add information on
the macroscopic properties of the system. This is espe-
cially a problem in “He since approximation methods like
HNC converge poorly in this system due to its high densi-
ty. The only way to improve upon the microscopic
description is to add “elementary diagram” contributions
and three-body correlations. The formal ingredients for
such improvements are well understood,!""!? but the pro-
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gram has so far been carried out only for bulk “He.

In the problem of describing the propagation of rip-
plons in the surface of liquid “He we are, therefore, in the
situation that there is essentially no theory that is entirely
satisfactory from a microscopic point of view: The
effective-interaction model of Ref. 7 allows for accurate
predictions of the static surface properties, but it is of
phenomenological nature and only partially accounts for
finite-range effects. The Monte Carlo method has diffi-
culties in describing details of the correlations like long-
ranged effects and anisotropies, and estimates for the
ripplon-dispersion relation based on these results!® are
questionable. HNC and Euler-Lagrange methods obviate
both of the above problems, but can presently due to the
poor convergence in *He, provide only qualitative infor-
mation.

In this work we utilize the phenomenological theory of
Ref. 7 and the microscopic HNC theory of Ref. 10 to in-
vestigate the collective excitations in the surface of liquid
“He. The aim of our study is on the one hand to obtain
information on the range of validity of the phenomeno-
logical Skyrme interaction, and on the other hand to get
estimates for the importance of finite-range effects. To
this end, we have studied two different parametrizations
of the Skyrme interaction (1.4): One that reproduces the
experimental properties of “He and one that reproduces
the calculated properties of *He in the HNC approxima-
tion. The second model is compared with the prediction
of the HNC approximation of Ref. 10.

Our paper is organized as follows. In the next section,
we review the linear-response theory of inhomogeneous
Bose systems and draw the connection to the sum-rule ap-
proach. This discussion follows the general line of Ref. 6,
which is closely related to the algorithms used in the nu-
merical part of our work. To make contact with the for-
mulation of Chang and Cohen,'* we formulate variational
principles for the lowest normal mode.

Section III specializes on the semi-infinite system. We
prove that, in a self-bound system without an external
field, the lowest lying excitation corresponds, in the long-
wavelength limit, to a rigid displacement of the surface.
The dispersion relation in the limit g;;—0, where g is
the wave number parallel to the surface, is obtained by
first-order perturbation theory. We find, in agreement
with the prediction of hydrodynamic models,’ the disper-
sion relation (1.1). The fourth section presents our numer-
ical results and discusses the importance of finite-range
effects.

II. LINEAR-RESPONSE THEORY AND SUM RULES

The collective excitations of the system are given by the
normal modes of the response function X(r,r'’;w), i.e., by
the solutions of

f d3r2)(_‘(rl,rz;w)Spl(r2)=O . (2.1)

In the random-phase approximation (RPA), which is
applicable if the wavelength of the excitations is long
compared to the interparticle distance, the response func-
tion X(r,r’;) is related to the response function X(r,r';w)
of the “noninteracting” system by
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X Ur, ) =X U1, 0m0)— Vpn(ry,ry), (2.2)
where
5’E,
Vp_;,(rl,rz): (2.3)

8p1(r1)8p;(ry)

is the “particle-hole interaction.” In Eq. (2.3) E, is the
correlation energy of the system, i.e., the ground-state en-
ergy without the kinetic energy. At this stage, no assump-
tion is needed on the origin and the analytic form of the
particle-hole interaction except that it is energy indepen-

dent. To be specific, we have in mind to generate
Vp.n(ry,1;) from the Skyrme model or from the variation-

al energy functional discussed above. For the variational
wave function, ¥, (ry,1;) is just a function of the coordi-
nates r; and r,. For the Skyrme model, the V,_,(r,r,)
obtained by the definition (2.3) has the form

r+r;

] Y
(1+7)p] 2

Vou(r,t)= |b+c 1+12’—

X8(r;—1y) —5d(V,—V,)%8(r,—1;) . (2.4)

