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We study a simple quantum-mechanical generalization of the resistively shunted junction model to
describe the current-voltage characteristic of a single Josephson junction. An exact series representa-
tion is given for the nonlinear resistance, which is valid for arbitrary temperature and dissipation and
includes both classical and quantum phase slips. For sufficiently high temperature, the quantum
effects disappear and # cancels from the corresponding series. The resulting expression is equivalent
to classical Brownian motion in a periodic potential with friction coefficient . We derive a rigorous
expression for the leading quantum corrections to the classical result which are of order #2. In the
overdamped limit they are equivalent to a renormalization of the barrier, whereas for Yy —0 they are
bounded below by the effect of an additional bias of order #iy. An approximate continued fraction is
derived for the resistance in the general case, which becomes exact in the classical high-damping lim-
it. It is evaluated numerically and leads to reasonable qualitative results for small barriers, unless the
temperature approaches zero. We discuss the possibility of seeing the quantum effects in junctions
with small capacity, in particular the existence of a regime with negative differential resistance and
the implications of our results to the quasireentrant behavior observed in thin superconducting granu-

lar films.

I. INTRODUCTION AND MODEL

Following the pioneering work by Caldeira and Leg-
gett,! there has recently been a lot of interest in the quan-
tum behavior of collective macroscopic variables like the
phase difference ¢ in a Josephson device. Specific effects
like tunneling? or level quantization® have been seen ex-
perimentally. Moreover, theoretical considerations sug-
gest that even coherent oscillations of the magnetic flux in
a superconducting quantum interference device* (SQUID)
or the voltage in a current-driven Josephson junction,’
which arise from a linear superposition of macroscopically
different states, might be observable. In this work, we
will examine the possibility of observing the quantum na-
ture of the phase in a rather direct way, by looking at the
current-voltage characteristic of a single current-biased
Josephson junction. To this end, we will apply and ex-
tend a previously discussed model for quantum Brownian
motion in a periodic potential® to the present problem.
We will assume that in the limit where ¢ may be treated
classically,” the system is described by the so-called resis-
tively shunted junction model.® As a result, the dynamics
of the phase is then equivalent to Brownian motion of a
classical particle in an external potential and may, for in-
stance, be formulated using a simple Langevin equation of
the form

M 494 + at;; ) _gelr) (L.1)
Here the particle coordinate g has to be identified with the
phase @, the mass M is proportional to the junctions ca-
pacitance C through M =(#/2e¢)’C and the friction
coefficient y=My is determined by the inverse relaxation
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time ¥ "!=RC with R an effective shunt resistance. The
potential energy V(q) in the presence of an external
current I has the form (see Fig. 1)

V(g)=—V cos(2mq /qy)—Fq (1.2)

with V=#l_/2e the Josephson coupling energy, I. the
critical current, g, =27 the lattice constant and F =#I /2e
the external force. Finally, §Cl(t) is the usual Gaussian
white noise with zero average and correlation

(EUNET0)) =29T8(1)

(throughout the paper we will choose units such that
kg=1). In order to determine the current-voltage charac-
teristic within the present model, it is necessary to calcu-
late the nonlinear dc mobility

(1.3)
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FIG. 1. Periodic potential V(g)= —V cos(2mq /q0)— Fg with
lattice constant g, and external force F.
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(¢?
p="r (1.4
of our Brownian particle for a given F5£0 with (g ) being
the particle’s steady-state velocity down the washboard
potential. Obviously, for vanishing Josephson coupling
V=0, the mobility is given by u=uo=1/n and is in-
dependent of both T and F. Using the Josephson relation
U =+ /2e for the voltage drop U across the junction, this
is equivalent to a simple Ohmic current-voltage charac-
teristic U=RI. In the general case V540, the correspond-
ing relation between a given external current and its asso-
ciated voltage drop follows from

U=+-RrI.
Ho

(1.5)

In the Brownian motion analogy, the central quantity of
interest which determines the junctions effective resistance
is thus the normalized mobility u/u, It will vary be-
tween zero and one and generally depends on bias I, tem-
perature T, friction 7, and corrugation V. Although u/u,
is not known analytically even for the purely classical
problem, except in the limits of very large’ or very small'®
damping 7 or to order V2, there are efficient numerical
methods!! which allow to determine the classical mobility
,u”I very accurately for arbitrary values of the parameters.
Our aim in the following is to understand the behavior
of a quantum particle in the presence of a dissipative envi-
ronment, which for sufficiently high temperatures is de-
scribed by the classical equation (1.1). Specifically, we
want to calculate the normalized mobility u/u,, taking
into account the quantum nature of the phase variable ¢
or, equivalently, the quantization of the electromagnetic
field in the contact. The corresponding Brownian particle
is thus able to tunnel through the potential barriers and
will roll down the washboard potential for any finite
external current I <I,, even at T=0 where classical ac-
tivation is impossible. The associated nonzero voltage will
then lead to dissipation and, through the Josephson rela-
tion, is directly proportional to the number of quantum
phase slips per time. Contrary to the classical limit,
where the Langevin equation (1.1) completely specifies the
problem, it is necessary in the quantum case to have a mi-
croscopic model of the bath coupling which is consistent
with the given classical limit. As has first been pointed
out by Caldeira and Leggett,' the knowledge of the classi-
cal limit allows a description in terms of a purely phe-
nomenological model provided the environment interac-
tion fulfills some rather general conditions. The model is
characterized by the single friction parameter 1 which, at
least in principle, is measurable by an experiment in the
classical regime. It consists of a linear coupling of the
Brownian particle to an infinite set of harmonic oscilla-
tors. Due to the periodicity of the phase or, equivalently,
the discreteness of the number of Cooper pairs n as its
conjugate momentum, both the bath and the external
force can couple only to variables which are invariant un-
der addition of 27 to the phase. A Hamiltonian which
respects the symmetry ¢ —@+27 can thus contain only
terms like sing, cosg, or ¢. Now, as long as quasiparticle
excitations are neglected, the total number of Cooper pairs
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in both superconductors is conserved.!> As a result, the
bath oscillators may couple only to ¢, which is directly
proportional to the charge Q on the capacitor. The physi-
cal picture of the shunted junction model implies that

Q =2en +Qext —Qn

splits into a contribution 2en which is transferred via pair
tunneling, a second one Q.= f tI(¢')dt" due to the exter-
nal current and a term Q, which takes into account the
charge which flows dissipatively through the resistor in
parallel to the junction. Assuming that Q, may be
represented as a weighted sum of harmonic oscillator
coordinates, we are led to the Hamiltonian

Zen+f0'dt’1(t’)+2caxa ]Z/ZC—VCOS(p—}—HOSC ,
a

(1.6)

H=

(1.7)

where H, is the Hamiltonian of a harmonic oscillator
bath with masses m, and frequencies w,. As long as one
is interested only in the dynamics of ¢, it is sufficient to
specify the weighted density of states which we define as

clo,

#

2e

o

2

2
> (1.8)

a

J(w)= Slw—wy), ©>0.

mgy

In particular, the choice J(w)=nw leads to the Langevin
equation (1.1) by treating (1.7) as a classical Hamiltonian
and taking the oscillators in thermal equilibrium at tem-
perature 7. By canonically quantizing the phase accord-
ing to [@,n]=i and the additional oscillator bath in the
standard way, (1.7) provides us with a simple model for a
resistively shunted, current-driven Josephson junction
which takes into account the quantum nature of ¢. Since
states which differ by adding 27 to the phase are identical,
this is, in fact, a model for a driven dissipative quantum
pendulum, rather than a particle in an extended periodic
potential as in (1.2). It has been shown,'® however, that
in a case with J(w)~w as w—0, the dissipative environ-
ment interaction destroys the indistinguishability of ¢ and
¢@+2m in the following sense. As far as the distribution
of ¢ is concerned, the Hamiltonian (1.7) is equivalent to
the original Caldeira-Leggett model>!* for an exrended
coordinate g =¢

a

5 (x,—q)?*, (1.9)

Heo=p*/2M + V(q)+2p§/2ma+

with p=M¢, A,=(#/2e)c, 0, and V(qg) given by (1.2).
Thus for the calculation of the voltage U=*p/2e, the
simple washboard picture of Fig. 1 is valid even quantum
mo::chanically,15 since for any 750 coherence between
paths with different winding numbers is destroyed com-
pletely.!”> For the particular case of ohmic dissipation
J(w)=mnw, the quantum description of a Josephson junc-
tion is therefore again equivalent to Brownian motion of a
particle in an extended periodic potential. As a con-
venient measure of the dissipation strength we introduce
the dimensionless parameter a=7q3/27# which reduces
to

a=Rgy/R (1.10)
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in the Josephson context, with Ry =h /4¢2=6.45 kQ as a
quantum unit of resistance. For an ideal junction, de-
scribed by the tunneling Hamiltonian, the barrier of the
periodic potential at zero external current is related to the
BCS gap by 2V=C(Aacs.

