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We present the analysis of three-body correlations in the fluid and solid phases of *He. The results
are from exact (Green’s-function Monte Carlo) and variational calculations of *“He described by the
Lennard-Jones two-body potential. A set of angular order parameters derived from the three-body
distribution function are defined and we find that certain of these parameters change significantly at
the onset of freezing to a quantum solid. We then trace the evolution of the parameters from the
quantum solid regime, near melting, to an approximately harmonic solid at high density. We have
also computed the angular order parameters for two different kinds of variational functions: the
traditional Jastrow function and a function which includes triplet correlations. The parameters com-
puted from the Jastrow function show clear differences from the exact results. The variational func-
tion with triplet correlations, however, closely resembles the exact results in both the fluid and solid
phases. In this respect it is clearly superior to the Jastrow function.

I. INTRODUCTION

It is well known that the spatial order in both liquid
and solid helium is very different from that found in sim-
ple classical fluids and solids such as liquid and solid ar-
gon. The quantum phases are of course weakly bound,
the positive kinetic energy being of the same magnitude as
the negative potential energy. The spatial correlations, as
revealed in the structure function and pair correlation
function, are very weak. This lack of structure is particu-
larly noticeable in the fluid phase just before freezing.
The main purpose of this paper is to look in more detail
at the structure in both the fluid and solid phases. In par-
ticular we present detailed data, based on three-body
correlations, on the evolution of the spatial order as the
system freezes. Similarly, we show the development of
the spatial order from a low-density quantum solid to an
approximately harmonic solid at much higher density.
Most of our data have been generated by exact quantum-
mechanical computer simulations of the liquid and solid
phases of “He. We also thought it worthwhile to compare
these with corresponding data obtained from variational
wave functions.

Two general features of the melting and freezing of a
simple classical system are now well established. First,
the transition between the fluid and solid phases is dom-
inated by entropy changes.! This is clearly seen from the
melting and freezing transition of the hard-sphere system
which is entirely entropic. It is now well established that
the hard-sphere transition provides a good model for the
transition in other central-force systems.?> Second, a very
strong precursor of the freezing transition is found in sim-
ple fluids.> The intermediate-range spatial correlations
build up in the pair distribution function. Since the tran-
sition is first order, the spatial correlations build up but
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then saturate, leading to a large but finite first peak in
S (k). For a wide range of central-force fluids the first
peak in S(k) reaches a height of 2.85 along the freezing
line.> This value for the first peak of S (k) has also been
found in experimental studies in liquid argon.*

The two quantum systems, “He and *He, undergo melt-
ing and freezing in a very different fashion from that de-
scribed above. First, we point our that the melting and
freezing transitions at absolute zero cannot, by Nernst’s
law, involve entropy changes. The transition must be
driven by energy changes. In this respect the quantum
transition is fundamentally different from the classical
transition. Second, the solid phase of these quantum sys-
tems, near melting, is completely different in character
from a classical solid. The quantum solids have a very
low density, and extremely large zero-point oscillations of
the atoms on the lattice.> They are unique in that their
kinetic and potential energies are of comparable magni-
tude.® The very large zero-point energies of these light
and weakly bound systems lead to a new type of solid
which has no counterpart in classical physics. Third, no
precursor for freezing has yet been found in these systems.
The particles are very weakly correlated in the fluid
phase, while the first peak of the structure factor, at freez-
ing, reaches a value of 1.5 in “He (Ref. 6) and g (r) evolves
smoothly as the freezing transition is approached.

It was these considerations that led us to look in more
detail at the local order in the fluid and solid phases of
“He. The methods we have adopted are derived from the
work of Chui and Williams’ in their study of the classical
Lennard-Jones (LJ) fluid and solid.®

Chui and Williams proposed a particularly useful way
of presenting the information contained in the triplet
correlation function g;(r,,,7,3,7,3). A local coordinate
system is defined with its z axis along the vector between
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a particle and its nearest neighbor; » and € are then mea-
sured with respect to this coordinate system. A spherical
harmonic analysis is made, and this expansion leads to a
set of angular order parameters g, ,,(r) each of which is a
function of distance . They contain the basic information
about the local angular order in the fluid and solid phases.
Our presentation of the detailed data describing these or-
der parameters for the fluid and solid phase of *He is a
first attempt to understand in more detail higher spatial
correlations in both phases. It is unfortunately true that
when one passes beyond the level of two-body correla-
tions, presentation of results becomes a major task. We
have thought it worthwhile to present a comprehensive set
of data so that readers may be stimulated to make new
comparisons and perhaps obtain new insights into the be-
havior of the system at the microscopic level.