The “noninteracting” response function Xy(r;,r;w) is
the one corresponding to a system described by the local
one-body Hamiltonain yielding the ground-state density
pi(r) [see Eq. (1.6)]. The Hartree potential V; can be

eliminated in favor of the ground-state density. Then we
can express H; more conveniently as
H=-F 1 gunv—Lt_ (2.5)
T am v T v '

and X(r;,1,,@) can be written symbolically in the form

Xo=2V'pH [#0*—H}] "V . (2.6)

At this stage, the response function is usually formulat-
ed in terms of the eigenstates and excitation energies of
H,. One can avoid this intermediate step by considering
the fourth-order eigenvalue problem® '

[Hy 42V, H Y =#oiy? 2.7
where
Z_Mr,r')z\/;Tr)Vp,h(r,r')\/;—)—l(T') .
The eigenstates of 3'" of (2.7) are normalized such that
W Hy | ") =8, . (2.8)

From these states we can construct the response function

X(r,r',0)=21p,(r)

X 3 |(H )0
1

o [H, ¢ 1(r)

XV pi(1) (2.9

and its inverse

E. KROTSCHECK, S. STRINGARI, AND J. TREINER 35

(D ot
XU ro)=t s YD o2 o2 T
D=2 V()

(2.10)

From the orthogonality relation (2.8) we see immediately
that the normal modes of the system are given by

Sp(r,w)
2V pl(r)
For the estimate of the excitation energies it is some-
times useful to formulate a variational principle. Such a
variational principle is easily derived from Eq. (2.7): for
an arbitrary trial function ¢4(r), we obtain from (2.7)
(Yy | H{(H+2V, ) H, | ¢y) S 7w’ .
(Ur [Hy | ¢p)

The same variational principle follows independently
from a sum-rule approach: For a given one-body excita-
tion operator

F:Zf(r,)

(2.11D)

III

8p(f(r,0) ~[H " (0)8(0—w;) .

(2.12)

(2.13)

the RPA sum rules are defined as the nth energy-
weighted moments of the imaginary part of the RPA
response function (2.9) as

mu= [ %ﬁm(ﬁw)nf J drid’roft(r)f(ny)

X ImX(rl,rz;w) . (2.14)

From Eqgs. (2.7)—(2.9) one obtains the explicit expressions
for the sum rules m;, m;,and m _,:

my=(V; |H|[H,+2V,,1H, | ¥) (2.15)

my=(V,|H,|¥) (2.16)

mo=(W,|S(r,r') | ¥,) (2.17)
and

m_y =W, |[H +2V,, 17" |¥,) (2.18)
where

Y, =f()Vp(r), (2.19)

and S(r,r’) is the static form factor.
The quantities m;/m; and m,;/m_, are average
square excitation energies depending on the excitation
operator F. These ratios are generally upper bounds for
the square of the exact excitation energy following from
the equation of motion (2.7). In our special case, m3/m;
is obviously identical to the functional (2.12) obtained
directly from the RPA equation in the form (2.7). We see
also that minimizing ms/m, or m;/m _; with respect to

the excitation operator.
5 m3 5 my

o

r 5V, m 1 = (2.20)

Sll/f m, -

is identical to solving the RPA equation (2.7). Of course,
evaluating ms/m; or m;/m_, in the sense of a Ritz
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principle for the same trial function W, will usually lead
to different estimates of the excitation energy.