This paper is organized as follows. In Sec. II, an exact
expression for the mobility as an infinite series in powers
of V2, derived previously,® is reformulated in a way which
resembles a grand canonical partition function of a classi-
cal one-dimensional Coulomb gas. At T'=0 we derive a
homogeneity relation for the mobility which shows, in
particular, that the linear mobility u; for low friction
a <1 is equal to ug for arbitrary V, i.e., independent of
the barrier height. In Sec. III we first study the condi-
tions which are necessary to obtain the classical limit,
with u independent of #. We then give a rigorous dis-
cussion of the leading quantum corrections to u which
are of order #*. They arise from two different sources and
their corresponding contributions are shown to be dom-
inant at low or high damping, respectively. In the limit
Y — oo the quantum corrections are simply equivalent to a
renormalization of the barrier. On the contrary, in the
underdamped case ¥ —0 they have a much more compli-
cated form and we can only give a lower bound in terms
of an additional bias of order #y. In Sec. IV we introduce
an approximation which allows to sum the series to all or-
ders in V2 in terms of a continued fraction. The approxi-
mation turns out to be exact in the classical large damp-
ing limit and to order V2. Its numerical evaluation shows
physically reasonable behavior for small barriers and not
too low temperatures. Finally, in Sec. V we discuss the
possibility of actually seeing quantum effects in the
current-voltage characteristic of small Josephson junctions
and show that for a <1 and small enough temperature
there is a regime with negative differential resistance. In
addition, we mention briefly to which extent our results
may be relevant to explain the quasireentrant behavior ob-
served in thin superconducting granular films. A short
derivation of the classical Fokker-Planck equation from
Feynman’s influence functional theory is given in the Ap-
pendix.

II. COULOMB GAS REPRESENTATION
OF THE MOBILITY

As has been shown in previous work in collaboration
with Fisher,® the normalized mobility in the periodic po-
tential (1.2) is directly related to the corresponding quanti-
ty in an associated tight-binding model

u/po=1—prs/to , (2.1
where pup may be calculated from
(2
UTp= IILII; T (2.2)

Here (x,(t)) is the average position of a particle moving
on a discrete tight-binding lattice with hopping matrix ele-
ment ¥V /2 and lattice constant §y=go/a. The dual
tight-binding model is again coupled to a dissipative oscil-
lator bath at temperature 7 with a slightly modified spec-
tral density!®
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J(o)=n0 |1+

=[]

and it is subject to the same external force F. Due to the
change in the lattice constant, however, the dimensionless
friction in the tight-binding model is given by

(2.3)

Thus the mapping between the original periodic potential
and its dual tight-binding model exchanges the regimes of
weak and strong environment coupling. A simple pictori-
al representation of this mapping is obtained, by regarding
the formal discrete tight binding lattice as the limit of a
continuous periodic potential with a very large barrier.!”
Then both models may be represented in a single diagram
of V versus a such that V= o corresponds to a tight-
binding model with zero hopping matrix element (see Fig.
2). It has been shown by Schmid!® and others thereaf-
ter®!%20 that the ground state in the periodic potential is
extended whenever a < 1 and localized if @ > 1. The dual-
ity therefore exchanges both weak and strong corrugation
as well as localized and extended behavior.

While we will not repeat the calculation leading to the
duality, either for the partition function at 7 =0,'® or in
the extended version for the full dynamics at arbitrary T,
it is not difficult to understand at least its physical ori-
gin.21 To this end, we consider the case of zero bias F=0
and the limit a >>1, which corresponds to a very small
friction @ << 1 in the tight-binding model. If @ is neglect-
ed to lowest order, the unperturbed tight-binding Hamil-
tonian

H‘TOB’.—_—?VE( [n){n+1| +H.c.)

n

(2.4)

with |n) as the Wannier state localized around position
ngo, is diagonalized by introducing Bloch states
|k)=N-123 ¢"™|n) with quasimomentum k. This
leads to a tight-binding band with energy

't

extended localized

-
0 1 o

FIG. 2. The duality maps a continuous periodic potential
with small amplitude V and dimensionless friction as1 to a
discrete tight-binding model with small hopping matrix element
and a=1. The ground state is extended whenever a <1 and lo-
calized when a > 1.
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which is identical with the potential in our original con-
tinuous model provided we identify kg, with 27q /q,, i.e.,

kg /% . (2.6)

This suggests that, up to a scale factor, the continuous
coordinate ¢ in the original model may be identified with
the quasimomentum k£ in the dual tight-binding model,
using an extended zone scheme. Thus the duality be-
tween the two models is basically a kind of Fourier trans-
formation between real and momentum space.’? With
this picture in mind it is then easy to understand the in-
version of the coupling a=1/a, i.e., the switching be-
tween extended and localized regimes in Fig. 2. For
@ << 1 the tight-binding model is only very weakly cou-
pled to its environment and thus k is a good quantum
number. Correspondingly a particle in the continuous
periodic potential with coordinate g ~k is strongly local-
ized due to the suppression of quantum fluctuations by
the strong dissipative coupling a >>1. With increasing @,
however, a decreases and thus the quantum spread in k&
becomes larger, reflecting the fact that the quasimomen-
tum becomes increasingly ill defined if the tight-binding
model is subject to a growing strength of dissipation. Fi-
nally, for @ > 1, k is completely delocalized and the quasi-
momentum picture has lost its meaning. This is obvious
also from the dual model since the tight-binding ground
state is localized in real space if & > 1.

The explicit calculation of (x,(¢)) may be done with
the use of Feynmans influence functional formalism
which is sketched very briefly in the Appendix. In this
theory, the reduced density matrix of the particle is ex-
pressed as a double path integral over all possible paths
gs(t') and ¢,(¢’) on the tight-binding lattice. At time =0
the paths start at g, =g, =0 and then perform a kind of
random walk with steps of size +g§, and amplitude
+iV /2% per unit time. Here the plus sign refers to jumps
of g,; the minus sign to those in ¢g;. Due to the
eliminated influence of the environment, each possible
path is associated with an additional complex weighting
factor which depends on the whole trajectory. Let n and
n' be the number of jumps in g(¢') and g, (¢') respective-
ly, and define

=(q,+45)/2, ys=q;,—¢q; . 2.7

In order to specify all the possible paths, we introduce
variables 7,;, {;==+1 with [=1,2,...,n+n’, which will
be called charges in the following and times ¢, with

O<ty<ty...<t,,, <tsuch that?
Go ntn
X =7 2 o(t'—1t), (2.8)
n+n’
ys(t') =gy 2 £,0(t'—1;) (2.9)

=1

©O(t) denoting the usual step function. As has been shown
in Ref. 6, the influence functional due to the dissipative
bath coupling allows only configurations with

=1

and thus the charge variables §; obey a neutrality condi-
tion. This implies that n +n’'=2N is even and that only
diagonal elements of the tight-binding density matrix
ys(t)=0 are calculated. With these definitions the
influence functional theory leads to the following expres-
sion for the generating function {exp(iAx,)) in the steady
state®2

2N
. had V t 153
(explidx,)) = 2: 2% > fo dtyy - - fo dt, ,
N=1 fn.6}
(2.11)
iy T 90 =« W
exp iy m |5 6+A———g |—i&y 3 §1,—S,
I=1 2 2 a I=1
Here we have introduced the variables
w —yltp—1t;)
g=— 23 Cll—e v, gy =0 (2.12)
r=i+1

and €=€/afiy as a dimensionless measure for the poten-
tial drop e=Fq, per period. Introducing w, as the un-
damped oscillation frequency around the minima of the
unbiased periodic potential, € may be written as

2

f (2.13)

with f=1/I, as the ratio of the external current (or force)
to its critical value where the barrier vanishes in the tilted
cosine potential. Note that € is a purely classical quantity
and, for a given g, is independent of the corrugation am-
plitude V. The contribution S,, which is known to be
strictly positive from the general properties of the
influence functional, depends only on the charges £, and
is given by

I—1

2N
2 1 2 6@y —1)] .

