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Sound propagation in liquid helium near the A, point. II. Ultrasonic attenuation
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We present an improved theory of critical ultrasonic attenuation above the k point that is in good
agreement with the experimental data. Static interactions are taken into account by means of a sim-
ple modification of the single-loop specific-heat integral. Dynamic interactions, important in the
crossover regime at low frequencies, produce a frequency-dependent change in the kinetic coefFicient,
without otherwise changing the scaling function.

I. INTRODUCTION II. FREQUENCY-DEPENDENT SPECIFIC HEAT

The general physical mechanism for the critical ul-
trasonic attenuation in fluids has been identified' as the
temperature swings associated with the adiabatic compres-
sions and rarefactions. Generalizing the Herzfeld-Rice
theory of ultrasonic attenuation in gases, we have been
able to characterize the critical attenuation in fluids en-
tirely in terms of the dynamic scaling properties of the
frequency-dependent specific heat. The good agreement
in the magnitude of the critical attenuation at the A, point
of liquid "He and the excellent agreement at the conso-
lute point of the binary liquid 3-methylpentane-
nitroethane give us confidence that we have correctly
identified the mechanism for the critical attenuation.

In this paper we return to the k-point attenuation, mak-
ing use of our detailed thermodynamic study of the prop-
agation of sound near the k point. Benefiting also from
our work on the binary liquid, we are able to take into
account, to some extent, the interaction of the order-
parameter fluctuations. The resulting improvement in the
comparison of our theory with experiment is presented in
Sec. II.

Our second goal is to extend our theory down to lower
frequencies. This takes us out of the van Hove region,
where the kinetic coefficient is a constant, and into the
more complicated precritical and crossover regimes. By
means of a perturbation approach, the full theoretical de-
tails of which we intend to present in a subsequent paper,
we have found that, to a good approximation, the shape of
the scaling function remains unchanged. For fitting the
temperature dependence of the attenuation as the A, point
is approached, it is only necessary to rescale the kinetic
coefficient by a factor which depends upon the particular
frequency at which the run of measurements is made.
Section III illustrates, purely empirically, how this pro-
cedure works in the crossover region. The values of the
kinetic coefficient that are required in order to fit runs at
seven different frequencies are exhibited in Fig. 7 below as
a function of the frequency, the lowest frequency being
0.6 MHz. Section IV is a general discussion and sum-
mary.

From Ref. 3, and from Eq. (13) of Ref. 5, it follows
that the critical attenuation in one wavelength is

Ko —1ak = — Cg ImCp
2&

(2.1)

,'y(k, tr) =B&g '(k, tc—) . (2.2)

For the critical correlation function we use the Ornstein-
Zernike approximation

g (k, tr) = 1

k +~
(2.3)

The k=0 limit of Eq. (2.2) provides the characteristic
temperature-dependent pair relaxation rate

y(tc) =y(0, tc) =2B~tc

It is convenient to express the frequency in terms of

Z=
2Bp

and the scaled frequency A=co/y in terms of

Z . coz= —= —
&
—= —&0, .

(2.4)

(2.5)

(2.6)

where Ko and C~ are purely thermodynamic quantities.
We found Ko-9)&10, while C~ is the specific heat
along the A, line. C~ is equal to the thermodynamic
constant-pressure specific heat C~ at the temperature of
maximum density, T —T& ——6 mK above the k point for
saturated vapor pressure. This paper is restricted to sa-
turated vapor pressure and to T & T&. In order to apply
Eq. (2. 1) we need for Cp an appropriate complex function
of the frequency ~. This is rather complicated below the
k point, but is relatively simple above the k point, where
we can assume that the order-parameter fluctuations are
damped and nonpropagating. In the van Hove region, at
sufficiently large reciprocal correlation length v, the kinet-
ic coefficient D& takes on its constant background value

B&, and the relaxation rate of an order-parameter fluctua-
tion of wave number k is
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The noninteracting single-loop expression for the
frequency-dependent specific heat in D =4—e dimensions
is given by the dimensionless integral

ImI&(~, Z)
F4(Q) = = —tan '0 — ln(1+II ), (2.14)

ImI4(0 Z) ~ ~Q

Ip(a, Z)= f d kg (k, ~)
Cp

'
) (k, ~) i c—u

(2.7)
equivalent to Eq. (13b) of Ref. 3. At low reduced fre-
quencies, 0 &&1,

where CD is the area of the unit sphere and k, is a
characteristic wave number. Substituting Eqs. (2.2), (2.3),
and (2.5) in Eq. (2.7) yields

0
m.F4 ——II— +0(Q ) .