In this paper we present the results of exact and varia-
tional computations for a range of g;,,(r)’s for both the
fluid and solid phases of *He. We find that certain of
these angular order parameters change significantly at the
onset of freezing to a quantum solid. We have also com-
puted these order parameters at three densities in the solid
phase. At the highest of these densities, po®=1.1, the
solid has become approximately harmonic. We are thus
able to trace the evolution of these functions as we move
from the quantum solid regime near melting to an ap-
proximately harmonic solid at high density.

Finally we have computed these functions for two
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different kinds of variational functions: the traditional
Jastrow function and a function which includes triplet
correlations. The order parameters computed from the
Jastrow function show some clear differences from the ex-
act results. The variational function with triplet correla-
tions, however, almost exactly reproduces the results in
both the fluid and solid phases. In this respect it is clear-
ly superior to the Jastrow function. It is significant, al-
though not altogether surprising, that explicit use of trip-
let correlations can improve agreement with exact results.

In Sec. II we will define the angular order parameters
and discuss how they were computed for the fluid and
solid phases. Section III is devoted to a discussion of the
pair distribution function for *He. In Sec. IV we discuss
the behavior of the angular order parameters as the sys-
tem freezes. Section V deals with the evolution of g, (r)
from low to high density in the solid phase, while Sec. VI
is devoted to our results using variational wave functions.
Our conclusions are presented in Sec. VII.

II. METHOD
The angular order parameters, g, (r) are defined by

gm(N=Var [ gi(r,Q)Y,,(2)dQ, (1

where g;(r,Q)) is a restricted three-particle distribution
function given by the equation

g3(ri3 Q) =p'”? L12<r13dr12 [gs(rlz,ru»rzs)—P fm<r1284("12y’13,r23,r4)dr4 . 2)

Three-particle configurations can always be described by
the lengths of the sides of the triangle with particles at the
vertices. In Eq. (2), we have denoted these lengths by ri,,
ri3, and r,3. The quantity r, is defined to be the distance
of the nearest neighbor from particle 1. Particle 3 is at a
distance r;; and in a direction given by the angle Q). The
vector 1, provides a polar axis to define this angular
direction. The integral over the four-particle distribution
function, g4(r>,713,723,14), gives the probability of finding
a fourth particle nearer to particle 1 than particle 2.
Hence, when this quantity is subtracted from
g3(r12,713,723), we are left with a restricted three-particle
distribution function that insures that no fourth particle is
closer to particle 1 than particle 2. The final integration
over the distance 7, ensures that the calculation is carried
out for all values of the nearest-neighbor distance 7,
which by definition must be less than 73.

Equation (2) provides a formal definition of g;(r,{}) in
terms of the basic correlation functions g3(7,,73,7,3) and
g4(r12,713,723,r4). In principle this function could be
computed from Eq. (2) by inserting the appropriate value
of g3(r12,%13,723) and g4(72,713,723,f4). We have, howev-
er, found it more convenient to compute g;(r,€}) directly
from the configurations of the particles. We start by
defining a local coordinate system for each particle. The
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line from particle i to its nearest neighbor defines the z
axis. The y axis then lies in the plane defined by particle i
and its two nearest neighbors. Finally, the x axis is
chosen perpendicular to the y and z axes. The interparti-
cle distance, r, is that between particles i and j, where j is
any particle in the system other than the nearest neighbor
to i. The solid angle Q is measured with respect to this
coordinate system.’

Upon referring to Eq. (1), it is apparent that the g, ,, (7)
will vary in sign and as r becomes large, the asymptotic
value will be zero. If the particles in the fluid are ar-
ranged completely randomly, even at small values of 7,
the g; ,,(r) will be just noisy fluctuations about zero. Due
to the weighting of the spherical harmonics, the g;,,(7)
are sensitive to even minor angular orderings in the fluid
and several interesting phenomena have been observed
with them. In the solid, where there is well defined local
angular order, the g;,,(r) are an appropriate tool to de-
scribe it.

The values of g; ,,(r) were determined for / =2, 4, and
6 and m =0,1, ...,/ The imaginary components of
81.m(r) were found to be equal to zero on the average.
The overall isotropy of the fluid implies that the g, ,, ()
with / odd will vanish and our simulations verified this
conclusion. No interesting phenomena were observed in
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82,m(r) and they will not be discussed further.

