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Quasiparticle interaction in the Fermi liquid 'He
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The Fermi-liquid interaction and the quasiparticle scattering amplitude on the Fermi surface for
liquid 'He are calculated by solving the pair of coupled Bethe-Salpeter equations in the two particle-
hole channels. The method of solution preserves exchange symmetry by employing the eigenfunc-
tions of the exchange operator as a basis set. The quasiparticle effective mass and the totally
particle-hole irreducible direct interaction needed as an input are taken from available microscopic
calculations. It is found that a small nonlocal part is necessary in the direct interaction in order to
obtain a large backflow parameter F'I, as observed in 'He. The origin of this contribution is traced
back to screening effects on the interaction in the particle-particle channel. Upon including a phe-
nomenological nonlocal part into the direct interaction, good agreement is found with available ther-
modynamic and transport data.

I. INTRODUCTION

According to Landau' the low-energy properties of a
Fermi system well below the degeneracy temperature TF
are those of a gas of interacting quasiparticles. This is
true at least in the so-called normal state, defined as that
state of the interacting system in which the quasiparticle
states are in one-to-one correspondence with the single-
particle states of the corresponding noninteracting system.
In many cases the normal state is not the ground state, as
the system condenses into a state with macroscopic order
below some temperature T, . But even then the quasipar-
ticle states may form a basis for the description of the
condensed state, provided the transition temperature is
well below the Fermi temperature TF.

The quasiparticles are characterized (i) by their single-
particle energy c~ as a function of momentum p and spin
o., parametrized by the effective mass m~*, such that
Be~ /Bp =p/mz*, (ii) by the quasiparticle scattering am-
plitude (QSA) a(12;34) describing a collision process of
two quasiparticles in initial states p&o. 2 and p2o. z scattering
into final states p3o. 3 and p4o. 4. The so-called Landau pa-
rameters, which account for the screening of external
fields by the molecular field, the pair interaction responsi-
ble for the formation of Cooper pairs and even the
effective mass at the Fermi surface are all derivable from
the QSA. ' In fact any other type of macroscopic order
that happens to occur in the system below a temperature
T, « TF must relate to some part of the QSA, provided it
is a two-particle-correlation effect.

Therefore the QSA, or equivalently as we shall see, the
Fermi-liquid interaction must be the central target of any
microscopic theory of interacting Fermi systems. Ideally
one would like to start with the bare interaction. The in-
teraction between two isolated helium atoms is fairly well
known from atomic-beam scattering experiments and
thermodynamic data on the gas phase. A suitable analyt-
ic form is provided by the HFDHE2 potential of Aziz
et a/. , which reproduces the data and also meets the
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FIG. 1. Interaction potential of two 'He atoms in vacuum.

known theoretical limiting forms at both short and long
distances. Further support for the correctness of this po-
tential in the liquid phase comes from the results of
Careen's-function Monte Carlo calculations, which pro-
vide a very accurate account of the equation of state.
Like the well-known Lennard-Jones potential, the more
refined potential forms possess a strongly repulsive hard
core of radius r, =2.6 A (which amounts to about
one-half of the average interparticle distance), and a weak-
ly attractive van der Waals part (see Fig. 1). The fact that
the hard core is so extended is responsible for the very
effective screening of density fluctuations and current fluc-
tuations, which in turn lead to a large effective mass: The
particles are almost localized due to the blocking effect of
the voluminous hard cores, in spite of the large zero-point
motion and the weak-binding forces. On the other hand,
the exchange forces are relatively weak.

Early attempts to calculate the Landau interaction con-
centrated on the proper treatment of the hard core. In
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the presence of a strong potential multiple-scattering pro-
cesses are important. These may be summed in the
ladder approximation, taking into account the presence of
the filled Fermi sea. This first partial summation of per-
turbation theory leads to the replacement of the bare in-
teraction potential by the G matrix (for a recent calcu-
lation of the G matrix see Ref. 10). However, for liquid
He the 6 matrix bears no resemblance with the Landau

interaction function. For instance, extracting the Landau
parameters from the 6 matrix results in weak antiscreen-
ing of density fluctuations (F0&0), where actually strong
screening is observed.

It was later shown by Babu and Brown" in a seminal
work (for a similar calculation for nuclear matter see Ref.
12) that particle-hole (p-h) excitation processes in the
crossed p-h channel, describing density- and spin-density
fluctuations for the main part, contribute to the Landau
interaction in an essential way. These contributions are
not sufficient, however, to account for the experimentally
observed Fermi-liquid interaction. It appears that the
screening of the interaction in the particle-particle channel
is equally important. One is thus left with the problem of
summing all two-particle excitation processes consistently.

Such a program has been carried out in a somewhat
different formulation using a combination of a variational
theory of the ground state and a perturbation theory em-

ploying correlated basis functions (CBF) derived from the
correlated ground state. ' ' Within this framework it
has been possible to sum large classes of diagrams in per-
turbation theory approximately. '"' The most serious ap-
proximation one is forced to introduce in those theories
consists of replacing the particle-hole propagator by a so-
called collective propagator, which lacks the proper ana-
lytic structure near the Fermi surface. While global prop-
erties such as the static structure factors and the density
molecular field are well described by this approach, the
effective interaction of quasiparticles at the Fermi surface
cannot be obtained yet in detail.

On the phenomenological side a new kind of effective
quasiparticle interaction has been introduced by Aldrich
and Pines. ' ' These so-called polarization potentials
represent a generalization of the Landau molecular field
to wave numbers up to several Fermi wave numbers.
Starting from a plausible pseudopotential form in position
space combined with sum rules and Landau limits these
authors have constructed what has turned out, to date, to
be the only theory capable of describing the density fluc-
tuation excitation in detail ~ One of the great successes of
this theory was the accurate prediction of the high-
frequency zero-sound mode in advance of experiment.
Bedell and Pines' ' used the polarization potentials to
construct QSA's for He. As the QSA initially calculated
from the Landau integral equation [see Eq. (16)] does not
satisfy the requirements of exchange sy™ry Bedell
and Pines multiplied the symmetry-violating part by a
symmetrizing factor and added it onto the exchange sym-
metric part. Using the QSA so constructed they calculat-
ed the transport coefficients the transition temperature to
the superfluid state and the free-energy parameters in the
superfluid state. By adjusting a single free parameter [the
difference in range between the configuration-space pseu-

dopotentials, f"(r) and f"'(r)] they obtained excellent
agreement with existing experimental data. Attempts to
improve on the ad hoc symmetrization procedure used by
Bedell and Pines, by including higher angular momentum
components such as to restore full exchange symmetry
have been only partially successful. ' ' Apparently the q
dependence of the polarization potentials is not known
with sufficient accuracy.