-2 (2.14)
Q=2 =1
Here we have introduced the dimensionless integral
=["d Lsyz") th(y /2T) 2.15)
+y°)
which depends on the reduced temperature
~ T
T=—". 2.16
7y ( )

The function Q(x) has a very simple physical meaning,
being directly related to the mean-square displacement for
quantum Brownian motion of a free particle. Indeed it
has been shown!# that for appropriate thermal initial con-
ditions the model (1.9) with V(g)=0 leads to

#(1—e ")’

(%)) =(q%0)) + ————~—
1 4 T (g %0))

+ 2 o4 (2.17)
™

for the spreading of an initial Gaussian wave packet of
width (g%0)). The integral (2.15) cannot be expressed in
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0 L 1 ]
0 1 2 3 y 4
FIG. 3. The function Q(x) defined in (2.15) for T=1.
Asymptotically Q (x) will approach the line 7Tx if T540.

terms of elementary functions at arbitrary T but is easily
evaluated numerically (see Fig. 3). It defines a smooth
and monotonically increasing function of x>0 with
Q(x =0)=0 and asymptotic behavior

2

lim Q(x)=2—In(1/x) (2.18)
x—0 2

and
lim Q(x)=nTx, T+0. (2.19)

At zero temperature the behavior for large arguments is
logarithmic

lim Q(x,T=0)=Inx , (2.20)
|
WV -
L)—Zf dx,y - - f dx H sin —g, exp
{5}

as the canonical partition function of a classical neutral
gas of 2N charges §;=+1 located at positions
O<x;< *** <Xy <L on a line of length L. This is sug-
gestive, because .S, is equivalent to the potential energy of
the charges due to a two-particle interaction (2/a)Q(x)
which is linearly (or logarithmically at T'=0) confining at
large distances. The equivalent temperature of our gas is
thus proportional to the dimensionless friction a and
should not be confused with the real physical temperature
T which, according to (2.15), determines the form of the
interaction Q(x). With $?¥ £,x, as the dimensionless di-
pole moment, the bias € becomes equivalent, in this for-
mulation, to an external imaginary electric field i€ acting
on the charges. Thus, apart from the unusual factor

W Clsin[(r/a)g;], Qn(L) is precisely identical with a
classical partition function of a one-dimensional neutral

i€ 2 Eix;—S,
=1
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whereas, in the limit T— o« we may replace coth(y/27)
by 27T /y to obtain the “classical” result

0% x)=7T(x —14e %), (2.21)
which, in contrast to (2.18), is proportlonal to x2 in the
limit x —0. Obviously we have Q(x)> Q°(x) for any x.

The expression (2.11) may be simplified by performing
the summation over the variables 7; which gives a factor

2N
_1)Np2N | 240 m
( ) I1 sin 2a a &

I=1

Taking the derivative with respect to A at A=0 and insert-
ing the resulting expression for {x,(¢)) into (2.2) we ob-

tain

HTB o N7 2N L X2
_— 1 V d P d
Bo aElL 2: A

(2.22)
2N —1

> II sin —g, sin |€ 2 &1x; lexp(—S,) ,

1e) I=1 I=1

where the summation over the 2N variables §;=*1 is al-

ways understood to be restricted by the neutrality condi-
tion (2.10) and we have introduced V=V/%y,” x,=y1,,
and L =yt. This brings (2.22) into a dimensionless form
and shows that the reduced mobility u/ug is a function of
the four dimensionless parameters a, ¥, T, and € The
expression (2.22) will form the basis of all our subsequent
discussion. Although it is generally of a rather complex
form, it will enable us both to derive some exact results
and a useful approximation which may be easily evaluated
numerically.

A very interesting feature of the representation (2.22) is
its formal similarity to a grand canonical partition func-
tion of a one-dimensional classical Coulomb gas. Indeed
let us define

(2.23)

f

Coulomb gas with imaginary external field. Defining

z=—V?2, (2.24)
(2.22) may then be written as
BTB _ 7 im lim & 2 z¥QN(L) , (2.25)
Ko aE€ L— o L

and thus looks like the imaginary part of a grand canoni-
cal partition function with negative fugacity z. We will
see in Sec. IV that this is not a merely formal definition
but indeed, at least in a certain limit, it will enable us to
sum the series exactly to all orders in a way, which is
completely analogous to the calculation of the standard
grand partition function of a one-dimensional Coulomb
gas by Lenard.?® Thus, although the series is oscillating
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and Qp contains an unusual term, our nonequilibrium
quantum transport problem has, in a sense, been reduced
to one in classical equilibrium statistical mechanics. It is
therefore interesting to ask, whether it is possible to apply
methods like the renormalization group to the present
problem. As an example, we will determine in the follow-
ing the € dependence of the nonlinear mobility at zero
temperature from a simple argument concerning the be-
havior of the partition function Qx(L) under a change of
length scale. It was mentioned above that the ground
state of the tight binding model is localized if &@ > 1 and
thus one expects the linear mobility to vanish at T=0.
The proof for localization®?° was restricted, however, to
lowest-order perturbation theory in the hopping matrix
element. Similarly, the dynamical calculation for the mo-
bility has only been performed to order ¥? by evaluating
exactly the partition function Q; for a single neutral pair
of charges [see Eq. (4.14) below]. This corresponds to the
first term in a virial expansion of (2.25) and gives®
purp~V%*@Vifa> 1 and €0, which indeed implies a
vanishing linear mobility. In order to extend the argu-
ment to arbitrary ¥, we observe that this result follows
from a simple power counting argument since the interac-
tion term exp(—S,) at T=0 falls off as (Ax) 2% for large
separation Ax >>1 of the two charges. This suggests that,
quite generally, the behavior of Qy in the limit €0 may
be obtained by considering values of the dimensionless

distances
Ax, :le—xl >>1 (226)

if @>1 and T=0. Due to the logarithmic increase (2.20)
of the interaction at large distances the contribution

exp(—S,) then takes the form
N -1 2t
exp( —8,)— [T IT (x;—x,)>"" (2.27)
I=2r=1

Let us now perform a scale transformation where all the
lengths are multiplied by a factor A. As a result, (2.27)
acquires an additional factor

2N 1—1

exp [2&@lnA ¥ &, > & |

1=2 I'=1

whereas, due to (2.26) the variables g; are essentially
unaffected and thus [[?Y; lsin(7&g,) gives no contribu-
tion from the change in scale. Using the charge neutrality
condition (2.10), it is straightforward to show that

2N 1—1

26 3% &r=—

=2 I'=1

(2.28)

for arbitrary realizations of the 2N variables {{;==*1].
Thus the interaction term (2.27) changes by a factor
A~2Ne which leads to the simple relation

On(AL,&E)=(AX1=2)No, (L, A€) (2.29)

for the partition function with length AL. This implies
immediately the homogeneity relation
1=y \e)

/‘TB( 17,?)=,UTB(}\. (2.30)
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for the mobility which, in the limit €0 should hold at
T=0 and for @ > 1. Although the argument given here is
certainly not rigorous, and indeed fails if & < 1, the rela-
tion (2.30) is consistent with previous results and has
some very interesting consequences. First of all, (2.30)
tells us that the T=0 mobility depends only on the com-
bination # = V&%~ ! but not on ¥ and € separately. In ad-
dition, the perturbation theory result shows that ppg~u>
in the limit ¥ —0. As a consequence, the linear mobility
will vanish and the tight binding ground state be localized
for arbitrary V and @ > 1, because € may always be chosen
so small that u—0. However, we expect that with in-
creasing hopping matrix element V the external bias below
which the localization effects start to become important
will decrease. Secondly, from the duality relation (2.1),
we find the surprising result that the linear mobility at
T=0 and a <1 is equal to u, for all ¥ and thus is com-
pletely independent of the barrier height. This confirms
the corresponding conjecture made in Ref. 6 and indicates
that, within the present model, all cases with V40 scale
towards the trivial fixed line V=0 if a<1 and T=0.
The linear effective resistance is thus the same as if no
Josephson coupling were present at all. A very intuitive
heuristic explanation for this effect has recently been given
by Fisher?” in terms of the resistively shunted junction
picture. Consider the charge AQ, which is transferred
through the resistor if the phase changes by 27. It is easy
to see that AQ, =2ea, whereas through the Josephson
element charge will obviously flow only in units of 2e.
The capacitive energy, however, favors transporting the
charge in the smallest possible units. Thus for a <1 it is
advantageous that all charge flows through the resistor
and nothing through the Josephson junction (and vice ver-
sa if a>1). Correspondingly, the linear effective resis-
tance will be equal to R (or zero) independent of how
much current could flow as Cooper pairs.