The calculations were carried out for the liquid and
solid phases of the quantum Lennard-Jones system. The
Green’s-function Monte Carlo (GFMC) and variational
calculations produce sets of particle coordinates (which we
call configurations) whose distributions reflect the wave
functions. In particular, the particle configurations were
taken from GFMC simulations and variational calcula-
tions of “He with the LJ potential at absolute zero.
GFMC is a method for solving the Schrodinger equation
subject only to statistical sampling errors. Whitlock
et al.® used such GFMC configurations to determine the
equation of state, radial distribution function, structure
function, momentum distribution and other properties of
the LY *He system.

For each density studied in the quantum liquid, on the
order of 4000 GFMC particle configurations were ana-
lyzed. In the solid, and for the variational calculations,
approximately 2000 configurations were analyzed at each
density. In the regions of interest, the statistical errors in
g,m(r) vary from 2-10%. At the peaks, the errors are
usually at the low end of the range.

III. BEHAVIOR OF THE PAIR
CORRELATION FUNCTION

In Sec. II we defined a set of angular correlation func-
tions g;,,(r) as angular averages of the three-particle
correlation function. We will see that these functions os-
cillate about zero and in most cases die away fairly quick-
ly as r increases. In this section we will discuss the be-
havior of the correlation function 4 () defined in the usu-
al way as

h(r)=g(r)—1.

This function also oscillates about zero and tells us how
the spherical average of the two-particle correlations
behave. We should point our that in the solid phase, h ()
will show oscillations about zero for very large r. This
merely reflects the fact that there is long-range order in a
three-dimensional quantum solid.

In Fig. 1, we show h(r) for three densities, namely,

0.8 -
0.6 {
p0>=0.526 i
0.4 === po’=0.490 4
. —— p0=0.365 |
h(r) o2 S ) |
% S
0 \‘\ /"/ )
N pa
-0.2 T i
!
0.8 1.6 2 2.4 2.8
r/o

FIG. 1. Comparison of A (r), the direct correlation function,
from an exact (GFMC) calculation for the Lennard-Jones *He
system at two densities in the liquid, pa®=0.365, 0.490, and one
solid density, po?=0.526.
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po=0.365, 0.490, and 0.526. The first is the equilibrium
fluid at zero pressure, the second a high-density metasta-
ble fluid, while the highest density is a crystal just above
melting.!® The figure shows that % (r), and hence g(r),
evolves smoothly from the lowest-density fluid to the crys-
tal phase. The amplitude of the oscillations grow but
there is no qualitative difference between 4 (r) in the fluid
and in the low-density crystal. Indeed A (r) in the low-
density crystal is remarkably fluid like in its appearance.
This is in striking contrast to the behavior of A (r) in a
classical crystal just above the melting line.!' It is worth
emphasing that in a dense classical fluid near freezing,
h (r) shows much more intermediate range structure. The
height of the second peak of 4 (r) is 0.3 in the dense clas-
sical fluid just before freezing.!”? In the metastable fluid
phase of *He, on the other hand, the second peak of 4 (r)
is only O.1.

Figure 2 shows the evolution of 4 (r) as the density is
increased from the metastable fluid (po>=0.490) to a
very dense crystal (po’=1.1). Even at a density of
po®=0.622, which is 25% above the melting density, the
shape of 4 (r) is very close to that in the dense fluid. Only
when a very high density (po®=1.1) is reached does a
qualitative change appear. At this density, new structure
is apparent in h (r)—it is very close to that in a classical
crystal near melting.!! The solid has now become much
more harmonic and much more highly correlated. The
root-mean-square displacement of the particles from their
sites is only 0.13 of the interparticle spacing, rather close
to that of a classical solid near melting. In contrast, the
ratio is 0.30 for the quantum solid near freezing with
po=0.526.

We can summarize the behavior of 4 (r) by saying that
it maintains a smooth fluid like shape from the low-
density fluid well into the crystal phase. Only at a very
high density does new structure appear. Thus the pair
distribution function is highly insensitive to the freezing
transition. We will see in the subsequent sections of this
paper that several of the g,, (r) behave in a strikingly
different fashion.