Finally, a number of attempts have been made to
parametrize the QSA and to determine the coefficients by
fitting to experimental data. The so-derived approximate
QSA may then be used to calculate other properties. The
first of these was the s-p approximation by Dy and Peth-
ick. It was later generalized to an arbitrary number of
partial waves in the so-called effective potential approxi-
mation. ' A completely general parametrization of
the QSA respecting exchange symmetry has only recently
been proposed.

In this paper we calculate the effective quasiparticle in-
teraction in liquid He on a level which is intermediate be-
tween a fully microscopic theory, using the bare interac-
tion as the only input, and a phenomenological theory
such as the polarization potential theory, ' ' for exam-
ple. We exploit the fact that much of the renormalization
of the interaction occurs through quasiparticle-quasihole
excitation processes near the Fermi surface. These pro-
cesses may be treated in a relatively controlled fashion by
observing that recent microscopic calculations imply
that the quasiparticle picture is approximately valid in a
rather large momentum range O~p «2kF. Integral equa-
tions for the QSA based on this premise are derived in
Sec. II ~ The uncertainty in the quasiparticle assumption
(which grows with increasing momentum transfer in the
scattering process) is confined to some extent by the ex-
change symmetry of the QSA, which relates the values of
the QSA at small- and large-momentum transfer. Our
calculation respects the exchange symmetry property ex-
actly, which is made possible by employing the eigenfunc-
tions of the exchange operator as a basis set. ' The input
needed in this calculation is the quasiparticle energy and
the completely particle-hole irreducible interaction I"(q),
called the direct interaction, i.e., that part of the total
scattering amplitude which does not contain any
quasiparticle-quasihole intermediate states. Our theory is
similar in spirit to recent calculations by Ainsworth
et al. , Bedell and Ainsworth, and Bedell and
Quader (see also the work of Quader and Bedell on the
spin-polarized system) based on the Babu-Brown equa-
tions as well as generalization of this approach by Ains-
worth and Bedell. As a first step I is considered to be a
phenornenological quantity in Sec. IV. It is hoped that
the direct interaction may be obtained from a fully micro-
scopic theory. The results discussed in Sec. IV show
indeed that the effective interaction derived from
CBF—hypernetted-chain theory' ' provide a fairly good
amount of the local part of I. The nonlocal part, which
turns out to be necessary to obtain agreement with experi-
ment is addressed in Sec. V, where a rough estimate is
made. A few concluding remarks are added in Sec. VI.
A brief account of this work has been published.
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II. INTEGRAL EQUATIONS FOR THE EFFECTIVE
INTERACTIONS

z
G(p, co) = +G'"'(p, co) .

co —e~ +i y~ sgn(co p)— (2)

The pole term describes quasiparticles of energy c~, life-
time y~ ', and spectral weight z~. In terms of the self-
energy these parameters are given by

The Landau theory of Fermi liquid may be justified us-
ing the methods of quantum field theory. ' We shall
need an extension of Landau's theory from the regime of
small wave vectors q to the complete range from q=0 to
q =2k&. In the following we therefore present a brief re-
view of the microscopic derivation.

The single-particle Green s function of the interacting
system is diagonal in the energy-momentum representa-
tion and given by

5 pG p(p, co)=
co —c~ —p —X(p, co)

Here E =p /2m is the bare energy and X(p, co) is the
self-energy. We consider the limit of zero temperature
throughout this paper. According to a general
theorem ' the imaginary part of X vanishes at co=p,
so that in the vicinity of the Fermi surface the Green's
function shows a pole structure, sitting on top of a broad
regular background G'"':

ly smaller than unity. As shown by Prange and Ka-
dano6' for the electron-phonon system, a momentum-
independent self-energy implies that the compressibility is
unrenormalized, i.e., m*/m =1+Fo. Inverting the argu-
ment and applying it to the interaction fermion system
He one is led to conclude that the strong renormalization

of the compressibility observed there is indicative of a siz-
able momentum dependence of the self-energy and conse-
quently a fairly large p mass.

If one neglects this contribution to the effective mass for
lack of a reliable theory, the single-particle spectrum is
found to be given by the bare energy except for a wiggle
near the Fermi surface of width -0.3k&, giving rise to the
enhanced effective mass. The imaginary part of the
self-energy is smaller than the real part in the regime
0&p 2.2pz, which comprises the set of momentum
values p&2pz accessible in a scattering process on the
Fermi surface. We will therefore assume that the quasi-
particle description is approximately valid in the complete
range of interest here.

The interaction between the quasiparticles is contained
in the two-particle Cjrreen's function K(1,2;3,4), or more
precisely, in the vertex part I defined by

K(12;34)=(2n) G(1)G(2)

X [&'(1—3)&'(2 —4) —5'(I —4)&'(2 —3)]

+iG (1)G (2)G (3)G (4)I (12;34)

zp
' ——1 — X(p, co)

~ ~ (3)

E~ =e~+ReX(p, E~ ),
y~ =z~ 1m'(p, e~ ),

(4)

with ez defined implicitly as the solution of (4). It is con-
venient to define a momentum-dependent effective mass
by

p
Cp =

ap '
m,*

From the dispersion relation (4) one obtains at once

m* —1
Zp

1+— X(p, co)
f?Z

p ~p CO= Ep

which is interpreted as the product of the "E mass" given
by zz

' and the "p mass, " related to the energy (E) and
momentum (p) dependence of X, respectively. Detailed
calculations for the dilute Fermi gas and models of nu-
clear matter ' show that the E mass is greater than m
and causes a peak of mz* at the Fermi energy, whereas the
p mass is fairly structureless and is slightly less than the
bare mass. Calculations of m* for He in the framework
of CBF theory ' ' and those using an extension of Lan-
dau theory ' yield the same qualitative behavior of the
E mass. Little is known about the p mass, except for the
fact that it must be rather large, too. This may be in-
ferred from the fact that the compressibility of liquid He
is renormalized by a factor (m "Im)l(1+F0) substantial-

Here 1,2, . . . denote the set of momentum, energy, and
spin variables, 1=(p„co&,o, ), etc. In terms of perturba-
tion theory I is given by the sum of all connected dia-
grams with two incoming and two outgoing lines. The
Green's function K as well as I has the symmetry of a
two-particle wave function under exchange of two parti-
cles, i.e.,

I (12;34)= —I (12;43)= —I (21;34) . (9)

It is well known that two-particle intermediate states
are of particular interest in the perturbation theory for I,
as they may give rise to singular behavior of I as a func-
tion of the transferred momentum and energy. ' Accord-
ingly the diagrams are classified into two-particle reduc-
ible and irreducible ones. This can be done in three possi-
ble ways, leading to the Bethe-Salpeter equations shown
in Fig. 2. A convenient parametrization of the four-
momenta p; is given in terms of the total momenta in the
three channels q, r, k defined by

q =p& —p3=p4 —p2 ~

r =p3 —p2=p& —p4 ~

k =p&+p2=p3+p4 .