6
(2.15)

kD- 'dk
Ip(~, Z) =k,'

(k +~ )(k +~ +Z)
(2.8)

The e=O limit requires an upper cutofT' qD, for which we
find

Ip(~, Z) =ln ——,'(1+1/z)ln(1+z)
O'D

=I4(v, O)+M4(z) . (2.9)

This simple formula is applicable when the two inequali-
ties ~&&qp and

~

Z
~

'
&&qp are both satisfied. The

evaluation of the integral for the general case is straight-
forward and yields a tractable but somewhat more com-
plicated expression. The thermodynamic specific heat is
represented by

The approach to the A, point for A &~1 is governed by

(I F. 4) =——
( I +InII )+0 (0 ),2

0 (2.16)

L (3v, Z) =1nI3(K,Z) =L3(a,O)+bL3(z), (2.17)

with Eq. (2.8) evaluated as

as also follows directly from Eq. (2.12a).
In Ref. 6 we argue that we can improve upon the above

e=O treatment, which completely neglects the interaction
of the fiuctuations, by computing Ip(~, Z) for D=3 in-
stead of for D=4, and then raising I3 to the power that
gives the correct critical specific-heat exponent. This pro-
cedure takes account of the interaction to first order in e.
In the present case of vanishing critical exponent, we pur-
sue this approach and represent the frequency-dependent
specific heat as

I4(~,0)= ln
QD 1

2 ' (2.10)
(2.18)

supplemented by an appropriate background term. The
deviation from the thermodynamic specific heat is ex-
pressed by the scaling function

The thermodynamic function (background to be added) is
therefore

M4(z) = —,
' —

—,'(1+ 1/z)ln(1+z), (2.11) m.k,
L, (~,0)=ln

4K
(2.19)

as found in Eq. (12) of Ref. 3. For
~

z
~

&&1, Eq. (2.11)
becomes while the new scaling function is

a4
M4 ———' ln

2 z
I

(lnz +1)+0(z '),
2z

(2.12a) EL 3(z) =ln
1+(1+z)'/' (2.20)

with a4 ——e. For ~z
~

&&1 we have

M, = ——,'z + —,', z' —
—,', z'+0 (z') . (2.12b)

For
~

z
~

&&1 this becomes

&I. = —,'ln —z ' +0 (z ),
Z

(2.2 la)

In contrast to the thermodynamic function of Eq. (2.10),
the frequency-dependent specific heat has the finite A, -

point limit

Ig(O, Z) = —
—,'ln

z
O'D

with a3 ——4. For ~z
~

&&1 we have

3 ——
—,
' z + —,', z —

—,', z +0 (z )

At the A, point, Eq. (2.18) becomes

(2.21b)

2BglD=—'1n +i—.
co 4

From Eq. (2.1), the attenuation is proportional to

(2.12c)
(2.21c)

with the same imaginary part as in the e=O expression of
Eq. (2.12c). The new "attenuation function" is

—ImCp
—1

ImI4

I, (2.13)
[( I + II2

)
1/2

1 ]1/2

2+ [(1+0)'/2+ I ]&/2
(2.22)

with the numerator varying more strongly than the
denominator. Concentrating our attention on the
numerator and normalizing it to its A,-point value gives
the "attenuation function"

whose low- and high-frequency behavior is given by

vrF3 ——II —
—,', Q +0 ( fl )

and

(2.23)
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2
m(1 F—3)=2 0

1/2

+Q (Q —3/2) (2.24)
I.O i

These results also follow directly from Eqs. (2.21a) and
(2.21b).

The dashed and solid curves of Fig. 1 show F4 and F3,
respectively, plotted versus log]OQ. The slightly more
negative coefficient of the second term in Eq. (2.23), com-
pared to the corresponding term in Eq. (2.1S), causes F,
to drop below F4 with increasing Q. The comparison of
Eq. (2.24) with Eq. (2.16) indicates the much slower ap-
proach of F3 to its A,-point limit, as is evident in the solid
curve of Fig. 1. The maximum difference between the
two curves in the high-frequency range is 7%.

The slower A,-point approach of the D=3 function is
also exhibited by the spectral function. This is the imagi-
nary part of the specific heat, analytically continued to the
cut along the negative z axis, z = —s & —1. As discussed
in Sec. VI of Ref. 6, the spectral function expresses the
effective distribution of relaxing modes. The threshold at
the minimum rate y(~)=y(0, ~) [Eq. (2.4)] is described by
the step function

(2.2S)

= ( 1 —I /s)e(s —1) . (2.26)

The corresponding evaluation of Eq. (2.20) at the cut
gives

f3(s)= —tan 'Vs —le(s —1) .
2

(2.27)

At large relative relaxation rates, s ))1, this becomes

(2.28)

For D=4, analytic continuation of Eq. (2.11) to the lower
edge of the cut yields

f4(s) =—ImM4(e ' s)
2

7T

f(sI
0.5—

00

FIG. 2. Distribution of relaxation rates according to the
four-dimensional (dot-dashed curve) and three-dimensional (solid
curve) spectral functions vs scaled relaxation rate s.