To conclude this section, let us briefly discuss the con-
nection between our present RPA formulation and the
work of Chang and Cohen.!* These authors start with a
wave function for the excited state of the form

\Ij(rl,...,rN)=F\P0(r1,...,rN), (2.21)

where F is of the form (2.13), and W(ry, .. .,
sumed to be the ground-state wave function. [In fact, it is
sufficient to assume that Wy(r;,...,ry) is a Feenberg
function (1.8) with optimized two-body correlations
u(r;,r;).] For a Feynman wave function of the form
(2.21) for the excited states, Chang and Cohen derive an
estimate for the excitation energy #iw in terms of the static
form factor S(r,r’):

ﬁw<<\v H|V¥)

Iy) is as-

(¥|¥)
Ea [ d*py0) | VFD) |2
" 2m [ @rdrSine ) f OV o0 f (Vi)
m,
o (2.22)
mo

which is minimized by the solution of the Euler-Lagrange
equation

H\\V py(1)f(r)="%w f d3r'S(r,r' )V pr')f(r

(Note that our definition of the static form factor S(r,r’)
deviates from the one used by Chang and Cohen by a fac-
tor V' py(r)y/ pi(r'). We have chosen this convention to
make the static form factor dimensionless like in homo-
geneous systems.) If we use for S(r,r') the RPA expres-
sion

(2.23)

Ste,r)=3 z;—[H“/ﬂ)(r)][le(“(r')] , (2.24)
1

1

where the w; and the W, are the solutions of Eq. (2.7), it
follows from Eq. (2.24) that the solutions of (2.23) are

\/p,(r)f(”(r)

e., the minimization of ms/m;, m;/m_, or m;/my
leads to identical solutions.

Of course, recovering the Chang-Cohen variational
principle from the RPA is not surprising. In fact, it is
straightforward to show that the ansatz (2.21) with a local
excitation operator (2.13) leads always to a description of
the excited states that is formally identical to the RPA
with an energy independent particle-hole interaction.®
But there is, compared with the Chang-Cohen variational
principle (2.22), an important practical advantage in using
either directly the RPA equation (2.7) or using a varia-
tional principle that is derived from the RPA (such as
m3/m ) rather than m,/mg. Using the variational prin-
ciple (2.22) requires in fact that one knows already the
spectrum of low-lying excitations, and can at its best
reproduce what one has put into the calculation of the

=yr), (2.25)
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static form factor. In other words, precise knowledge on
the static form factor in the long wavelength limit is need-
ed. Little is known experimentally; the necessary infor-
mation could, for example, be obtained from an RPA cal-
culation as carried out here. The particle-hole interaction
entering the RPA equations is a less critical input to the
theory in the sense that it does not satisfy any identities at
long wavelengths like, for example, the normalization of
the static form factor. As a step beyond the Skyrme
model used here one might introduce a phenomenological
pseudopotential like in the theory of Aldrich and Pines.!’

III. RIPPLON DISPERSION

Let us specialize now to the propagation of the collec-
tive excitations in an infinite half-space. To be specific,
we assume a system that is translationally invariant in the
x-y plane, and has a nonuniform density profile p,(z)
describing a surface, i.e.,

0 ifzs+4+ o,
pi(z)—

Po fz—>—w . (3.1
An important identity follows from this geometry by con-
sidering a locally rigid displacement of the surface profile
p1(z2)—p(z+§&): The Hartree potential Vy(z) must ex-
perience the same displacement, i.e.,

Vulp(z+6)2)=Vy[p(2)](z+&) , (3.2)
and the energy must change by an amount —£up .
Elp(z+&£)]=E[p(2)]—Eup,, . (3.3)

An identity between the Hartree potential and the
particle-hole interaction is now easily derived from (3.2)
by expanding the Hartree potential to first order in £. We
obtain

dVy(z)
(2 +E)=Viy(2) + £
_8E, 6
(z+
‘SP]
8E,  dp,(z)
+
Spl §f 8p1(z Sp((z) dz'
(3.4)
ie.,
dVy(z) 3, dp(z’)
— = [drV,4(z,1) - (3.5)

In our geometry, it is most convenient to work in con-
figuration space in the z direction, and in momentum
space in the coordinates parallel to the surface. The one-
body operator H; and the particle-hole interaction Vpn
become functions H(g;) and Vpn(z,2",q)). From Eq
(3.5) and the Hartree equation (1 6) we conclude that
dV/'p\(r)/dz is at q;=0 a zero-energy eigenfunction of
H 1+ 2V “h> 1. €.,
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dV/ p,(r) PN dVvpi(z')
Hy(q=0) |———— +2 [ dz'V,4(z,2',q,=0) — |=0 (3.6)