(10)

The internal momentum p" in Fig. 2 is summed over.
The two particle-hole equations [Fig. 2(a)] and [Fig. 2(b)]
are transformed into each other by the exchange operation
(3~4 or 1~2), whereas the particle-particle equation [Fig.
2(c)] transforms into itself. The kernels I ", I ", and I
defined as the complete set of diagrams irreducible with
respect to cutting a pair of lines in the (1,3), the (1,4), and
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mph ,'I-ph

The various irreducible vertices defined above may be
linearly combined to give the following two relations

p" - q/2 I ph+ I ph mph

I-pp+ ~ph pl«

(1 la)

(1 lb)

ph
I

p" - r/2 ll

I
ph

p" + r/2

The vertices I pp, Ap, and A'" possess the full exchange
symmetry, whereas I p" and I " are connected by

I (12;34)=1 ~ (12'43) = I ~"(21'34) (12)

3

ppp

p" + k/2

the (1,2) channel, respectively, may be further decom-
posed into a kernel A ", which consists of diagrams
particle-hole irreducible in both channels and the totally
two-particle irreducible vertex part A'"' (see Fig. 3). Note
that the lowest correction in A"" to the bare interaction
part is already of fourth order in the interaction potential ~

- p "+k/2

FIG. 2. Bethe-Salpeter equations for the two-particle vertex
function I in (a), (b) the particle-hole and (c) particle-particle
channels.

The approximation where A'" is replaced by the bare ver-
tex is the so-called parquet approximation ' (the name
describes the two-dimensional, area-covering character of
the diagrams summed in this class). It is very likely that
it would give a satisfactory description of He if one were
able to solve the three coupled nonlinear integral equa-
tions with sufficient accuracy. This remains to be done.

Even if the complete "parquet" equations could be
solved, the solution would be purely numerical and the
mechanisms at work in a many-fermion system would not
reveal themselves easily. It seems therefore worthwhile to
try to connect the microscopic description to the phenom-
enological Landau theory. As shown by Landau'
the dimensionless quasiparticle scattering amplitude on
the Fermi surface 3 is given by the vertex function I in
the limit of zero excitation frequency cu; =0 and momenta

~ p; ~
=pF, renormalized by the quasiparticle spectral

weight factors z; as

ph
mph

I

ph

~ (Pio't P2o'2 P3o'3 P4o4)

=N (z, z z z )' I (12;34)
i

i pi =pF

(13)

, I- PP I

—ph

Here NF =m'pF/7r is the density of states. (We employ
units where A'=1. ) In order to derive an integral equation
for 3, which displays explicitly the effect of quasiparticle-
quasihole excitation processes (later referred to as p-h pro-
cesses), one must isolate the quasiparticle contribution of
the full particle-hole propagator

Gp +q)2' qq2 (GG)q +(GG) (14)

~ph

in the p-h Bethe-Salpeter equations in Fig. 2. The quasi-
particle term has the explicit form

1
(GG)p"-(q) =

qo —op++op

j- ph

FICz. 3. Representations in terms of irreducible and reducible
parts of the partially irreducible vertex functions I/' (p-h irre-
ducible) and App (p-h irreducible in both channels). The totally
two-particle irreducible vertex function is called A'".

—(f" ——')tl co"— —e"
P & 2 P

where f~ =f (c~ ) is the Fermi function. In the limit

qo ——0 considered here (qo is the frequency component of
the four vector q), performing the co" integration in the in-
termediate state of the Bethe-Salpeter equation [Fig. 2(a)]
amounts to replacing co" by

+P~p"+q&2=-
2m

in the arguments of the vertex functions I P and I. In
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terms of the two particle variables q, r, k one therefore ob-
tains, for example,

10

X(k,&)

II

I q, q =O;r=p —p",rp=+
2m

0 =1.0 0 =0.2

Ip

k=P+P", kO ——+ P
2m

It is seen that the singularities of I P" and I for small

~

r ~I, ro are not involved here, because the ratio ro/vF r
~

is less than unity, approaching unity only for
~ q ~

-2kF.
We shall therefore approximate I P and I by their zero-
frequency limits. The first p-h Bethe-Salpeter equation
may then be written as

dAp-
A "(q)=Fp"'(q)+ f dEp ~ Fpp-(q)Xp (q) A p'p(q)PP 4~

0 k/kF

FIG. 4. Particle-hole susceptibility Xq(q) [defined in Eq. (17)]
averaged over the directions of k as a function of k =

~

k
~

for
various values of Q =q /kF.

where Xp(q) is defined by

fp+q/2 fp —q/2
Xpq =

ep+ q/~ E
p q/2—

(17)

X„(Q)=—,f dp p f d(cos@)(sin "@)
m *pF 0

f (ep+q/2) f(Ep q/2)—
p +q/2 ~p —q/2

It is convenient here to introduce the momentum vari-
ables p= —,'(p, —p3) and p'= —,'(p4 —pz), which have the
fixed magnitude

~ p ~

=
~

p'
~

=pF(1 —Q /4)', where
Q =q/pp, provided

~ p; ~

=pp. Thus A and F depend
only on two momentum variables, the angle between p
and p', and the momentum q. This parametrization of 3
is more convenient than the one in terms of the angles 0
between p~ and p2 and N between p& gp2 and p3Xp4. '

The dependence on spin is characterized by two ampli-
tudes, which may be chosen as the singlet and triplet am-
plitudes in either of the three channels. 3' and 3' are
the spin-symmetric and spin-antisymrnetric amplitudes in
the p-h channel, defined by