FIG. 2. Comparison of the calculated 4 (r) for the Lennard-
Jones *He system at three solid densities, po*=0.526, 0.622,
1.100, and a dense metastable liquid density, po®=0.490. The
h(r) at 1.100* is from a variational calculation. The rest are
from GFMC calculations.
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IV. CHANGE IN ANGULAR ORDER
AS THE SYSTEM FREEZES

In this section we present the results from our exact
computations of the angular order parameters, g, ,, (7).
We compare the form of these functions in the lowest-
density fluid (po’=0.365), the high-density fluid
(po®=0.490), and the solid near its melting density
(po=0.526). In Fig. 3(a) and 3(b) we show the parame-
ters with / =4 and 6 for the lowest-density fluid. There is
clearly a great deal of information in these functions.
However our focus here is on the behavior of these order
parameters as the fluid freezes. In Fig. 4(a) and 4(b) we
show the same parameters in the solid at the density
po?=0.526, which is near the melting density of the
solid. A careful comparison of Fig. 3 and 4 reveals that
only 843, 861> 86,2, and g¢ s show qualitative changes be-
tween fluid and solid. The remaining functions change in
a way consistent with an increase in the density, that is,
the amplitudes increase and the peaks grow narrower.
We now give a more detailed discussion of the four func-
tions thus singled out.

\
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gA,m(r) 0.2 r i “g

Gem(r)

FIG. 3. (a) g4, (r) for the equilibrium liquid, po*=0.365, de-
rived from a GFMC calculation. The individual curves are

identified as follows: — — —, g40(r); - - - -, g41(r); s
84,2(r); -O-0-, g43(r); and —- —- —-, g44(r). (b) g¢ m(r) for the
equilibrium liquid, po®=0.365, derived from a GFMC calcula-
tion. The individual curves are identified as follows: — — —,

ge0(r); « - - -, ge1(r); , 862(r); -0-0-, g¢3(r); —e—-—-,
36,4("); % "k gb,s(r); and - + - + -, 86,6(")-
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FIG. 4. (a) g4 . (r) for a low-density solid, po®=0.526, de-
rived from a GFMC calculation. The identification of the indivi-
dual curves is the same as in Fig. 3(a). (b) gs .(r) for a low-
density solid, po’=0.526, derived from a GFMC calculation.
The identification of the individual curves is the same as in Fig.
3(b).

For I =4 we concentrate on g, ;. Figure 5 shows the
function for three densities. As the density is increased
from the equilibrium value, po®=0.365, to the high den-
sity metastable fluid, po®=0.490, almost no significant
change occurs. The most noticeable change is that a
small positive peak occurs at r =0 in the metastable fluid.
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FIG. 5. Comparison of g, 3(r) as the LY *He freezes. Two
densities are in the liquid, viz., pa3=0.365, 0.490, and one is in
the solid phase, po® =0.526.
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FIG. 6. Comparison of g¢s(r) as the LI “He system freezes.
Two densities are in the liquid, viz., pa3=0.365, 0.490, and one
is in the solid phase, po®=0.526.

However as the system freezes, g4 3 suddenly acquires a
large positive peak, close to r =0. The change is dramat-
ic. There is only a 6% change in density between the
metastable fluid state and the solid near freezing. This
small increase in density produces an increase in height of
the peak by a factor of 12. This is to be contrasted with
an almost negligible change in the entire fluid range in
which there was a 30% increase in density.

For 1 =6, we first examine g s, whose behavior is
shown in Fig. 6. This function also shows a dramatic
change at freezing. The function g s is small and positive
in the fluid phase for most values of ». As the system
freezes it acquires a large positive first peak near r=o,
and develops a moderate negative peak at r=1.40. The
metastable fluid shows no significant precursor for this be-
havior.

Figure 7 shows the same comparisons for g¢ ;. For this
function the behavior is not as dramatic as we found for
g6,5- However the function becomes entirely positive on
freezing and the first peak doubles in height.

The same comparisons for g¢ , are shown in Fig. 8. In
the solid phase the function g¢ , undergoes a complete os-
cillation from negative to positive values between r=o

0.08 - ce-- po’=0.526
0.06 f R " --—-- p0c*=0.490
.-/\_\ 3
0.04 + RN — p0°=0.365
e (1)
0.02 | A
N /
\ 77
-0.02 N
0.8 1 12 1.4 1.6 1.8

FIG. 7. Comparison of g ;(r) as the LJ “He system freezes.
Two densities are in the liquid, viz., pa3=0.365, 0.490, and one
density is in the solid phase, po®=0.526.
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FIG. 8. Comparison of g¢,(r) as the LJ *He system passes
through a phase transition.

and r=1.50. The metastable fluid shows a very weak
precursor for this behavior while in the equilibrium fluid,
86,2 is small and positive through most of this range.