From (3.6) and the structure (2.5) of H, we find that
the RPA equation (2.7) has two zero-energy solutions in
the limit g, —O0. The first solution is simply [p:(r)]'7,
which we readily identify with the phonon. Its dispersion
relation is dominated by the bulk limit of the density and
the particle-hole interaction. It is identical to the Feyn-
man dispersion relation of the phonon w,;="c.q
(g,,—0), where the bulk velocity of sound c; is related to
the particle-hole interaction V,,_,(r),1;) by

mei=p,, f d3er-h(r) (r=|r—ry]). (3.7)

(Note that in the limit z— — o, the particle-hole interac-
tion is translationally invariant and isotropic.)

The second zero-energy solution is the one connected
with the identity (3.6), i.e., it has the property [c.f. Eq.
(2.11)]

3V pi(z)~H,(q,=0),(z)=@d V' pi(z)/dz ,

where ¢ is a normalization constant to satisfy the ortho-
normalization (2.8). This solution corresponds, as dis-
cussed above, to a rigid displacement of the surface; we
identify it with the long-wavelength limit of the ripplon.
To obtain its dispersion relation, we consider the g
dependence of H 1+2/I7p,h as a perturbation, the unper-
turbed state d)?(z,q”) being determined by the differential
equation

dvpy(z)

8[p1(zyq||)]1/2~<p dZ e"p(irll'qll)

=H,(g,)¥r) . (3.8)

Equation (3.8) describes a density fluctuation given by a
rigid displacement of the surface

8p1(r)=p,[z +eexplir-q)]—pi(z) (3.8")

which leaves the system in a situation of local equilibrium
typical for the hydrodynamic regime. The solution of Eq.
(3.8) is for all q|| a zero-energy eigenfunction of Eq. (2.7)
if the term H +21A/p_h is replaced by its g, —0 limit. For
small g,,, Eq. (3.8) has the solution

172

2m pi(z) .
— exp(qz+ir;-q))

ﬁqu P

Up(z)=—

(g,—0). (3.9

Note that there is a subtle difference between using the
solution of the differential equation (3.8) as the unper-
turbed state, and using (3.9) as a trial function for estimat-
ing the excitation energy. Equation (3.9) is an approxi-
mate solution of the differential equation (3.8), which is
valid for small g,. In particular, we have to use in the
following derivations the property (3.8) whenever the
combination Hl(q”)tlz‘,) occurs. Taking Eq. (3.9) without
this additional precaution generates a density fluctuation

T
that does not correspond to a rigid displacement of the
ground-state density. Among others, an estimate of the
excitation energy using the m;/m, sum rule with this ex-
citation operator would generate additional incorrect con-
tributions to the ripplon dispersion.

Having determined the unperturbed state 12 we are
ready to calculate the first correction to the (zero) unper-
turbed ripplon energy:

2 A
[wﬁ’ H | o, |, |00
Rl —a? 2m
Wr=4q 0 0
(1/},|H1,1/J,)
_ #qh T+ [ Vi(z,2) |p)
m  (V'pi(z)explqz) | dV/ pi(z)/dz)
ﬁzqﬁ

:W{2T+(p1[V,(z,z )] - (3.10)

Here, we have expanded the particle-hole interaction for
small g

~ ~

Von(2,2,q)) =V, 4(2,2,0)+q[V1(2,2)+0(g}) (.11

and used, as usual, the definition

/V](z,z’)zv p(2)WVi(z,2' 0V pi(2') .

Note that the expansion (3.11) does not contain a term
linear in g since ’I)p_,,(z,z’,ru) falls off as rH_6 for
r— . Hence, its two-dimensional Fourier transform
Vyn(z,2',q) is differentiable at the origin. Recall also

P
that

=1 [ dz|dvpiz)/dz |2
2m

is the kinetic energy per surface area.