A (o IcTp ,cr3(74)='A 5~)~i5~ioi+ A T~ioi'T~i~4

(20)

where cosN=p. q, vary little with n, in particular so when

1.P—

x0„(o)

x„(0)

0—

where w is the vector of Pauli matrices. The function F
that takes the place of the irreducible vertex part I, but
now is irreducible with respect to cutting a quasiparticle-
quasiho1e pair of lines, is equal to the Fermi-liquid in-
teraction in the limit q~O. The Landau parameters FI"
follow by expanding Fpp (q) in terms of Legendre polyno-
mials P~

F"(q) = g F (q)P, (p.p')
l=0

08

I

0.4
I

O.S

(a)
I'

3

1.6 g 2.0

as F,"=F (q =0).
The particle-hole propagator P -(q), considered as a

function of
~

p"
~

is peaked at the value of
~

p"
~

=pF(1 —Q /4)' corresponding to the internal mo-
menta

~

p"+q/2
~

lying on the Fermi sphere [see Fig. 4
for a plot of the angle-averaged Xp(q)). This suggests the
approximation of taking 3 and F out of the Ep -integra1 in
[Fig. 2(a)] and setting

~

p"+q/2
~

=pF. The remaining
integral of Pp-(q) over

~

Ep"
~

turns out to be a weak func-
tion of p" q. As shown in Fig. 5 the coefficients g„(Q)
defined by

0.4

0.2
I

0.4
I

0.8

0
1

I I

1.6 g 2.0

FICx. 5. (a) and (b) Different angular averages of the energy
integrated p-h susceptibility+~(q) as defined in Eq. (20) using the
energy expression (21) with M—:m /m=3 and 3 =—cF/c, =0 (a)
and 2=4.3 (b).
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the wiggle in the quasiparticle spectrum is taken into ac-
count. We may therefore approximate this integral by the
lowest coefficient Xo(Q). In evaluating X„(Q) we have
used the following parametrization of the quasiparticle en-
ergy50& 28 30

2 2

limit q~0, where 70~1. For quadratic energy spec-
trum,

k
~

—P ~

2m

the p-h susceptibility Xo(q) is identical to the normalized
static Lindhard function, which is given by

+[u —(u +U')' ]' ' —2z I, (21) Xo(Q) = —,
' 1+—(1—Q /4)ln

Q 1 —Q/2

where

1 m*
up =Zp —

Zp2 m

1 m*
Up = —

Zp
3 m

zp ——(e~ —E~)/38, .

(22)

The form (21) follows from a model of the imaginary part
of the self-energy given by

ImX(E) = m* —1
E2

E2+ ~2
(23)

FI"(q)
A (q)=

1+Xo(q)Ft"(q) /(2I + 1)
(24)

This reduces to the well-known relation of the quasiparti-
cle scattering amplitude to the Landau parameters in the

where m * is the effective mass at the Fermi surface and
c,, is an energy cutoff. Plots of ck for typical values of
m*/m and c, are shown in Fig. 6.

Employing the above simplifications, the integral equa-
tion (16) for A may be solved with the result

Equation (24) might make one believe that any chosen
model form for Fl"(q) would lead to a suitable QSA.
This point of view was to some extent adopted by Bedell
and Pines"'9 who chose to identify Fo'(q) and F&(q)
with the density, spin density, and backflow polarization
potentials of Aldrich and Pines. ' ' Such an approach is
problematic, however, because the property of exchange
symmetry obeyed by 2 imposes strong conditions on the
possible q dependence of Ft(q) This .is clearly seen if one
writes down the explicit expressions for the exchanged
quantities, in the representation of the variables Q =q/p~
and p=(p. p'):

F"(p,Q) = —,
' [F'(p, Q)+m "F'(p,Q)], (26)

where m'=3, m '= —1, and the transformed variables are
given by

Q = [2(1—Q'/4)(1 —p )]' ',
P = [(1—Q'/4)(1+ p) —Q'/2]/[(1 —Q'/4)

(27)

X(1+p)+Q'/2] .

Here and in the following we denote exchange
transformed quantities by an overbar.

From the exchange symmetry of the spin singlet and
triplet components of the QSA, A and A ',

A "(p,Q)=+A '(p, Q) (28)

.3 and the relations among the different spin representations

4 &F

M=3

=3'—3A'

A'= —,'(A'+3A '), A'=
—,'(A ' —A')

(29)

one obtains the following relation among 3 ' and 3 '

A "(p,Q) = —
—,'[A'(p, Q)+m "A'(p, Q)]

= —A "(p,Q) . (30)

P tj' Pg
In the forward scattering limit p&

——p2 ——p3 ——p4 and conse-
quently q=0, p = 1, the triplet QSA vanishes by virtue of
the Pauli principle. This gives rise to the sum rule

A '(p= 1,Q =0)= g ( Af + A(')—:0 .
1=0

(31)

FICx. 6. Quasiparticle energy E~ as a function of momentum
according to (2I) for M=—m /m=3 and different values of the
energy cutoff c, .

Also, the p dependence of A at Q=O and the Q depen-
dence at p = 1 are related by
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A "(p,Q =0)= ——,[A'(p= 1,Q)+m "A'(p, = 1,Q)],
(32)

~ (q)
(K)

30

P = 0.0180

A "(p,Q)=F"(p, Q) —F"(p,Q) —I"(p,Q) . (33)

The exchange transformed quantity F is given by (25).
Note that I is exchange symmetric. Any exchange sym-
metric approximation to I yields automatically an ex-
change symmetric QSA.

where Q=&2(1—p).
The above relations show that the dependence on p and

Q is strongly correlated. In particular, for any given an-
satz for the Landau interaction F"(p,Q) in the integral
equation (16), the resulting QSA will in general not be ex-
change symmetric. It is clear that the exact property of
exchange symmetry should be exploited to determine 3
more precisely. This can only by done by calculating A
and F simultaneously in an exchange symmetry conserv-
ing fashion, and by introducing approximations to a less
sensitive quantity. The ideal quantity to approximate is
the totally irreducible vertex A'". This would amount to
solving the parquet equations, which is outside the range
of our present capability. On a less complicated level one
may try to parametrize the particle-hole irreducible vertex
A~, or rather its quasiparticle-quasihole irreducible coun-
terpart (including the renormalization factors z, ). This we
call the direct interaction Izg (q), following Babu and
Brown, " because it does not contain quasiparticle polar-
ization contributions. The direct interaction is related to
3 and F by the following linear relation derived from Fig.
3(a)

20

10

0
0 0 2

in terms of which the transformation laws become linear:

—1 —1 z
+

2 —3 1 X 2
(35)

This fact may be exploited to construct polynomial eigen-
functions of the exchange operator X', defined by

FIG. 7. Local direct interaction potential v'(q) vs Q =q/kF
as calculated by Krotscheck (Ref. 14), for three values of particle

o 3
density p (in A ).