We can summarize these results as follows. First, none
of the g;,,(r) changes very much as the fluid is
compressed from low density to the high-density metasta-
ble regime. On the other hand, four of these functions
undergo significant changes when we move from the
high-density fluid to the solid phase. For these four order
parameters the angular order in the solid is quite different
from that in the dense fluid. However no significant pre-
cursors for this behavior are found in the fluid phase. Fi-
nally we note that apart from these four order parameters,
the remaining functions are similar in the high-density
fluid and the low-density solid. In other words, most of
g1,m(r) in the quantum solid are remarkably close to those
in the fluid phase. In the next section we will see that this
is characteristic of a quantum solid. In the high-density
“He solid, which is approximately harmonic, several of the
81,m(r) show very much more structure than in the quan-
tum solid near melting.

V. ANGULAR ORDER IN THE SOLID PHASE

We have computed the angular order parameters for
I =4 and I =6 at three densities in the solid phase, name-
ly, po®=0.526, 0.622, and 1.1. At the two lower densi-
ties the computations were made using the exact GFMC
method. At the highest density we have carried out only
variational calculations. However at this high density the
solid is approximately harmonic and we therefore believe
that there will be little difference between the variational
and exact results. At the highest density the ratio of the
root-mean-square displacement of the particles from their
lattice sites to the near-neighbor distance—Lindeman’s
ratio—is 0.13. This value for the ratio may be compared
with the value in a classical solid near melting, namely,
0.15-0.17. This comparison suggests that our high-
density solid helium is somewhat more harmonic than a
classical solid near melting. It is clearly much more har-
monic than a quantum solid near melting, where
Lindeman’s ratio is approximately 0.30.

In Figs. 9(a) and 9(b), we show g,,, and g¢, at
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gs,m(r) 0.5 +

FIG. 9. (a) g4 nm(r) for a high-density solid, po®=1.10, de-
rived from a variational calculation. The identification of the in-
dividual curves is the same as in Fig. 3(a). (b) g .(r) for a
high-density solid, po*®=1.10, derived from a variational calcula-
tion. The identification of the individual curves is the same as in
Fig. 3(b).

po’=1.1. A comparison of these data with those at
po=0.526 [Figs. 4(a) and 4(b)] shows that while all the
81m(r) become larger in amplitude and their peaks be-
come narrower at the highest density, there are four
which have undergone qualitative changes. These are
84,00 84,4» 860> and g¢6. We noted in Sec. III that the
pair correlation function g(r) also shows new structure at
this high density. Perhaps the most striking feature of
this structure is the appearance of a new maximum which
splits the first minimum of g(r) into a double minimum.
This occurs at r =1.50. The four functions g4, 4,4,
g6,0» and g¢ ¢ all show similar structure. In this respect
they mimic the behavior of g (r). It is interesting to recall
that these four order parameters showed little change as
the system froze. They showed the same behavior in the
low density solid as in the dense fluid. However, when
the solid is compressed, they change significantly and
show much more structure. In this respect they are again
mimicking the behavior of g(r). We now show the
relevant comparisons in more detail.

Figure 10 shows g4 o at the three solid densities and the
metastable fluid while Fig. 11 shows the same compar-
isons for g4 4. Clearly both order parameters show new
structure at the high density. These changes in structure

P. A. WHITLOCK AND G. V. CHESTER 35

p0’=0.490
00°=0.526
p0°=0.622
- po®=1.100

2.4 2.8

r/o

FIG. 10. Evolution in the behavior of g4 0(r) from a quantum
metastable fluid, po®=0.490 to a quantum solid, po®=0.526
and 0.622, and finally, to an approximately harmonic solid at
pai=1.10.

are to be contrasted with the very small changes that take
place in g4 or g4 4 as the system freezes. Figures 10 and
11 show very clearly how little these functions change as
we pass from the high-density metastable fluid to the
low-density solid.

Figures 12 and 13 show the same comparisons for g¢ o
and g¢¢. Again much more structure is present at the
high density. In particular both functions show a double
minimum between r=1.50 and r=2.00. The broad
shoulder on g¢ ¢ at r=1.50, is absent at pa3: 1.1. Again
neither g¢ o or g¢, show any significant changes as we
pass from the fluid to solid phases.