The high-frequency approximation of Eq. (2.24) would
predict a 50% drop in F3 below its A,-point value of 1 at
6=32/~ =3.2. To reach the actual halfway point we
have to go down to the somewhat smaller value of
B&&2——2.8, as exhibited by the solid curve of Fig. 1. Nev-
ertheless, in the plot of F3 versus 0 ' in Fig. 3, a
straight line gives an excellent fit in the entire region
A»2 & 0 & ~. This property of F3 is associated with the
absence of any z ' term in Eq. (2.21a). It is gratifying
that the measurements of Roe, Mayer, and Ikushima at
35 MHz clearly exhibit this linear dependence on 0
The excellent agreement exhibited in Fig. 3 between the
theoretical curve [F3 of Eq. (2.22)] and the data of Roe
et al. confirms our expectation of the superiority of the
a=3 version of the theory over our earlier a=4 version.
We therefore employ only the D= 3 version in the
remainder of this paper. Figure 4 shows the same data
(as well as some lower-frequency data to be discussed in
the next section) plotted in the more conventional way
versus log&oQ. The fit of F3(Q)=F3(co/2B&~ ) to the
data that is shown in Figs. 3 and 4 has been obtained by
choosing B&=-1.3X10 cm /sec (the exact value of the
kinetic coefticient used for. each frequency is given in Fig.
7) and by using

2, /3z=vot

where ao ——0.70&10 cm ' and t =(T —Ti)/Ti is the

corresponding to an effective deficiency of modes in this
region, as seen by comparing the solid curve (D=3) with
the dashed curve (D=4) in Fig. 2.
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FIGJ. l. Four-dimensional (dashed curve) and three-
dimensional (solid curve) attenuation functions vs scaled frequen-

cy 0, .

FIG. 3. Three-dimensional attenuation function F vs 0
the inverse square root of the scaled frequency. A =Q, l/2 when
F = &. The data points show the 35-MHz attenuation measure-

ments of Ref. 9. The linear drop away from the A. point (at
A= oo ) is a characteristic feature of the three-dimensional at-
tenuation function.
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1.0

F 05—

nounced at frequencies smaller than 35 MHz. The result
of the processing is obviously largest at the small reduced
frequencies, causing the tail in F to be smaller than the
tail in a/ca~.

III. CROSSOVER FREQUENCY REGION

O.OI O. I IO 100

FIG. 4. Attenuation function vs scaled frequency normalized
to A, l/2, its F =& value. The data points show the attenuation
measurements of Ref. 9 for four different frequencies.

reduced temperature.
In preparing Figs. 3 and 4 it has also been necessary to

take into account the denominator in Eq. (2.13). In order
to extract experimental numbers for F from the n/a&
measurements, the attenuation divided by its A,-point
value, to compare with the theoretical curve for F(II),. it
is necessary to cancel out the denominator in Eq. (2.13)
by multiplying by

~
C~

~

= (ReC~ ) + ( ImC~ ) (2.30)

40
O
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o 20

0 l I
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I
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Iog(, t

FICs. 5. Specific heat of liquid He in J/molK at saturated
vapor pressure vs logarithm of reduced temperature. The data
points and the upper curve are reproduced from Fig. 4 of Ref. 5
and show the critical variation of the specific heat in the thermo-
dynamic limit (co=0). The dashed curve shows the underlying
noncritical background. The lower solid curve exhibits the real
part of the finite-frequency generalization, which has a non-
diverging behavior as the A, point is approached (t~0).

Figure 5 shows both the co=0 thermodynamic specific
heat and ReCz computed for cu/2m=35 MHz. The latter
has been obtained from Eqs. (2.17) and (2.18), after add-
ing the amount of background necessary to make Eq.
(2.19) consistent with the co=0 thermodynamic specific
heat. The point in Fig. 5 at which the 35-MHz curve
merges with the co=0 curve is also the point at which the
imaginary part of the specific heat becomes negligibly
small. Thus it is evident that the variation of the real part
over the entire temperature range is rather mild; the "pro-
cessing" to which we subject the data is, therefore, not a
radical effect, which furthermore becomes even less pro-

In this section we investigate empirically the effect of
lowering the frequency at which the critical ultrasonic at-
tenuation is measured. Our goal is to test a theoretical
expectation that is developed in detail in a paper to fol-
low. We find there, to a good approximation, that, in
spite of the critical variation of D~ which results from go-
ing outside the van Hove region, the scaling shape of the
attenuation function remains largely unchanged. For the
present purposes we can summarize the theoretical predic-
tion as follows: The effect of entering the crossover region
can be almost entirely absorbed by an increase in the
magnitude of D&, which is treated as an effective adjust-
able noncritical background kinetic coefficient, 8&.