X+1k(p~Q) Xlk(p&Q) ( ) +Ik(p~Q) (36)

z =Q /2 —1=—Pi.P
3' =p(1 —z) =(pl+p3) p4 (34)

III. DIRECT INTERACTION MODEL:
ANALYTIC RESULTS

The direct interaction I"'(p, Q) does not contain any of
the singular contributions (in the limit rv, q~0) caused by
quasiparticle-quasihole excitation processes near the Fer-
mi surface. It has been argued that I' may be identified
with the effective interaction derived in CBF calcula-
tions. ' There it has been found' that the effective in-
teraction is predominantly a local interaction. The corre-
sponding local potential v'(Q) is shown in Fig. 7. The
nonlocal contribution, part of which is an exchange in-
teraction, has not been calculated yet. Before presenting
the results of a numerical solution of (16) and (33) using
the potentials V'(Q)=tv (Q) to approximate I(p, Q), it
is instructive to solve the equations in the case where
I(p, Q) is considered to be a phenomenological potential.
This will be considered in the following for the simplest
case of pure s-wave interaction and in the somewhat more
realistic case of s- and p-wave components.

The solution of (16) and (33) is greatly facilitated by us-
ing the eigenfunctions of the exchange operator derived re-
cently. ' While the transformation laws (27) describing
the behavior of the variables p and Q under exchange ap-
pear to be prohibitively complicated, one may in fact use a
different set of variables z and y, defined by

for l =0, 1, . . . , k and k =0, 1, . . . . The eigenfunctions
are explicitly given by

k

+Ik(p~ Q) y Dll'~l'k (p& Q)(
I'=0

where the DII are known coefficients ' and

~lk(p Q) =Pl(p»lk (Q)

(37)

(38)

P01' 1(x)=1,

Pl; (x)= —,
' [(a +2)x +a],

PI2'01(x)= —,'(5x +2x —1),
P", 1=

—,'(35x +15x —15x —3),
P2' ' ———,'(21x +18x +1) .

(40)

Later we will need the property

Here Pl (p ) are the Legendre polynomials and Zlk is given
by

Zlk(Q) i/k + It/2I + 1( I Q2/4)IP(2l+1, 0)(Q2/2 I )

(39)

The P„""'(x) are the Jacobi polynomials of degree n and
indices a, b. ' The first few polynomials sufhcient for
I, k (3 are given by
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(41)

The coefficients DI& for fixed k may be considered as ele-
ments of real, symmetric and orthogonal matrices D, i.e.,

z dg Q(l —Q /4)XO(g)
1 z 2

(2I +1)'

XZg, ( Q)Zik(g)Zik (Q) . (48)
k

k kg Dll DI-I =&a .
1"=0

The first few D's are given by

(42) For quadratic energy spectrum the expression (25) for
Xo(g) may be inserted. The first few matrix elements
(k=0, 1) are then given analytically by

D =1,
—1

—V'3

D = —&31

3

3

2

1——&is
2

(43)

Xooo
——(2+ 16 ln2)/15,

Zoo& ——(i/2/105 )(37—64 ln2),

Xo i &

= ( —4+ 128 ln2 ) /105,

X~ ~ &

——(&2/1155)(907—1024 ln2),

Xi ~ &

——( &6/6237)( —565+ 3072 ln2) .

(49)

&S ——&15
2

1

2

The Landau parameters follow from the coefficients F&g'
in straightforward way as

The functions Xlk as well as the functions Ylk are or-
thogonal with respect to integration over z and y, i.e.,

1 z z i zdg dP(1 —Q /4)Xlk(P, Q)XI k (P, g) =5kk 5ll4 o —1

(44)

Fi" QFk—ZIk(0),
k=i

where

Z(k(0) =&k + 1&21+1( —1)',

(50)

using (39).
As seen in Fig. 7 the local part of the direct interaction

V'(Q) is large and positive over the whole range of
momentum values of interest here. As a first approxima-
tion we may therefore put V'(Q) equal to a constant
V'(Q)=. Vo and neglect the nonlocal part altogether. This
leads to only a k=O component of the direct interaction,
or Ioo ———Ioo ———,

' Vp. In the limit Io~ap some of the
coefficients are bound to scale with Vp, whereas all the
others are approximately independent of Vp and scale to
limiting values of order unity. This is seen from the l=O,
k=0 components of (33), which are explicitly given by

~ "(V Q)= g ~k Yik(V, Q)
l, k

(45)

and analogously for F"(p,Q) and I"(p,Q). Substituting
these expansions into (16) and (33), employing the ortho-
gonality property (44) of the Y«'s and the behavior of Y&k

under exchange

k

Ylk(P, Q)= g Dll YI k(P, Q),
I'=0

(46)

one finds the following set of equations for the expansion
coefficients

~ lk +lk g +tfc' Xkk'k" ~ I/c"
k', k"=1

k

'4!k Flk g DII'(FI'k +m Fl'k ) Ill
1'=0

(47)

Here the matrix elements of the p-h propagator are
defined by

and analogously for YIk. Both sets of functions, [X&k I

and [ YIk I, form a complete basis in (z,y) space or
equivalently in (p, g) space.

We may therefore expand A "(p,Q), F' (p, g), and
I"(p,g) in terms of these basis functions. Expansion in

Yg, has the advantage that equation (16), which is non-
linear in 3 and F, becomes diagonal in the index l. On
the other hand, expansion in XIk renders equation (33)
trivial, and guarantees exchange symmetry of the QSA at
all levels of approximation. For the following we choose
the expansion in the basis set [ Yik [, i.e.,

~ oo = —,'Foo —-', Foo ——,
'

Vp = —~ oo (51)

A large negative contribution from Vp on the right-hand
side can only be compensated by a corresponding large
value of Foo.