With Eq. (3.10) we have arrived at our final formal re-
sult for the long-wavelength behavior of the ripplon
dispersion relation, which can be cast in the form

o
wi=—2 g3 (3.12)
mp.,

with

o« =2T+(p1 | V1]p1) . (3.13)

For completeness, we display also the form of the static
structure function in the long-wavelength limit. In that
case, we can restrict the mode sum (2.24) to the contribu-
tion from the ripplon, and insert our solutions (3.9) and
(3.12). Thus we find

ﬁZ
MO+L 9|

"2 dv/pi(2) dvp(z)
dz dz

S(z,z',q”):Z

(3.14)
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The dispersion relation (3.12) is so far formally identi-
cal with the hydrodynamic prediction. In addition, the
hydrodynamic theory identifies o, with the surface ener-
gy o. This macroscopic surface energy is defined as

aleim [E—~uN], (3.15)
where E and N are energy and particle number per sur-
face area.

There is no a priori reason that o and o, can be identi-
fied in any approximate theory like, for example, the vari-
ational theory using a truncated Feenberg function. The
situation is similar to the case of the phonon dispersion
relation, where the identity mc? =p [ d3rV,4(r) is
rigorously true only for the exact wave function,'? and the
diagrammatic proof of the relation between the long-
wavelength limit of the particle-hole interaction and the
velocity of sound requires rather subtle arguments. A
similar analysis is not yet available for the surface prob-
lem.

The situation is by construction different for the
Skyrme model, in fact it is quite easy to prove here that
the o, of Eq. (3.13) is identical to the macroscopic sur-
face energy o. From Eq. (24) we find that
V3me(z,2')=2d8(z —2’) and, hence

03™=2T+2d [ dz|pi(z)|?. (3.16)

Alternatively,” we can multiply the Hartree equation
(1.6) with d[p(z)]'/?/dz, integrate twice using the explicit
form of the Hartree potential (1.7), and obtain

T+ [ dzle.(2)—2d | Vpy(2) | *]=uN , (3.17)

where N is the particle number. Combining this with
(1.2), (1.4), and the macroscopic definition (3.15) of the
surface energy we find

0 = gSkyrme (3.18)
which is the desired result.

The above derivation of the qﬂ/ % law for the ripplon
dispersion relation is to our knowledge the first micro-
scopic derivation of that law from linear-response theory.
The structure of our result is quite interesting: We find
two contributions to the surface energy. The first one is a
local term that is simply determined by the density gra-
dient and proportional to the kinetic energy of the ground
state. The second one is an interaction term that reflects
the finite range of the particle-hole interaction. Terms of
this structure do not contribute to the propagation of bulk
phonons. Conversely, we find that the zero-range terms
in the Skyrme interaction do not contribute to the propa-
gation of ripplons.

To conclude this section, we comment briefly on the es-
timate of the excitation energies by means of the m,/m,
sum rule, which has been attempted by Chang and
Cohen'* and others.!* For the estimate of the excitation
energy by means of the ratio m,/mg we need an addition-
al assumption on the long-wavelength behavior of the
static form factor. We assume that it is given by Eq.
(2.24). We assume further that one (the lowest) of the col-
lective modes entering the sum (2.24) dominates for
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q,,—0 such that the modesum can be restricted to that
lowest state. This assumption is correct for the surface
structure function, in which case the lowest mode w, is
the ripplon. It is also fulfilled for a local density approxi-
mation for S(r,r’) in which case the lowest mode w, is the
phonon. Evaluating m,/m, for some trial excitation
operator ¥, we find

Iﬂ o W L HL 9 H )
mg

- 0

; AL

(3.19)

(We have displayed here explicitly the normalization of
the solution ¥'® of the RPA equation.) One verifies
readily that equality holds in Eq. (3.19) for the true sur-
face excitation (3.8) and the Chang-Cohen trial function

Y =Vpi(2) explqz+igqy 1)) .