III. CLASSICAL LIMIT AND QUANTUM CORRECTIONS

In this section we start by showing that for sufficiently
high temperatures the # dependence of the mobility is
eliminated completely. It is then shown that there are
two different types of quantum corrections which are
determined explicitly to lowest order in #. For very large
damping their effect on the classical mobility is equivalent
to a renormalization of the barrier and is due to the
enhancement of the noise spectrum of the fluctuating en-
vironment force. On the contrary, in the underdamped
limit ¥ —O0 the corrections arise from the quantum effects
of the Brownian particle itself and are shown to be bound-
ed below by the effect of an additional bias of order #y.

To obtain the classical result from a quantum mechani-
cal expression one may formally take the limit #—O0.
Since # is neither zero nor dimensionless, a proper deriva-
tion should, however, be based only on calculating to
lowest order in #iw/T with @ a typical frequency in the
problem. In the present case, taking T >>#y, we may re-
place the function Q(x) by its classical limit Q/(x) given
in (2.21). The contribution S, then takes the form

AN -1

SY=—K 3 & S &l —xp)—1+4e 7]
1=2 I'=1

(3.1



Here we have introduced the dimensionless purely classi-
cal quantity

(3.2)

Y

which, for given g, is independent of the barrier height as
is € Since a and V are each of order #~!,2® Planck’s con-
stant does drop out in the reduced mobility provided that
the product of the sine functions in (2.22) may be replaced
by the product of their arguments, i.e.,

§|gl| <«<1. (3.3)

In order to find whether this condition indeed holds in the
limit of high temperatures, it is convenient to introduce a
function

2 Sih(t'—1t) (3.4)

=1

with A(t)=e?'©(—t)+0O(z). Thus g(¢') is a continuous
version of the normalized trajectory y.(t')/§,, where the

steps are rounded on a time scale ¥y ~'.® It is then
straightforward to show that g; =g(¢;) and
S¢=Ky f'dt'gz(t’) ) (3.5)

We will now argue that for sufficiently high temperatures
the term exp(—S¢) suppresses the values of g; such that
(3.3) is obeyed. This is easy to see in the limit
y(t; .1—1t)=Ax; >>1, where g(t¢') is essentially a succes-
sion of step functions and

2N —1
S§=K 3 giAx; .
I=1

212N
(2]

cl
Pis _1 jim L s (V| L
Ho € Lo L N=1 2

foL dxyy
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Thus exp(—S$) restricts the magnitude of |g,| by a
term of order (KAx;)”'2 and (3.3) is fulfilled if
E,/T <<Ax,. Here E,=(27#)}/Mg} is the quantum-
mechanical energy necessary to confine a particle of mass
M within a lattice spacing. In the Josephson case this
reduces to (twice) the Coulomb energy E,=(2¢)*/C for a
single Cooper pair. Thus, as long as the dimensionless
distances Ax; between two successive charges are kept
larger than say of order one, the condition (3.3) is obeyed
and the mobility will become independent of # if T >>#y,
E,. What happens, however, if Ax; is very small such
that in a number of N >>1 steps |g; | may become large
but S is only of order one and therefore does not
suppress this large but strongly localized fluctuation? To
answer this, let us consider an extreme case of trajectory
with

1= =bn=1 Cyp=""=Lin=—1 3.6)
and with equidistant time steps Ax, i.e.,
x;=x;+(—-1)Ax, I=1,...,2N . (3.7)

Now, if the total length 2N Ax of the fluctuation is of or-
der 1 or larger, the maximal value of |g;| at /=N is of
order N. The corresponding S¢, however, is given by
S¢' ~KN3Ax and thus such a configuration is suppressed
very effectively. On the other hand, if NAx << 1 we have
for N>>1, gy=N?Ax/2 and S§=Kg#. Thus, even in
this case, a configuration with gy >>1 has negligible
weight. As a consequence, we conclude that whenever
T >>#iy, E, we may replace S, by S and sin[(7/a)g;]
y (7/a)g;. Then, using 7TI7/a=%(a)0/y)2, the normal-
ized mobility as given by (2.22), reduces to the classical
expression

2N —1

fxz dx,; Y ]I s&sin

{6} 1=1

ez§1x, exp(—S%) (3.8)

which evidently contains no # any more. The expansion parameter V=V /%y has thus been replaced by the classical

quantity '(a)o/‘y)2 »

€. Introducing

212

1

2

Do
Y

zcl_

and the mobility now depends only on the three dimensionless quantities K [or (wo/v)?], V /T, and

(3.9

as the classical fugacity parameter, (3.8) may again be written in the form of a grand canonical partition function

cl ©
EE=%Im lim % > (z

Ho € L N=1

HNoFL)

Here the canonical partition function for the 2N charges &,

2N —1
L)—Zf dx,y - f dx H g1exp

(¢}

=1

with neutrality condition 37¥,£;=0 as before.

i€ 2 gl'xl Sd

(3.10)

=+1 located at positions x; is defined as*

(3.11)

Before we proceed to discuss the quantum corrections to the classical mobility, we should show that our expression
(3.8) is indeed equivalent to the standard Fokker-Planck or Langevin formalism. A direct proof for this is given in Sec.
IV in the particular case of large damping. Generally, it is demonstrated in an indirect way in the Appendix. There it is
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shown that Feynmans influence functional theory, and thus the exact quantum dynamics of our model, reduces to the
Fokker-Planck ec,uation under precisely the same approximations which lead from (2.22) to (3.8), namely the replace-
ment of S, by S¢ and the expansion to lowest order in the off-diagonal components of the density matrix. Correspond-
ing to those two approximations, there are two different sources for the quantum corrections to the classical mobility.
First there is a contribution from expanding the product of the sine functions in (2.22) beyond the leading order. This

gives rise to an additional factor 1 —AS, in the expression (3.8) with

2

17 |72,
AS | =—|— . :
1=% | & [§1 g (3.12)
Secondly there is a correction S, =S '+ AS, which is due to the lowest order deviation of Q(x) from Q°(x). Expanding
coth(y /2T )=2T /y+y /6T + . .. in (2.15) we obtain
E, 2§ -1 JR—
ASi=—pr 26 Z &l B (3.13)
Taken together, the leading corrections of order #* to the classical mobility may be obtained from the series
2N —1
L‘J_"ZLL 1 2 (2! f dxyy - - f dx; S (1—AS,—AS,) [] gsin |€ 2 &ix; |exp(—S¢) (3.14)
0 € L-ow (&} [=1 =1

This result is exact, as is (2.22) or (3.8), but due to the fact
that even the series for the classical mobility can generally
not be evaluated in closed form, it does not seem very
useful. It is, however, possible to obtain a rigorous and
explicit result on the effect of quantum corrections in the
two extreme cases y—0 and y— «. Indeed in each of
these limits only one of the two correction terms is
relevant. This may be seen by taking the dimensionless
sums in AS; and AS, to be of the same order, which
leads to the crude estimate

AS,/AS, ~K . (3.15)

Thus the effect of AS,; will be negligible in the strong
damping limit K—0 whereas for very weak damping
K — « it is AS, which will become irrelevant. Generally,
both AS; and AS, will contribute to the quantum correc-
tions and, since both are positive, the associated actual in-
crease in the mobility will always be larger than the one
obtained by neglecting either AS| or AS,. Let us consid-
er first the overdamped case which turns out to be rather
simple. If, in addition to K << 1, we have also wg <<,
then the fugacity z is very small and our gas of charges
will be dilute. Correspondingly the distances Ax; are
large compared to one and we may neglect not only AS,
but also the exponential term in (3.13). Using the relation
(2.28), we then find that

E, N
12T
Accordingly, the leading quantum corrections to the
classical mobility in the overdamped limit K <<1 and
wo <<y may be incorporated to all orders in V into a

change of the fugacity z9—z(1—E,/12T). Thus they
are rigorously equivalent to a reduction of the barrier?!