Foo Vo Vo (52)

This is so because the scattering amplitude is bounded
from above by unitarity, which does not allow A op to be-
come much larger than unity (unless other components
Alk grow large as well, which may be excluded here) and
the Landau parameters E&" are bounded from below by
the Landau stability criterion FI"& —(21 +1), which ex-
cludes large negative Foo. In fact in the approximation
where components with k, l&0 are neglected, Foo is found
as

1Foo~—,Voodoo .
2+000

(53)

This is an important result. It implies that for strongly
repulsive direct interaction ("Hubbard repulsion" ) the
spin-symmetric part of the Landau interaction scales with
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the interaction, implying strong screening of density fluc-
tuations. The exchange part of the Landau interaction,
however, tends to a negative value of order unity, in-
dependent of the strength of the direct interaction. This
implies a moderate enhancement of spin fluctuations. The
precise value of the Landau parameter Fo in our model is
determined by the single-particle spectrum through the
quantity oooo. There are also corrections to Fo via (50)
from higher k channels as seen from (47a). This in turn
implies the generation of higher l components by equation
(47b), which is diagonal in k, but mixes difFerent l s,
where l (k. All of these contributions are independent of
Vo in the limit Vo~ ao and decrease rapidly with increas-
ing k, l.

A first indication of this universal behavior of a Fermi
system with strongly repulsive direct interaction can be
found already in the work of Babu and Brown. " A re-
cent evaluation of the Babu-Brown equations appears to
give results for Fo and Fo compatible with ours.
Very similar results ' are obtained within a lattice-gas
description of liquid He based on a Hubbard model with
strong on-site repulsion U. There the parameter U ap-
pears to play the role of the direct interaction.

It is clear that the large values of the Landau parameter
F[ for liquid He cannot be obtained in an s-wave model.
This parameter describes the eff'ect of backflow, which re-
quires at least p waves in the model. We therefore study
as an extension of the above model an s-p —wave model
for the direct interaction. This introduces three interac-
tion parameters Vo ———V['], V], V], which we choose to
define as

I"(p, Q) = V"(Q) —V "(p,Q),
where

kmax

V"(Q)= g Vi", Yoi (0 Q)
k=0

(54a)

(54b)

and k,„=1 in this case. In other words, V"(Q) is a
linear expression in g and I" is a bipolynomial of de-
gree one in Q and p. Equations (54a) and (54b) give the
most general parametrization of I(p, g) in first order in p
and Q, but not in higher order.

Substituting (54a) and (54b) with k,„=l into (47a)
and (47b) one finds in the limit Vo»(

~

V'i
~

), Vi &&1
that F, Fo&, and F'» scale to large values as

Foo = Vo Foi = V'i, F'» =&3V'i (55)

The remaining coefficients saturate at values of order uni-
ty. In the approximation where one keeps only the eigen-
functions

Yoo= 1, Yo=[1—3(pi p3)]&2

The remarkable feature of this result is that the Landau
parameter F'& is driven by the exchange part, or more gen-
erally, the nonlocal part of the eff'ective interaction, i.e.,

F'i &——6Fii ——3&2Vi, Vi ))1 (57)

+ (1 f2 )II( —c.2,k)—

and not by the p-wave part of the local potential, or V&,
as one might have guessed. The importance of finite
range interactions for obtaining large F] was demonstrat-
ed earlier in Refs. 32 and 33. The above discussion
shows, however, that a local potential of finite range (cor-
responding to the parameter V', ) is not sufficient. Rather,
the direct interaction must contain a velocity-dependent
contribution (which is equivalent to a spin-exchange term,
expressed by the parameter V;, in the s-p approximation).
In this respect we disagree with the conclusions of Bedell
and Quader, who find F', as well as F; to be proportion-
al to V& and hence large. Their result is an artifact of the
assumed independence of F and A on q in the crossed p-h
channel. In its original form the Babu-Brown approach is
not capable of dealing properly with exchange symmetry.
Even the qualitative behavior of the scattering amplitude
is given incorrectly in cases where exchange symmetry for
large q is important, as for instance in the vicinity of a
phase transition or instability.

As already mentioned, the nonlocal part of the direct
interaction has not been calculated in microscopic theory
so far. The values of V& required to bring F] in agree-
ment with experiment are such that V& =0. 1 Vo, implying
that the exchange part of I would be 10—20 % of the local
part. This is well inside estimates based on CBF calcula-
tions.

A reasonable idea as to where these nonlocal contribu-
tions to I, which we now call I"'""', will have to come
from in a microscopic theory can be obtained from the
representation of I in terms of p-p irreducible and reduc-
ible diagrams given in Fig. 3(c). It is very likely thatI"'"'"originates from the quasiparticle contribution of the
last two terms in Fig. 3(c). We may evaluate those ap-
proximately by replacing I"~ by F, I by A, and the
Green's functions by their quasiparticle parts [see Fig.
3(c)]. The dominant contribution is coming from the l=0
channel of F'(p, g). For simplicity we replace A by its s-
wave part Ao as well. Then the frequency sums over the
four Green's functions may be performed with the result

Apip (q) = g Gp Gp +~Gp+q+gGp
p",k

2 g [(1 f i )II( —Ei, k) f, 11(s—i,k)—
+F

and (56)
—f, lI(s, , k)]Z(s, + e, ) (58a)

Yli = +3~2(P1+P3) p4

and for quadratic energy spectrum the values of the ex-
change parameters are obtained as Fo

———0.9 and
F& ———1.65. These values are subject to corrections from
higher (l, k) channels.

II(co,k)= g f (1 f +i, )l(oi —op+i,. +op) . —2

F p

(58b)

where si=sp+q+i„c2 ——sp i„and f, z
——f(e, 2) is the Fer-

mi function. Here II(ro, k) is the particle-hole correlation
function defined by
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It is remarkable that the ultraviolet divergence in the p-p
channel is cut off by the p-h susceptibility ~ in (57), and
not by the

~ p ~

dependence of the scattering matrix as
usual. This fact allows us to evaluate the diagram in the
quasiparticle picture in the first place. It also gives
confidence to the above treatment, which may be viewed
as a perturbative evaluation of the contribution in Fig.
3(c) rather than an attempt to solve the complete integral
equation Fig. 3(c).