We can summarize these comparisons in the solid
phase by saying that in the high-density *He solid, which
is approximately harmonic, the four angular order param-
eters g4.0, £4,4» 86,0, and g¢ ¢ are distinctly different from
the low-density solid. By contrast, the same order param-
eters are very similar in the low-density solid and high-
density fluid up to 1.50. We have every reason to expect
that the angular order parameters will all decay to zero at
large 7 in the fluid phase. However in the solid phase we
expect that they will display finite-amplitude oscillations
at large r. This, as with A (7), reflects the long range spa-
tial order in the quantum solid.

0.8 p————— -

A I
S L O —— po*=1.10 ‘
= p0®=0.622 L
ol —— p0°=0.526 [
94,4(1’) : po°=0.490 :
02t |
0
-0.2
0.8 1.2 1.6

FIG. 11. Evolution in the behavior of g4 4(r) as the density in-
creases from that of a quantum fluid to that of an approximately
harmonic solid.
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0.8 1.2 1.

[}
r/c

FIG. 12. Comparison of the behavior of the angular order pa-
rameter geo(r) as the density is increased from a quantum fluid
to a nearly harmonic solid.

VI. ANGULAR ORDER DETERMINED
FROM VARIATIONAL WAVE FUNCTIONS

The most commonly used variational wave function for
fluid “He consists of a symmetric product of functions,
each of which depends on the separation of a pair of parti-
cles. This is the so-called Jastrow function:

Y= II flry) .
WZh
Considerable effort has been devoted to finding the best
form for the function f(r). Several authors'>'* have sug-

gested that an improved function should contain three
particle correlations,

Yyr= [1S(ry)
i

(i <j)

II F(riryr) .

ijil
(i<j<h
This new form is said to have both pair and triplet corre-
lations. In the solid phase either of these trial functions is
usually multipled by a product of Gaussians, each of
which localizes one of the particles on a lattice site. Re-
cent Monte Carlo variational calculations!® have shown
that the inclusion of triplet correlations lowers the varia-

1.2
vt Y
0.8 Vo e pa’=1.100
R ---- p0®=0.622
o6t | —— p0=0.526
o =0.490
9es(r) ou b | /f pe
H ! ‘\.. >~
o2t ;i / N
I 7 ! .
0 / e sl =
0.2 T
0.8 1.2 1.6 2 2.4 2.8
r/c

FIG. 13. Evolution in the behavior of the angular order pa-
rameter g6 ¢(7) as the density increases from that of a metastable
quantum fluid to that of a nearly harmonic solid.
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FIG. 14. Angular order parameter g,;(r) from exact

(GFMC) and Jastrow variational calculations at two densities.
The exact result for a fluid at po®=0.365 is indicated by ——;
the variational result at this density is represented by open circles
(0). The exact result for a solid at po®=0.526 is shown as a
dashed line (— — —); the Jastrow variational result is shown as
asterisks (% ).

tional energy significantly. However the inclusion of trip-
let correlations has not been shown to produce significant
changes in other properties, such as the pair distribution
function or the momentum distribution. We investigated
the variational angular order parameters at two densities,
the equilibrium density fluid, and the solid near melting.
Our data show very clearly that when triplet correlations
are included in the trial function the angular order param-
eters are within the errors and in nearly all cases indistin-
guishable from those obtained from the exact computa-
tions. On the other hand, there are very significant
differences, for some of the order parameters, i.e., g4 3(7),
Z6,2(r) and gg s(r), between the variational results from
the Jastrow function and the exact results. At the two
densities, the other Jastrow order parameters were in less
good agreement than those obtained with triplet correla-
tions. In general, the Jastrow order parameters were
shifted to slightly smaller values of r.

Figure 14 shows the comparisons of the Jastrow order
parameters with the exact computations for g, ;. In the
solid phase the exact g4 ; undergoes a complete oscillation
between positive and negative values in the range r =0 to
r=1.40. This is to be contrasted with the results from
the Jastrow function in which g, ; also oscillates but is
very much smaller in amplitude. In the fluid phase the
exact g43 is small and negative from r=0 to r=1.60,
whereas the Jastrow g, ; shows a strong minimum in this
range.