Fiwog
T

AS, ly>>wg: (3.16)

2w v 1

— .1
T T 12 , (3.17)

which will lead to an enhancement of the mobility as ex-

f

pected. This exact result should perhaps be contrasted
with the naive expectation that the quantum corrections
would reduce the barrier by the zero-point energy
2V —2V —#iwy/2, which does not even have the correct #
dependence. It should be pointed out that the result
(3.17) has in fact implicitly’>3* or explicitly** been found
in several previous treatments dealing with quantum
corrections to the classical decay rate 7! from a metasta-
ble well. This is not surprising since for high and even
moderate'® damping, there is a direct relation between the
linear mobility y; and 7~ °. It is based on the general
Einstein relation D=y, T for the diffusion constant and
the incoherent site to site hopping picture which leads to
D=q3/2r with 7~! as the total rate for hopping to the
right or left. The advantage of the present derivation of
(3.17), however, is that the result has been shown to fol-
low rigorously from a dynamical theory and turns out to
be valid for arbitrary values of V' /T and € Most impor-
tantly, though, we have seen that it is restricted to the
limit of large damping, where yd is given by the Smolu-
chowski approximation.

Contrary to the result (3.17) which is due to the quan-
tum enhancement of the classical noise spectrum, the
quantum corrections in the opposite limit of small damp-
ing K— o« have a completely different origin. As was
pointed out above and in the appendix, there are two ap-
proximations necessary to obtain the classical Fokker-
Planck equation from the exact quantum dynamics as
contained in the influence functional formalism. One is
the replacement of the quantum-mechanical fluctuating
force £(t) with spectrum n#iw coth(fiw/2T') by the classical
£°t) defined in (1.3). The other consists of expanding to
lowest order the off-diagonal components y5£0 of the den-
sity matrix. Since (7/a)g; is directly related to y [see Eq.
(3.4) above], AS; and AS, can thus precisely be identified
with the effects of expanding in y to next than leading or-
der and the inclusion of the leading deviations between
£(1) and £°(1). According to (3.15), in the small damping
limit K— o0, it is the former effect which gives the dom-
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inant quantum corrections. Contrary to the overdamped
case, we have found no explicit result for the influence of
AS, on u, except in the limit ¥—0.% It is, however,
possible to obtain at least a lower bound on the correc-
tions associated with this term. To this end we note that
from physical arguments AS; > 0 will enhance the mobili-
ty compared to u® and the enhancement will increase
monotonically with AS|. Thus, from the trivial inequality
AS, Zé(w/a)zg%, we conclude that using only the /=1
term in AS; will definitely underestimate the quantum
corrections to ,u‘l. Moreover, in the limit K- «, the
fugacity of the Coulomb gas is very large and we thereiore
expect the dimensionless distances Ax; to be small com-
pared to one. Expanding the exponential in (2.12) then
leads to

N N
8ilkow=—23 Crixp—x)=—3 &ix; . (3.18)

=2 =1

Thus apart from an irrelevant sign, g; becomes identical
with the dimensionless dipole moment which appears in
the bias term sin(€3?Y,£;x;). As a result, the expression
for the nonlinear classical mobility to order €2 contains a
factor [1—1(€g,)*] compared to uf', whereas the linear
quantum mobility to order #* is bounded below by the
identical expression with € replaced by w/a. Thus to or-
der #%, we have the inequality’®

#l!K—)wZI’LCl(G:ﬂ.ﬁ‘y)|KHw * (3‘19)
The nonlinear classical mobility for low damping and in
the case V' >>T has been determined by Nozieres and
Iche.’® It is given by

€

1NE ko =n] | ko 5

2
e[| e

with 8=8(y/wy)V being the energy loss per cycle for

motion at the barrier top energy and
' ko =polm/2)exp(—2V /T)''.  Using (3.19) we
therefore find
2
cl 0
1 s 3.21
Bilkow > ko |14+ |27 | + (3.21)

Thus, the quantum corrections are certainly finite as
¥ —0 and, most importantly, they are independent of the
temperature as long as ¥ >>T.>’ This shows that the
quantum corrections do behave qualitatively different for
low and high damping, thus reflecting their fundamentally
different physical origin. In particular, the corrections
due to AS are a genuine quantum effect of the particle it-
self, in contrast to AS, which arises from the quantum
nature of the bath. They are absent in potentials which
are at most quadratic and, apparently, also in descriptions
which are based on equilibrium properties only. As a
consequence, one has to be rather careful in drawing con-
clusions about quantum effects like tunneling or coher-
ence from the study of purely harmonic models.
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IV. APPROXIMATE CONTINUED FRACTION
FOR THE QUANTUM MOBILITY

In this section we derive an approximate representation
of the quantum mobility in terms of a continued fraction
which becomes exact in the classical large damping limit.
Although it is not quantitatively reliable beyond that, the
numerical evaluation shows some reasonable qualitative
results for small barriers and not too low temperature.

In view of the complexity of our general expression
(2.22) it is obviously impossible to sum up the series for
arbitrary values of a, ¥, T, and € either analytically or
numerically. Thus it is desirable to find an approximation
which is at least numerically accessible. Our basic as-
sumption, whose validity and limits will be investigated
later, is to consider the gas of charges as sufficiently dilute
that the dimensionless distances Ax; are large compared
to one. Since the interaction potential Q(x), however, in-
creases with distance, a naive nearest-neighbor approxima-
tion is clearly impossible. Nevertheless, as has been
shown by Lenard in the one-dimensional Coulomb gas
problem with strictly linear potential, a nearest-neighbor
problem may be obtained by introducing the variables

I
vi=3 &

I'=1

4.1

with the properties
[vi—v, 1| =1

and 4.2)
von=0.

The exact canonical partition function Qy(L) given in
(2.23) may be expressed in terms of the v; by using
IV —1

2N
E Gixp=— 2 viAx; ,

(4.3)
I=1 I=1
w ! —(xp—xp) —(xpy1—x1)
&= vrle —e , (4.4)
I=1
and
5 2N -1 2 IN-1 -1
S;== 3 viQglAx)+= 3 v, 3 viAp . (4.5)
L a /=2 r=i
Here we have introduced the quantity
A[]’ZQ(XI+1—XI’)—Q(XI+1—X['+1)
+Q(x;—xp 1) —Qx;—xp) . (4.6)

Let us now assume that Ax, is sufficiently large such that
the different contributions in A tend to cancel and terms

like e =" are negligible if /’>/+1. Then, with the
38

approximations
2 2N —1
S,=S%= P 3 viQ(Ax)) 4.7
I=1
and
gzzgl":v,(l—e*Ax’) » (4.8)

the partition function (2.23) reduces to
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=3 [Faxyy - f dx 2lﬁlsm Ty (1—e ™) exp | —iv,Ax; —vE-2Q(Ax)) 4.9)
= = Jy 2N 1 L a 1 p 18X; o 1 .
[
which depends only on the distances Ax;=x;,,—x; and tion and wunless a>1 and T=€=0, we have

the variables v, defined in (4.1). Their introduction and
the approximations (4.7) and (4.8) have thus turned the
problem into one with nearest-neighbor interaction only.
As a result, the integration over all possible locations x; of
the charges is an iterated convolution. It is therefore con-
venient to introduce the Laplace transform

On(s)= [ *dLe ~*Qy(L)

which, thermodynamically, is equivalent to going over
from an ensemble with given length L to one with given
pressure s. In this manner we find

2N —1

:—172 II a(s,v)

fvi 1=1

(4.10)

4.11)
with

a(s,v;)= f dxe ~*sin *v,(l——e )

X exp —i?v,x—v,z%Q(x) (4.12)

It is now a trivial matter to take the limit L — . At
finite temperature the linearly confining interaction Q (x)
renders a(s=0,v,) finite for all possible values of v;540,
a, and €. If the temperature is zero, however, it is neces-
sary that a <1 in order to ensure the convergence of
Ima(s=0,%1) in the limit €—->0. Thus the coefficients
a(s=0,v;) are well defined in all cases except a>1 and
T=€=0. As a consequence, we find that
lim,_,,Qf (s)~s ~2 or, equivalently, lim; , Q#&(L)~L for
any N.* The limit L — oo can thus be interchanged with
the summation on N and the approximate tight binding
mobility is given by

ug o 2N —1
2T im 3 ¥ [ av) 4.13)
Ko a€ N=1 () 0=

with a(v;)=a(s=0,v,). To lowest order in the fugacity

z=— ¥ ? the approximations (4.7) and (4.8) are exact and
one obtains

27TV
Ho a€

& f dx sin(€x )sin

TL(1—e™) J
a

X exp (4.14)

2
- Q(x)

The corresponding mobility p/uy and, in particular, its
nonmonotonic temperature dependence for a <1 have
been discussed in Ref. 6.%° We emphasize that this naive
perturbation theory in powers of ¥ 2 is justified to any or-
der by the fact that, at least within the present approxima-

lim; , ON(L)~L for all N. This is in contrast to the
statement® that {(x,(¢)) would grow as t" to order V2.
Indeed the corresponding argument was based on keeping
only a restricted class of configurations with all the
charges bound in independent neutral pairs, i.e., v;==11 if
l is odd and zero otherwise. Within the present approxi-
mation, however, these configurations have zero weight
since a(v) vanishes if v=0.*' In the general case we be-
lieve, although cannot prove, that the behavior
lim; , ,Oy(L)~L is true also for the exact partition
function (2.23) except perhaps at a>1 and T=€=0,
where already the first term (4.14) diverges.