A rough estimate of the quantity A defined in (57) may
be obtained by replacing H(+c, z, k) by H(O, k), using the
fact that the average of c1 2 in a region about the Fermi
surface is small, and hence:

App(q)=App(k)=— g H(O, k) .
2 1 f i fz— —

+F 1 C1+ C2
(59)

I'» —I» =I i i
——+3V;— (60)

Here Ii'i' is the coefficient of Yii(p, Q) in the expansion
(45) of the direct interaction. One finds

The quantity A is the p-p susceptibility, with the k-
integral cutoff at k ~ 2kF by the p-h structure factor
ir(O, k). Nonetheless, the k summation in A extends over
regions far from the Fermi surface due to the combination
of Fermi factors (1 f, f&) in—con—trast to the p sum in
the Ii-h quantities ir(co, k) or +0(Q) defined in (58) and
(20). There the region in p space around the Fermi sur-
face is always included in the p summation. The
effective-mass enhancement in the vicinity of the Fermi
surface will therefore be less important in the p-p quantity
A than in H or 7. We may estimate this effect by replac-
ing the enhanced mass spectrum c. =p /2m *

by the bare
spectrum c~ =p /2m in evaluating A . This produces a
factor m/m* due to the density of states prefactor NF '

in the definition of A Eq. (59).
The contribution of I"'"'" to the parameter V1 is now

readily estimated using the relation

lattice-gas description of liquid He based on the
Gutzwiller solution to the Hubbard model for a half-filled
band. One may show that the approximate relation
Fa~(m*/m) obtained there depends sensitively on the
filling of the band. Even a slight deviation from exact half
filling tends to modify the relation to FD cc(m*/m). In
our case the relation (63) is a consequence of the assump-
tion that the momentum-dependent effective mass de-
creases rapidly as one goes away from the Fermi surface.
The interrelationship of the two models is not clear at
present.

What can be said, however, is that in our theory a large
value of the effective-mass ratio m */m does indeed give
rise to the structure of the effective interaction discussed
above. Namely, the dimensionless direct interaction
I~~(q) is the physical (dimensional) interaction function
i .(q) multiplied by the density of states N~ccm'/m.
Thus for given i~~(q) the dimensionless quantity I~~(q)
grows linearly with m*/m and one may reach the limit
where the coefficients IOO, I01' are indeed much greater
than unity. The fact that m'/m may grow large or may
even diverge follows from the effective-mass relation if ex-
pressed by the dimensional Landau parameter f', :

1=1+ ,'NJ;f; =—
1 —,'NFf i—

For f', ~( ,'N~) ', w—here N~ is the density of states of
the noninteracting Fermi gas, the effective mass is actually
seen to diverge. This particular behavior of m* has also
been discussed in Ref. 34. It is tempting to connect this
divergence to the analogous behavior found in the lattice-
gas description, where m */m cc (1 —U/U, ) '. The
analogy suggests that f'i is related to the Hubbard repul-
sion U, which makes sense in a picture where the
backflow around a quasiparticle is envisaged as being
created mainly by the hardcore pushing aside particles in
its way. It would be interesting to quantify this conjec-
ture.

VQ F'sg 2g0
1 ~3 ~ 0 11

where

(61)

IV. NUMERICAL EVALUATION OF THE DIRECT
INTERACTION MODEL

A „=4 d 1 — /4 dye„p, A p,
0 —1

(62)

and A is given by the expression (59) for A evaluated
for the Fermi gas, i.e., setting c~~c~ and Xz~XF. A
numerical evaluation yields A»-0. 8. The quantity 2 in
{61)denotes an average value of the scattering amplitude,
which is of order unity. Thus it follows from (61) that Vi
is proportional to m /m *F0, and hence, using (56),

Fs Fs
m* (63)

This relation is obeyed fairly well by the experimental
values for liquid He, except at pressures below about 8
bar, when F1 becomes less than —6. This would imply
V1 —1 and it is not surprising that the above expansion in
terms of 1/V1 ceases to be valid in this case.

A relation similar to (63) has been found within a

We now turn to the results of a numerical evaluation of
the model discussed in the preceding section. As a princi-
pal input we use the local part v'(Q) of the direct interac-
tion calculated by Krotscheck, shown in Fig. 7. The po-
tential v'(Q) is available for three densities only,
p=0.0142, 0.0166, and 0.0180 A . The first value of p
corresponds to the minimum of the ground-state energy at
zero external pressure P. The experimental density at
P=O is more like p=0.0166. We will consecutively take
the first and the second value of p as representing the
equilibrium density. The value p =0.0180 A then
corresponds to an applied pressure of 12 and 3 bar, re-
spectively.

A perfect fit of the potential curves V'(Q) was obtained
by the expansion (54b) using k,„=6. The equations
(47a) and (47b) were solved using an iteration procedure.
The resulting first few Landau parameters for p=0.0166
and taking the value of the ratio density of states NF to
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(Q) = Vo+ Vl YO1(Q)+ V2 YO2(Q) (64)

to the local direct interaction V'(Q) calculated by
Krotscheck. ' ' The solution was calculated for various
forms of single-particle spectrum (22) using the experi-
mental value of m* at the Fermi surface and several
values of the parameter c, . The resulting scattering am-
plitude was employed to calculate the transport relaxation
times for viscosity ~„, spin diffusion ~D, thermal conduc-
tivity v., and the quasiparticle relaxation time on the Fer-
mi surface ~z from the exact expression in Refs. 54 and
55. As already mentioned, the theoretically determined
equilibrium density does not agree with the experimental
density at I'=0. We have therefore tried both possible
identifications of the zero pressure state: p=0.0142 and
0.0166 A

The results of these calculations are collected in Table
I. In the last line, the experimental data ' based on
Greywall's effective-mass values are given for reference.
In the first line, the Landau parameters resulting from the
purely local direct interaction are shown. The next two
lines show the result of a calculation, where only the pa-
rameter V& has been chosen to be nonzero such that F

&
is

reproduced. This is shown for two values of the width of
the wiggle in the energy spectrum: no wiggle (E, =0) and
wiggle as calculated in Ref. 24 (c., =0.23eF). It appears
as if a slightly larger value of c„c., =0.4cF would repro-
duce the experimental data more accurately. This is
shown in the last two lines of Table I, where the agree-
ment with experiment is good. The pair-interaction pa-
rameters G~ for I=0,1,2 are also shown in the table.
Strongest attraction is always found for p waves, although
the actual values of G~ vary quite strongly. We do not at-
tempt to discuss the transition temperature, as the present
approach does not allow for a determination of the cutoff
energy entering the T, expression. Ains worth and
Bedell, using a phenomenological parametrization of the
direct interaction and a quadratic energy spectrum report
somewhat better agreement than we obtain here. Neither
Ainsworth and Bedell nor we do as well as did Bedell
and Pines' ' in their phenomenological calculation of
transport properties, the density dependence of the
superfluid transition, and the strong-coupling corrections.