In other words, if one knows the S(r,r’), the m,/m,
ratio gives for the CC excitation operator the exact excita-
tion energy. This statement is, of course, not practically
useful since one must have calculated the static form fac-
tor first, in which case the excitation energy is known
anyway, and no additional information can be gained by
studying m,;/m,. If one uses the m,/m, together with
the additional local density approximation for the S (r,r’),
the lowest-lying excitation present in the static form fac-
tor is a phonon. Whatever trial function one takes, the es-
timate m;/m will always lead to a linear ripplon disper-
sion relation.

IV. APPLICATIONS

The numerical solution of the RPA equation (2.7) is
straightforward, details may be found in Refs. 6 and 10.
For technical reasons, we have solved the RPA equation
(2.7) not in a half space, but in a slab geometry, assuming
translational invariance in the x-y plane, and symmetry
around z =0. Hence, our formal results of the preceeding
sections are applicable only if the penetration depth of the
ripplon is small compared with the slab width. The sym-
metric slab geometry supports modes that are symmetric
or antisymmetric with respect to z=0. A simple cri-
terion whether our approximation of the half space by a
finite slab is sufficient is that the symmetric and the an-
tisymmetric modes have the same dispersion relation. All
results to be reported here for the HNC theory apply to
the largest slab considered in Ref. 10, with a particle num-
ber n =0.26A 2 per surface area. Slight differences from
the results presented there are due to an improved numeri-
cal treatment. The calculations using the phenomenologi-
cal Skyrme interaction could be performed for economical
reasons in a much larger box, hence the agreement be-
tween the symmetric and the antisymmetric modes is con-
siderably better.

Our two Skyrme models employ the following parame-
ter sets. For the parameters fitted to the experimental
data (saturation density p®*P'=0.002 185 A, saturation
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energy €™ =—7.15 K, surface tension o*P'=0.274
K A™?), Stringari and Treiner’ find for the energy func-
tional (1.4) the parameters b=——887.87 KA®
c=1.041489% 10" KA*!*?, y=2.8, and d=2376 K
A2 For the parameters fitted to the HNC data (satura-
tion density pHNC—O 0017 A—3, saturation energy
eHNC_ _ 548 K, surface tension o"'NC=0.14 K A™2), the
energy functional has the parameters b= —884 KA3
¢ =0.8813686% 107 KA>'#7) y=2.58, and d=1552
K A2

The surface profiles obtained from these two parame-
trizations of the energy functional and from the HNC cal-
culation of Ref. 10 are shown in Fig. 1. We find that the
Skyrme fit to the HNC data generates a slightly more dif-
fuse surface, the agreement between the Skyrme para-
metrization of the experimental data and the Monte Carlo
results of Ref. 8 is somewhat better.” Test calculations of
the dispersion relation with different surface profiles show
that the surface diffuseness has little influence on the rip-
plon dispersion relation and the wave shape.

For the sake of comparison, we have also calculated the
HNC approximation o, for the surface energy. We found
2T7=0.03 KA~2 and (p}|Vi(z,2')[p}))=0.13 KA 2
thus giving o8N°=0.16 KA~% This number agrees
within the expected accuracy with the surface energy

oHNC—-0.14 K A~? obtained from a mass formula (3.15).
Note especially that the contribution from the finite range
of the particle-hole interaction is overwhelming; a similar
result has been found in the nonlocal Skyrme model’ (1.4).
This result makes any attempt to account for surface
properties of self-bound finite systems with local mean-
field theories highly questionable.

The ripplon dispersion relation corresponding to the
two parametrizations of the effective interaction and the
HNC result of Ref. 6 are shown in Fig. 2. Also shown

z (R)

FIG. 1. The density profile p,(z)/p,, are shown, in the sur-
face region, for the HNC density (solid line), the Skyrme fit to
the HNC result (long-dashed line), and the Skyrme fit to the ex-
perimental data (short-dashed line).
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there are the hydrodynamic prediction (1.1) with the ex-
perimental and the HNC surface tension, and the Feyn-
man dispersion relation for the bulk phonon. The follow-
ing observations are made.