In order to obtain the approximate mobility to all or-
ders in ¥, we are now left with solving the combinatorical
problem of summing over all possible realizations of the
variables {v,}. To do this, it is convenient to introduce a
graphical representation. The v, constitute a simple ran-
dom walk starting at v,=0 and ending at v,y =0 which
may be represented as a continuous graph of v; versus /
with vertices at points with integer coordinates (see Fig.
4). Due to a(v=0)=0 only those configurations do con-
tribute to (4.13) whose graph does not cross the v axis.*?
Thus they split naturally into those with v; > 1, and those
with v;<—1 for [=1,...,2N —1. Since a(—v)
= —a*(v), the contribution of the latter configurations is
minus the complex conjugate of those with positive v;’s
which are therefore the only ones which need to be con-
sidered. Following Lenard, let us define for r=1,2, ...

2N —1
G[(vr)= 2 H a(vl)
(vi=r, ...

v =r} I=1

(4.15)

as the sum over all configurations with 2N —1 vertices
which assume their minimal value v=r at the first and
the last vertex, not excluding v=r in between. With the
associated generating functions

v
3
2
1
] ——— AN
0 2 4 6 8 ¢
FIG. 4. Graphical representation of the configurations
{vi={v1,...,vay_1] which form a random walk starting at

vo=0 and ending at v,y =0 (in the figure N=4). Only those
configurations contribute which do not cross the v axis.
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G"z)= 3 zVGy (4.16)
N=1
our result (4.13) may then be written as
a
1B _ 27 16 ) . @.17)
Ho Qa€

In order to calculate G'!(z), we will set up a recursion re-
lation which connects the generalized generating function
G'"(z) with G"+1(z). It is obvious that for N =1 we
have

(r) __ — ®© :
G —a(r)—fo dx sin

T r(1—e—) ]
a

. 2r?
X exp ——zerx—TQ(x) . (4.18)

If N >2, the graphs contributing to G\’ may be divided

into k subgraphs such that v, =r at the beginning and the
end of each subgraph but v, >r in between (see Fig. 5).
Thus there are k + 1 vertices with v;=r and the possible
values of k are k=1,2,...,N—1. Moreover let us
denote by 2N, —1, Ny, =1,2, ... the number of vertices in

the corresponding subgraph for which v, >r. Since the
total number of vertices is 2NV — 1 we have

k

S Ny=N-—1. 4.19)

k'=1

With these definitions it is easy to see that for N >2 the
following relation holds

N -1
G}(vr)z 2 a(r)k+1 E G[(Vr‘Jrl) e GJ(V’;(+1) , (420)
k=1

Ny, oo Ny

where the sum over the variables N, is restricted by
(4.19). By going over to the generating function (4.16)
this restriction is removed and the k sum then extends
from 1 to «. Thus (4.20) leads to the simple recursion
relation

a(r)z
l—a(rGU+hz) °

The approximate normalized mobility can therefore be
written in the form

G"z)= (4.21)

FIG. 5. A contribution to G?’ is split into GY¥'G{'G!> times
(G(IZJ )4

2

1 po=1+ 27”: Im4 , 4.22)
where A is the continued fraction

a(l)

A= 423

=2 a(l)a(2) ( )
1+V——
1+I72a(2)a(3)

and the coefficients a (r) are given by the integrals (4.18).
In order to evaluate 4 numerically, we use the fact that
the Nth approximant A4 (N) to the continued fraction may
be written as the ratio 4 (N)=U(N)/V(N) of two polyno-
mials U(N) and V(N). They satisfy the fundamental re-
cursion relations

UN)=UN —1)+V %a(N —1)a(N)U(N —2) , (4.24)
VIN)=V(N —1)+V 2%a(N —1)a(N)V(N —2) , (4.25)
for N=2,3,... with initial conditions U(0)=0,

U(l)=a(1), and V(0)=V(1)=1. Thus, within the ap-
proximations (4.7) and (4.8), the calculation of the quan-
tum mobility for arbitrary parameters is reduced to the
evaluation of the integrals (4.18) and the recursion (4.24)
and (4.25) assuming the procedure does converge.

Before we proceed to the numerical calculation, let us
first discuss the range of validity of the approximations
(4.7) and (4.8). They are obviously exact to order V?,
where (4.22) is equivalent to the result (4.14). Keeping
only the leading term in the expansion in powers of V? is
justified as long as p/ug stays close to one.* Thus the
current-voltage characteristic is given correctly in all
cases, where it deviates only slightly from the simple
Ohmic line which characterizes a normal tunnel junction.
Usually, however, one is interested in a situation where
the Josephson coupling cannot be treated as a small per-
turbation but leads to a highly nonlinear characteristic
with almost no voltage drop below the critical current I,.
The interesting feature about the result (4.22) is now, that
it is exact to all orders in V, provided we take the classical
limit T >>#y, Ey and high damping y >>@,. In this limit
the fugacity is very small and we may approximate

QUx) | ooy ~mTx (4.26)

by its large-x behavior and neglect all terms of order
exp(—Ax;), implying g;=~v;. Since A; =0 for a strictly
linear Q(x), the approximation (4.7) is exact and the in-
tegrals (4.18) reduce to

@) |y sy = 1 (iE+KP) " 4.27)

After a slight rearrangement our approximate result (4.22)
then reads

2 1/4
u /o | ys>ap=1+ 7Im 1/4

TV i+ v rirs -
(4.28)
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which depends only on V/T and f, but not on K or
(wo/7)* any more. The expression (4.28) is now indeed
the correct result for the normalized classical mobility to
all orders in V if the damping is large and thus the
Fokker-Planck equation (A13) may be replaced by the
Smoluchowski limit (A14). This follows easily by Fourier
expanding the corresponding stationary solution with
finite current.!! We have thus shown that our approxi-
mate result (4.22) is exact in the classical high damping
limit and, in addition, have explicitly demonstrated the
equivalence of our representation (3.8) with the standard
Fokker-Planck description in this case. In order to see
whether (4.22) is reliable beyond that, we recall that the
lowest-order quantum corrections in the large damping
limit are rigorously equivalent to a renormalization of the
barrier (3.17). This arises by retaining only the constant
term in

2 E, x
aAQ(x)— 12T(l-—e )

for the leading corrections to Q°(x). Within the approxi-
mation (4.7), however, this leads to a term

E, N1

!y>>wo= 2T 121 V% . (4.29)

AS¢

In contrast to its exact value (3.16), AS$ depends on the
particular configuration and, for N> 1, is equal to the
|
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correct result only for those configurations which do not
contribute in the present approximation.** It will, in fact,
always be much larger than (3.16) and therefore overesti-
mate even the leading quantum corrections to the Smolu-
chowski result. Thus, unfortunately, the approximation
(4.22) is quantitatively incorrect as soon as it is applied to
the quantum regime. A similar conclusion holds even in
the purely classical case if (4.22) is used beyond the
Smoluchowski limit. Indeed there is an extremely simple,
and obviously unnoticed, exact result for the leading y 2
corrections to (4.28). It is only necessary to replace (4.26)
by Q%x)=~nT(x —1), but to neglect all further contribu-
tions to either Q¢ or g,~v, since they are of order
exp(—Ax,), which is negligible if the fugacity is small.
Using again the relation (2.28), we find that the additional
constant — 7T in Q(x) gives rise to a change in the fuga-
city z—>z°1+K). As a result, the corrections of order
y ~? are simply equivalent to a renormalization of the bar-
rier