Figure 15 shows the comparisons for g¢,. In the equi-
librium fluid the exact g4, remains close to zero for all r
values, while g¢, computed from the Jastrow function
shows a sizeable maximum between r=0¢ and r=1.60.
In the solid phase the exact g¢, shows a large amplitude
oscillation between r=0 and r=1.80. The variational
calculation yields a g¢, that also oscillates in this region
but with appreciably smaller amplitude. In Fig. 16 we
show the same comparison for g¢ 5. At the lowest densi-
ty, the exact g¢ 5 is close to zero for all values of r, while
the variational result show a large minimum between
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FIG. 15. Comparison of ge.(r) from the exact computations
with that from the Jastrow variational computations at two den-
sities. The exact (GFMC) results for a fluid at po®=0.365 are
represented by a solid line ( ) and the Jastrow results by
open circles (O). For a solid at the density, p03=0.526, the ex-
act results are indicated by a dashed line (— — —) and the vari-
ational results are shown with asterisks (* ).

r=0 and r=1.50. In the crystal phase, the exact g¢ s
goes through a complete oscillation between r =1.00 and
r=1.70. The variational result oscillates in a similar
manner but with less amplitude.

It is interesting to note that the order parameters g, 3,
86,2, and g 5 calculated from a Jastrow function are in
better agreement with the exact results in the solid phase
than in the fluid phase. We believe that it is significant
that of the angular order parameters that seem to signal
the onset of freezing (cf. Sec. IV), g4 3, 86,2, and g4 5 are
qualitatively wrong when derived from a pure Jastrow tri-
al function for the fluid.

VII. CONCLUSIONS

We can summarize our conclusions in the following
way:

(i) The pair correlation functions g (r) evolves smoothly
from the lowest-density to the dense metastable fluid
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FIG. 16. Exact (GFMC) and Jastrow variational calculations
of g¢s(r) compared at two densities. The solid line ( )
represents the exact results for a fluid at po*=0.365 and the
open circles (O) the Jastrow results. The dashed line (— — —)
shows the exact results for a solid at po®=0.526 and the aster-
isks (%) are the variational results.
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phase. No significant precursor to melting is evident.
Upon freezing the short- and intermediate-range structure
changes only slightly. The long-range behavior of g (r) in
the solid will, of course, reveal the presence of the long-
range spatial order.

The pair correlation function in the solid phase shows a
remarkably fluidlike structure. Only at an extremely high
density of po*=1.1 does the short- and intermediate-
range order reflect the presence of the crystalline order.
At this density, solid *He is approximately harmonic and
g (r) is very similar to the two-body correlation function
in a classical solid just before melting. We conclude that,
except for its long-range behavior, g (r) provides very little
information about the onset of freezing.

(i) We have represented g;(ry,,713,723) by a spherical
harmonic expansion with respect to locally defined coordi-
nates, which allows us to examine the angular order in
the system. The interesting components of the expansion
are g4,,(r) and g¢ ,,(r). While none of these functions
show a clear precursor to freezing, several of them under-
go significant changes as the system solidifies. These are
843, 86,1» 86,2> and g¢ 5. The other g;,, (r) evolve smooth-
ly until the high-density-solid phase is reached at
po*=1.1. At this density, several of these functions show
the presence of crystalline order. We conclude that unlike
g (r), there are components of g;(r 5,713,723 ), as represent-
ed by the g, (r), that change significantly on freezing.
This suggests that these higher order correlations are im-
portant in the melting-freezing transition.

(iii) Some of these angular order parameters are sensi-
tive to the structure of the variational functions that are
often used in liquid and solid “He. When a Jastrow func-
tion is used to compute these functions g4 3, €62, and gg s
show significant discrepancies when compared with the
exact GFMC results. However when triplet correlations
are included in the wave function, the agreement with ex-
act results is excellent for all the g, ,,(r). We thus con-
clude that the inclusion of triplet correlations is necessary
if the three-body correlations are to be correctly account-
ed for in a variational calculation. This is not surprising
since the energy is known to be sensitive to three-body
correlations. If the melting/freezing transition is dom-
inated by three-body correlations, a good (J +7) wave
function may be sufficient to describe the transition.

(iv) Those g; ,,,(7) that do not change significantly when
the system freezes evolve as the solid is compressed, and
at the highest density at which we worked they show the
presence of local crystalline order. This behavior mimicks
that of g (r).

We view this presentation and analysis of the behavior of
the triplet correlations in liquid and solid *He as a prelim-
inary attempt to understand the qualitative microstructure
of these systems.
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