(i) The two dispersion relations derived from the
Skyrme forces agree rather well with the hydrodynamic
dispersion law (1.1) with the corresponding surface ener-
gy. The close agreement shows among others that the
long-wavelength solution (3.9) of the differential equation
(3.8) is also a very good approximation for in the regime
0<g, <1 A~!. If the solution (3.9) were exact, the hy-
drodynamic g H/ law would be rigorous.

(ii) The HNC dispersion relation agrees, for long wave-
lengths, well with the hydrodynamic and the Skyrme
dispersion relation. We attribute the small deviation at
least partly to the smaller size of the system, which causes
Eq. (3.5) to be satisfied only approximately. Further devi-
ations are caused by the fact that o and o, are, in the
HNC approximation, not identical. The close agreement
between the HNC and the corresponding “hydrodynamic™
law gives confidence that neither the restriction to finite
box size is severe, and that o and o, are not very dif-
ferent.

(iii) At a wave number g =1 A~ the Skyrme and the
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FIG. 2. The dispersion relations of the lowest collective
modes are compared with the hydrodynamic predictions and the
Feynman dispersion relation. Solid line: ripplon dispersion re-
lation obtained from the HNC response function. Long-dashed
line: ripplon dispersion relation obtained from the Skyrme pa-
rametrization fitted to the HNC data. Long-dashed line with
marks: hydrodynamic ripplon dispersion relation corresponding
to the HNC asymptotic density and surface energy. Medium-
dashed line: ripplon dispersion relation obtained from the
Skyrme parametrization fitted to the experimental data.
Medium-dashed line with marks: hydrodynamic ripplon disper-
sion relation corresponding to the experimental asymptotic den-
sity and surface energy. Short-dashed line with marks: phonon
dispersion relation obtained in the HNC approximation at the
HNC equilibrium density.
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HNC dispersion relations start to deviate. The Skyrme
dispersion relations follow essentially the ripplon disper-
sion law w~q,3,/ 2 the energy of the lowest collective mode
in the HNC theory becomes lower. At still higher mo-
menta, i.e., in the regime of the roton minimum, we find
that the energy of the lowest mode agrees very well with
the energy of the Feynman phonon. In that regime, the
lowest lying collective mode is indeed not a surface mode
but rather a bulk phonon.® The effect is clearly related to
the finite-range structure of the particle-hole interaction,
which is included in the variational theory, but apparently
not adequately treated in the special Skyrme force utilized
here. We reiterate that the suppression of the lowest
mode by the bulk roton minimum can in our theory be
taken only qualitatively, since it is known that the roton
minimum is only poorly described by the Feynman
dispersion relation. An interesting point is the observa-
tion that no further suppression of the dispersion relation
below the bulk roton minimum is observed. Such a
suppression (“surface roton”!®~1%) has occasionally been
suggested from the study of two-dimensional layers. Of
course, the systems considered here are three dimensional,
and care has been taken to make them large enough such
that finite-size effects are suppressed.

Figures 3(a)—3(c) show the shape of the density ﬂuctua-
tions, 8p(z), in our three models for 0 <q; <1 A~ In
the long-wavelength limit g, =0 [Fig. 3(a)], the 8p,(z) cal-
culated in our three different procedures agree rather well.
We attribute the differences essentially to the numerical
restrictions imposed by the HNC theory: The calculation
of the collective modes in the HNC theory has been done
for a symmetric film in a box of only 22 A width, whereas
the Skyrme calculation was done in a box of 40 A width.
The smaller box size for the HNC calculation has the ef-
fect that the lowest mode has, if the penetration depth is
large, still a considerable overlap with the bulk phonon.
The necessity of a rather narrow cutoff in the low-density
regime also seems to have the effect that the ripplon does
not extend far enough into the low-density tail. This also
has the consequence that the calculated ripplon energy in
the HNC approximation (Fig. 2) is somewhat too high.
We consider for these technical reasons the shape of the
density fluctuation predicted by the Skyrme force to be
the more reliable one. We note also the 8p,(z) ~dp,(z)/dz
is quite well satisfied by the Skyrme result, the agreement
is somewhat worse for the HNC result.