2

P14

o
, -9
T T

14

This result is valid for arbitrary ¥V /T and f and, obvious-
ly, the normalized mobility will always be reduced
through this effect.** Including the contribution from
AS/| and the result (3.17), the complete expression for the
reduced mobility at high damping may be written as
(e=Fq,)

(4.30)

(4.31)

of temperature for =27 and ¥=1. Although the ap-
proximation obviously breaks down for small tempera-
tures where p; becomes negative and is thus unable to
reproduce the correct value ;=0 at T'=0 associated with
the localized ground state, it describes the expected mono-
tonic increase in the mobility due to incoherent transport.
More interesting are the results shown in Fig. 7 for a=1

and two different values of the barrier. In the case

Jg=14+ —2—1Im v
HT T e/ (1+ie/2nT)c, + v?
T 2 ie/2nT)e, + - -
i
with
2
Vv 1 | @o 1 i
SN B Pl 1 ] 32
Y SR a8 |1 @32
and
5 2
=1+ |Z (4.33)
6 |a

While (4.31) is the exact extension of the Smoluchowski-
limit result (4.28) to lowest order in wy/y and #iwy/T, an
argument as in (4.29) shows again that the approximation
(4.22) fails to correctly describe even the leading barrier
renormalization (4.30) unless we stay at order V2. It is
interesting to note that the temperature independent quan-
tum corrections due to AS; which appear through the
coefficients ¢, in (4.33) are of order (w/a)?
=(wo/y ) (#iwy/2V)? and thus become comparable to the
quantum corrections in (4.32) only if wy/y is of order
one.

In spite of the short comings of our approximation
(4.22) discussed above, its numerical evaluation shows
physically reasonable behavior at least for small barriers
and, if a> 1, not too low temperatures. For example, in
Fig. 6 we have plotted the linear mobility u; as a function

Helug

05

FIG. 6. Normalized linear mobility u;/u, as a function of
temperature for a=2m and ¥ =1. At low temperatures the ap-
proximation (4.22) breaks down and the true expected behavior
is indicated qualitatively by the dashed line.
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FIG. 7. Normalized linear mobility as a function of tempera-
ture for a=1 and two different values of ¥ =1/ or 2/ (lower
curve). The temperature T* of the minimum is approximately
T * =~0.7 in both cases.

V=1/7 the result is basically given by the lowest-order
perturbative expression (4.14), whereas, for ¥=2/m the
iteration converges after two or three steps. As expected,
the nonmonotonic behavior of the mobility which is due
to a crossover from coherent to incoherent transport,® is
more pronounced at higher barriers. The temperature
T*, where the minimum occurs, however, remains essen-
tially unchanged at these still rather small values of the
barrier. In the limit V—0, T* was given by6

T* j V*,QZC(Q)EQ s (4.34)

where c(a) approaches ; as a—0 and zero as a—1".
A similar nonmonotonic behavior, as shown in Fig. 7, is
found for the nonlinear mobility at T < T* and a <1 as a
function of bias € From the argument given in Sec. II,
we expect that the position €* of the minimum will shift
down for larger barriers. By analogy, the same should be
true for T*.*° Unfortunately, the quantitative change of
T* with V cannot be determined from our approximation
(4.22), since again it turns out to yield negative values of
the mobility if ¥ is increased beyond values of order 1.
Thus, except in the classical high damping limit, it is reli-
able only as long as the Josephson coupling can be treated
perturbatively. Crudely speaking, it breaks down when
the barrier is larger than the zero-point energy and the
discrete level structure within a well becomes important.
Indeed for large barriers with many levels, it is clearly not
appropriate to expand in the bare corrugation V but to
truncate the system to a discrete tight-binding model
first.” However, using the duality described in Sec. II,
the perturbative results derived above for the continuous
periodic potential, can then also be applied to explain the
behavior of a case with small hopping matrix element.
Thus, with appropriately redefined parameters, our ex-
pressions may be used even for a periodic potential with
very large barriers, provided the temperature is smaller
than T*. Indeed, if the dimensionless coupling @ in the
tight-binding model is larger than 1, the duality predicts a
linear mobility which vanishes at T—0, has a maximum
at T* and goes to zero again for large 7. However, as
has been argued above, the mobility for an actual continu-
ous periodic potential should be completely monotonic in
this case. Similarly, for @ <1, the tight-binding model
fails to reproduce the nonmonotonic behavior expected in
a situation with an extended ground state and can be used
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only if T <T*. It is evident that the range of validity of
the tight-binding picture, and therefore T*, should de-
crease with increasing hopping matrix element ¥V, in
agreement with the argument given above.

V. DISCUSSION

In this work we have studied a simple model which de-
scribes the current-voltage characteristic of a resistively
shunted Josephson contact and takes into account the
quantum nature of the phase. We have shown that the
effective nonlinear resistance is determined by the mobility
of a quantum Brownian particle in an extended periodic
potential. A scaling law for the nonlinear mobility at
T=0 has been derived for small dimensionless friction
a < 1, where the Josephson effect is destroyed by quantum
fluctuations of the phase. We have given a rigorous dis-
cussion of the leading quantum corrections to the classical
limit and have discussed their rather different form and
origin for small or large damping. Finally a simple con-
tinued fraction representation for the quantum mobility,
which is exact in the classical high damping limit, has
been derived and numerically evaluated. It shows physi-
cally reasonable behavior for small Josephson coupling
and sufficiently large temperature.

Concerning the possibility of observing experimentally
the quantum effects of the phase in the current-voltage
characteristic of a single Josephson junction, we recall
that the necessary condition on temperature is T S %y, E,.
In most cases which have been investigated until recently,
the dimensionless friction a was very large and the re-
quirement T SE, is thus much more restrictive than
Tx#y. In fact even for capacitances as small as
C=10"" F, the equivalent charging energy E, corre-
sponds to a temperature of only 0.74 K. As a result, one
is often in a regime where it is possible to see the quan-
tum effects in the noise spectrum of the shunt resistor, but
where the phase itself is still a classical variable. Indeed,
in the limit a >>1, the equivalent particle is strongly lo-
calized at T=0 and tunneling through the barriers is
negligible. It therefore behaves very much like a classical
particle subject to quantum noise and is then describable
by the so-called quantum Langevin equation,*® which is
(1.1) with & replaced by a frequency-dependent quantum
noise & [see Eq. (A8) in the Appendix]. This situation has
been investigated by Koch, van Harlingen, and Clarke,*
who found that in junctions with a~10* the measured
voltage noise is in good agreement with the predictions of
the quantum Langevin equation. However, in order to
really test the quantum nature of the phase itself, for in-
stance through tunneling, level quantization or, at least,
the corresponding quantum corrections AS,, it is neces-
sary to go to lower temperature T SE, and smaller
damping a =1. There have been no experiments in this
regime looking specifically at quantum effects in the
current-voltage characteristic but both, tunneling? and lev-
el quantization,> have been found in a situation with a
strong bias f=1I/I. 51, where the effective barrier is re-
duced to a value at which tunneling becomes observable
even in contacts with a strong Josephson coupling. In
particular, in the experiments on the decay rate of the
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zero-voltage state close to I,, the quantum corrections to
the classical Arrhenius behavior have also been investigat-
ed. In one of them [Ref. 2(a)] the corrections associated
with (3.17) seem to have been observed®® even though
they were not in the overdamped regime. On the con-
trary, similar experiments on a highly damped SQUID
[Ref. 2(b)] did not find the quantum corrections to classi-
cal activation, although the conditions for seeing the effect
(3.17) should have been fulfilled. It would therefore be of
considerable interest to look at these questions in more
detail, using junctions where all parameters may be accu-
rately inferred from the classical regime. In particular, it
seems worthwhile to study the quantum effects directly in
the current-voltage characteristic and to investigate their
behavior as a function of both temperature and damping.
In this way one should be able, for instance, to see the de-
viations from (3.17) for smaller damping, where the quan-
tum corrections are expected to be independent of T as
long as T << V. In the absence of a complete theory for
even the leading corrections to the classical result for arbi-
trary damping, such measurements would be of consider-
able interest.