In Fig. 8 the direct interaction potentials V'(Q) and
V'(Q) employed at P=O and p=0.0142 A are shown.
The Landau interaction functions Fo'(Q) and F", (Q) ob-
tained with the direct interaction of Fig. 8 and the value
eF/c, =4.3 are plotted in Fig. 9. It is seen that the spin-
symmetric function Fo(Q) is close in shape to the input

particle density n to be (Nz lksn) =0.84 K ' are given by
Fo ——14.0, Fo ———0.533, F

&

——0.303. As expected, the
backflow parameter F& turns out to be much too small.
This is in contradiction to the result of Bedell and
Quader based on the Babu-Brown equations, who find
F

&
to be proportional to V&. Their result is an artifact of

the assumed q independence of F and A in the crossed
p-h channel.

In order to explore the quantitative influence of a non-
local part in the direct interaction we have added a three-
parameter model expression for V'(Q),

potential V'(Q), although somewhat larger. The function
Fo(Q), on the other hand, develops a hump around Q = 1,
where Fo ——0.95, unlike V'(Q). This may be taken as
an indication of a tendency to antiferromagnetic rather
than ferromagnetic order. Also, an increase in Fo with Q
may mean that the spin-density molecular field correction
is more important in regions of k space farther away from
the Fermi surface, i.e., for excited states, than it is right at
the Fermi surface. In this way the rapid drop of the den-
sity of states as a function of energy, which is clearly seen
in the specific heat at temperatures above —100 mK, may
be reconciled with the rather smooth behavior of the spin
susceptibility as a function of temperature: The rapid de-
crease of the effective mass in the momentum range
0.5k+ 5 k 5 1.5k+ may be compensated to some extent by
the enhancement of the Landau interaction function
Fo(Q). In fact the combination of parameters
[I+—,'F'i(Q)]F0(Q), where the first factor is meant to de-
scribe the Q dependence of the effective mass, is found to
stay nearly constant up to Q=1.2. This would also ex-
plain why the incoherent neutron-scattering cross section
appears to call for a much less momentum-dependent
effective mass. '

According to Bedell and Pines' the functions Fo(Q)
and Fo(Q) should be identified with the density and spin-
density polarization potentials of Aldrich and Pines. ' In
fact, comparison shows this to be satisfied reasonably
well. The I= 1 interaction functions Fi(Q) and F;(Q) de-
crease monotonically with Q to zero at Q=2. The latter
behavior is a consequence of the factor 1-Q /4 appearing
in all the I=1 eigenfunctions Yg, . Comparison with the
backflow polarization potential f, (q) of Aldrich and
Pines, assuming the relation between f, (q) and F'i (Q)
proposed by Bedell and Pines, shows that our F'i (Q)
drops much faster with Q. Whether this is due (i) to the
assumed relationship to be incorrect, (ii) our input direct
interaction to be incomplete, or (iii) the determination of
f, (q) by the fit to neutron-scattering data to be uncertain,
is not known at present.

V. CGNCLUSIGN

In this paper we have presented a general framework
for the calculation of the effective quasiparticle interaction
in a Fermi liquid at zero temperature. The theory is
based on the assumption of reasonably well-defined quasi-
particles in a large portion of momentum space, from zero
momentum up to 2pF. Such an assumption is to some ex-
tent corroborated by microscopic theories using
correlated-basis function perturbation theory and by ex-
trapolations of Landau theory to finite temperatures, exci-
tation energies and momenta. We argue that the main
part of the renormalizations taking place in a Fermi liquid
is due to quasiparticle-quasihole excitation processes.
These processes may be singled out and are summed up
by two coupled integral equations for the quasiparticle
scattering amplitude Azz(q) and the generalized Landau
interaction function F~z (q) in the direct and crossed p-h
channels. At this stage the input into these equations is
the quasiparticle-quasihole propagator, which is given in
terms of the quasiparticle energy c~, and the p-h irreduc-
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FICx. 8. Direct interaction potentials V'(Q) and V'(Q).

(a)

ible interaction, the so-called direct interaction I~~(q).
The direct interaction may be considered as a phenomeno-
logical quantity, defined on a more microscopic level than

and F, or else it may be calculated in microscopic
theory.

Assuming a simple model form for Izz (q), consisting of
a large repulsive weakly q-dependent local potential as
suggested by microscopic theory, one finds the remarkable
behavior that the Landau parameter Fo scales with the in-
teraction potential to large values, whereas Fo saturates at
a small negative value, just as observed experimentally for
liquid He. A large value of the backflow parameter F I is
not generated unless an exchange potential or a more gen-
eral nonlocal part is added to I~~ (q). However, the mag-
nitude of this exchange part needed to obtain the experi-
mental value of F& is only 10% of the size of the local po-
tential. We present arguments, based on the particle-
particle reducibility properties, showing that such an ex-
change contribution to I~~ (q) should indeed be expected
and that it should scale with (m/m*)Fo. As a conse-
quence the approximate scaling relation Fo o:(m*lm) is
found, which is well obeyed for He at higher pressures
where the strong-coupling limit applies. The spin an-
tisyrnmetric parameter F& is again found to saturate at a
small negative value. The universal behavior of the
eAective interaction obtained in this way is characteristic
of an almost localized Fermi system, i.e., a system close
to an instability where the eAective mass diverges.

We expect the theory presented here to apply to other
types of instabilities and phase transitions as well. In par-
ticular itinerant magnetism should manifest itself as an in-
stability of the system of equations for A~~ (q) and Fz~ (q).
In this case the complete set of parameters A~I, is likely to
diverge in a universal way. In which way this can happen
and what forms of direct interaction drive the system to-
wards a magnetic instability remains to be studied.

Finally we have calculated the quasiparticle scattering
amplitude for liquid He quantitatively by employing the

FIG. 9. (a) and (b) Momentum dependent Landau parameters
FD(Q), Fo(Q) (a) and F~ (Q), F~ (Q) (b) obtained by using the
direct interaction potentials of Fig. 8.

results of a microscopic calculation of the local part of the
direct interaction and a simple model for the nonlocal
part. The resulting Landau parameters and transport pa-
rameters are in good agreement with experiment.
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