Profound differences between the 8p(z) predicted by
the Skyrme and the HNC theory start to appear around
g,=0.5 A~! [Figs. 3(b) and 3(c)]. It appears that the
HNC theory predicts a stronger localization of the ripplon
in the surface, whereas the Skyrme effective interaction
rather predicts a migration of the density fluctuation fur-
ther into the low-density tail. Of course, one has to keep
in mind that the Skyrme force has been constructed to
reproduce the static, or the long-wavelength properties of
the system. The accuracy of the predictions for shorter
wavelengths is naturally limited. But it appears that the
Skyrme model is adequate essentially in the regime of
quantitative validity of our RPA theory of the collective
excitations.

Improvements of our description of collective surface
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FIG. 3. (a) The shapes 8p,(z) of the surface excitations ob-

tained in our three calculations are shown in the long-
wavelength limit g;;—0. Solid line: HNC prediction; long-
dashed line: prediction from the Skyrme parametrization of the
HNC results; Medium-dashed line: prediction from the Skyrme
parametrization of the experimental data. For comparison we
show also the density profile p,(z)/p, obtained from the
Skyrme fit of the experimental data. The normalization is arbi-
trary. (b) Same as Flg 3(a) for ¢;=0.5 A", (c) Same as Fig.
3(a) for ¢ =1.0 A"
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FIG. 4. The HNC particle-hole interaction Vpn(ry,r) is
shown for two particles at the same distance from the surface,
as a function of their separation parallel to the surface. (a) Solid
line: in the bulk limit, (b) long-dashed line: in the surface at
65% of the asymptotic density, and (c) medium-dashed line: in
the surface at 34% of the asymptotic density. We found that
the particle-hole interaction is almost isotropic.

modes are, if desired, mainly necessary in the regime of
momenta g > 1 A~'. One can seek such improvements
in both phenomenological and microscopic theories. In a
phenomenological theory, one would first incorporate
finite-range effects in a more systematic way. An obvious
starting point is the generalization of the pseudopotential
theory of Aldrich and Pines,"’ i.e., one could introduce a
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phenomenological particle-hole interaction Vpn(r1,13).
We show in Fig. 4 the HNC result for Von(z,z',r))) for
two particles having the same z coordinate, as a function
of their distance || parallel to the surface. We note also
that this function, unlike the pair distribution function
g(ry,1y), is almost isotropic. Expectedly, the repulsive
part of the particle hole interaction becomes weaker in the
low-density regime, whereas the attractive part remains
essentially the same. One may quite well replace the
HNC form for ¥, (r;,r;) by an isotropic, phenomenolog-
ical, V,(ry,1r;) which is constructed according to the ar-
guments of the pseudopotential theory,'’ the relation
(3.13) between the pseudopotential and the surface energy,
and the restriction (3.6). Note, however, that a “local den-
sity approximation” to the particle-hole interaction does
not exist in any self-bound system below approximately
65% of the equilibrium density.

The same goal of constructing a better particle-hole in-
teraction can be reached in the HNC theory by includ-
ing'"!? three-body correlations and “elementary dia-
grams.” The theory is well understood, but the practical
application for surface problems is not yet available.

Improved local pseudopotentials (or particle-hole in-
teractions) can at most lead to the “best” Feynman theory
for the ripplon. As a further step, one must improve
upon the description of the collective excitation by (in a
phenomenological approach) introducing “backflow”!’
corrections, or (in a microscopic theory) allowing for fluc-
tuating two-body correlations.’’ These effects are expect-
ed to become significant when the wavelength of the exci-
tation becomes comparable with the interparticle distance.
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