The most spectacular consequence of the interplay be-
tween dissipation and the quantum nature of the phase is
the existence of a localization transition at 7=0. For
a <1 there is a finite linear resistance even at 7=0 and
the Josephson effect is destroyed by quantum fluctuations
of the phase. As has been discussed in the preceding sec-
tion, the mobility in this case will be nonmonotonic both
as a function of bias and temperature. As a result, it is
possible that with increasing external current the associat-
ed voltage decreases. Thus there will be a region with
negative differential resistance, an effect which has also
been discussed in the context of Bloch oscillations in a
Josephson junction.’ In the limit of a small Josephson
coupling this may qualitatively be described within our
approximation (4.22). The corresponding normalized
current-voltage characteristic of f=1/1, versus U/RI, is
plotted in Fig. 8 for a=1, ¥=1.1, and T=0.3, and clear-
ly reproduces the expected behavior with negative
differential resistance between f~0.1 and f~0.25. In
view of the arguments given at the end of Sec. IV, we ex-
pect that with increasing Josephson coupling V both the
necessary temperature T < T* and bias f where the effect
may be observed will be smaller. For a possible experi-
mental verifcation one should therefore try to use junc-
tions where the Josephson coupling ¥V is of the order of
the charging energy E, or less. According to (4.34), even
then the necessary temperature is 7 < E,/12 which is
0.62 K for C=10"1 F. A very interesting possibility to
realize junctions with such tiny capacitances is to look at
thin granular films. Below the bulk superconducting
transition temperature, they can be modelled as a collec-
tion of locally superconducting islands linked together by
small Josephson junctions. Recent experiments®! on these
systems have shown that, independent of the geometry,
the sheet resistance R at low temperatures seems to de-
pend only on the normal-state resistance R,. If R, is
smaller than a value of order 6 k{2, the film appears to be
superconducting at low 7, whereas otherwise R(7)
shows a nonmonotonic behavior with a minimum around
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FIG. 8. The normalized current-voltage characteristic

f=I/I. vs U/RI in the case a=4, V=1.1, and T=0.3. Be-
tween f=~0.1 and f=0.25 the differential resistance is negative.
The dashed line corresponds to the ohmic characteristic of a nor-
mal tunnel junction.

T*=3.1 K for R, =10 k2 and a finite value of the resis-
tance as T—0. This behavior is strikingly similar to the
one obtained above for a single Josephson junction with
very small capacitance and, as has been pointed out by
Fisher,? it is thus tempting to try to understand these ob-
servations in terms of our present model. Apparently,
this is possible only in the quasireentrant case, since the
question of global phase coherence can clearly not be
answered within a single junction model. Indeed, in a
single junction there is always a finite resistance at 750
and it is only through collective effects that the whole ar-
ray may become superconducting at nonzero tempera-
ture.”® In the reentrant and thus resistive case, however,
one may try to carry over the percolation argument which
determines the resistance in the normal state in terms of
the individual link resistances R;. It amounts to replacing
the whole random array by a single link with resistance
R =R,,, such that the links with resistances R; <R form a
percolating network. Within this approximation, the
sheet resistance R5(T) can be calculated in terms of our
present model as
Ro(M=2LR, . 5.1)
Ko
The nonmonotonic behavior of the reduced mobility with
temperature shown in Fig. 7 thus translates directly into
that of the sheet resistance and reproduces the experimen-
tal observations®! in a qualitative way. Using the ¥V —0
result (4.34) for the crossover temperature and c(0.64)
~c(0)/2, the corresponding estimate for the junction
capacity is C=10"!¢ F. Within the present model this is
in fact an upper bound, since T* is expected to decrease
with increasing V. Unfortunately, the actual quantitative
behavior of the sheet resistance is in considerable
discrepancy with (5.1). Indeed the single-junction model
fails to reproduce the observed very rapid decrease of
R5(T) below the bulk superconducting temperature.
Moreover, the measured sheet resistance seems not to ap-
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proach its normal state value in the limit 7—0 as predict-
ed by u,(T=0,a <1)=p, for all ¥, but generally remains
much smaller. This indicates that collective effects, which
favor phase coherence and thus reduce the resistance, may
play a major role even if global superconductivity is not
established. The adequacy of a single junction picture for
granular films is further questioned by the fact that no
negative differential resistance behavior as in Fig. 8 has
been observed in the nonlinear current-voltage charac-
teristic of the quasireentrant samples.’* Nevertheless it is
clear that dissipation plays a dominant role in these sys-
tems and replaces the ratio V/E, in nondissipative
theories® by the actually relevant parameter o
=2mrfiy /E, which is independent of capacity.
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Jx.y,tixoyo)= [ Dx ["Dyexp |- [[Miy—Vix+y/2)+Vix—y/Dldt" |Flx(1),p(1]

is given by a double path integral over all possible paths
x(t') from x, to x and y(¢') from y, to y. Writing the
influence functional F as F=exp(i®) the corresponding
influence phase ® for our model (1.9) is given by>’

i@[x,y]:—in ‘di'xy —S,[y] . (A6)
#i 0

Here exp(—.S,) can be expressed as an average

exp(—S2)=<exp éfotdt’g(t’)y(t') >g (A7)

over a Gaussian fluctuating force £(¢’) with spectrum

Bliw

[ dr{&E0)explior)=nfiwcoth (A8)

The contribution S, >0, which suppresses the off-diagonal
components y=0 of the density matrix, thus represents
the fluctuating force which is exerted on the Brownian
particle by the unperturbed environment motion. Similar-
ly, the first term in (A6), which is odd under time rever-
sal, describes the systematic influence of the bath and,
classically, leads to a dissipative force F 4, = —74.

In order to obtain the classical limit from the influence
functional theory, two approximations are necessary:*®

(1) expand to lowest order in the off-diagonal com-
ponents, i.e.,

Vix+y/2)—Vix—y/2)=V'(x)y ; (A9)

APPENDIX: CLASSICAL LIMIT FROM FEYNMAN’S
INFLUENCE FUNCTIONAL THEORY

The central quantity in the Feynman-Vernon theory?®
for dissipative quantum systems is the reduced time-
dependent density matrix

p()=Trgp(t) , (A1)

where p,, is the total density matix of the system plus
bath and Try denotes the trace over the bath variables. It
is convenient to define the coordinate representation of p
as

px,y,)={x+y/2|p|x—y/2) (A2)
which determines the Wigner distribution function
_ © dy .
flx,p,t)= f_w —zﬁp(x,y,t)eXp(—zpy/ﬁ) (A3)

via a Fourier transform. With an appropriately factorized
initial condition, the reduced density matrix at time ¢ can
be related to its value at 1 =0 by

plx,y,t)= f dxodyop(xg,Yo W (x,p,t;x0y0) - (A4)

Here

(AS)

(2) replace the fluctuating force £(¢) by its classical limit
£°(¢) with a white spectrum 27T, i.e.,
g _NT e 20,

S;=s¥="1 fo dr'y(t') . (A10)

With these two approximations, the path integral f Dy is
Gaussian and one obtains for the classical limit of the
Wigner function (A3) the real single path integral

fxp,t)= [ dx fx’;"Dx"f(xo,Mxo)a(p—Mx )

1 t i g
X exp _ZT[—T fodt [Mx
+nxk+V'(x)]? (A11)
with measure
M N N=1D/2
"Dx"= lim 27 |=—— | | I1 dx;, . (A12)
N—»oo 2e EnT j=1 J
€=t

This is precisely the functional integral representation of
the Fokker-Planck equation

3, f(x,p,t)=— !A?a,‘f+ V'(x),f +7v3,(pf +MT3,f) ,

(A13)
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which is equivalent to the classical Langevin equation
(1.1). In the overdamped limit, the momentum p can be
eliminated as a fast variable and one obtains the simpler
Smoluchowski equation

9, P(x,t)=

3, [V'(x)P+Td,P] (A14)

3|~

for the coordinate distribution P(x,t).
tion that the so called quantum Langevin equation,

Finally we men-
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which is simply equation (1.1) with £ replaced by &, as-
sumes that (A9) is valid but retains the frequency depen-
dence of the noise spectrum (A8). Thus it is an equation
for a classical particle subject to quantum noise. Accord-
ing to the discussion in Sec. III, such an equation will
correctly describe the leading quantum corrections to the
purely classical limit, provided that the effect of AS, is
negligible compared to AS,. From the order of magni-
tude estimate (3.15) this is true in the overdamped limit
K «<1.
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