In the preceding section, in order to reveal in as unen-
cumbered a fashion as possible the simple basic features of
the theory, we have "processed" the experimental data for
a/aq, by multiplying by I Cz

~

. In this way we can con-
centrate our attention entirely on ImCP without having to
contend with the added complication arising from the
variation of ReCP. From a theoretical point of view, the
imaginary part of Cz is a more interesting function than
its real part. In the van Hove region, at least, ImCz is a
function of only the one scaled variable 0, while ReCp is
necessarily a function of both the temperature and fre-
quency variables, i.e. , ~ and Z. Furthermore, as discussed
and elaborated in detail in Sec. V of Ref. 6, ReCP can be
obtained from ImCP by means of the Kramers-Kronig re-
lation, or, alternatively, the Cauchy-Riemann method.
Thus, from a theoretical standpoint, the determination of
ImCz solves the critical ultrasonic attenuation problem
completely. Viewed in this way, the fact that the experi-
mentalists necessarily measure —ImCP ' ——ImCp/

~

Cp
~

instead of ImCP directly has to be regarded as nothing
more than an inconvenience that we are forced to deal
with in one way or another. Our interest is focused upon
Im Cz, rather than upon —ImCz '.

It would be quite convenient if the experimentalists
could measure the ultrasonic attenuation over a wide
range of frequency for every given temperature. The
Kramers-Kronig relations would then yield ReCz ' from
the measurements of ImC+ ', thereby determining the full
complex function Cz ', and in turn, Cz itself. In the ab-
sence of such a desirable state of affairs, we can only bring
a/a~ and F3(II) together for comparison either by (A)
multiplying the former or (B) dividing the latter by

~
Cp

~

. Method A has been used in Figs. 3 and 4. In
these figures we compared the "processed" 35-MHz data
with the plot of F3(II) versus II ' and log~oII, respec-
tively. The more conventional alternative, method B, is
shown in Fig. 6. The excellent agreement found between
theory and experiment is, of course, independent of which
method is employed for the comparison. The difference
between the curves of Figs. 4 and 6 sets in at the low-
frequency, low-attenuation end, because of the decrease in
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FIG. 6. Comparison of the theory with measurements (Ref. 9)
of the dependence of the attenuation on the scaled frequency.
The kinetic coefficient has been fixed at B~ ——1.28 && 10
cm /sec.

FIG. 8. Attenuation function vs scaled frequency normalized
to Al&2. The circles and triangles show the measurements of
Ref. 11 for 3.17 and 1.75 MHz, respectively.

I
Cp

I

as T is raised above Tq. This difference is already
presaged by the shift in the midpoint of Fig. 6. The 50%
drop in o.'/o, '~ comes at a value of 0 somewhat smaller
than the midpoint value A~~q

——2.8 for F3(Q). Comparing
the tails of the curves at, say, 0=0.09, or one and one-
half decades below A&&2, we see that the value of a/ag ls

approximately 2.5 times that of F3. Thus, the percentage
difference becomes substantial only in a region where both
functions are small.

Because methods A and B are entirely equivalent in
terms of testing the theory against the experimental data,
we will use mainly method A in the rest of this paper. It
has the advantage of permitting the display of runs at
different frequencies on the same graph. This is evident
in Fig. 4 where we have added the data for the runs at
the lower frequencies of 5, 15, and 25 MHz to those at 35
MHz. (The 0.7% admixture of He was determined to
have less than a l%%uo eft'ect on a/aq. ) The resulting agree-
ment with scaling is such that we have made no effort in
the figure to identify separately the data points for the
different runs. The values of D& ——8& required for this
scaling are plotted in Fig. 7 as v ' for the four different
values of v (frequency in MHz).

In our earlier publication we exhibited clear evidence
of scaling in the measurements of Tozaki and Ikushima'

which covered the frequency range 10—163 MHz. The
five different runs at 10, 18, 54, 90, and 163 MHz all col-
lapsed onto a single curve. Furthermore, this curve was
in satisfactory accord with the theoretically predicted,
lowest-order e-expansion curve, i.e., F4 in the 'present no-
tation. There was, however, in Fig. 2 of Ref. 3, some in-
dication that the measurements dropped more rapidly
from the A, point than F4. This feature, as well as the col-
lapse of several different runs onto a single curve, is even
more clearly evident in the data of Roe et al. , as exhibit-
ed in Fig. 4 above. It is further apparent that the high-
frequency defect in F4 is remedied by F3, which takes into
account some of the effects of interaction of the fiuctua-
tions.

Proceeding to yet lower frequencies, the measurements
of Williams and Rudnick" at 3.17 and 1.75 MHz take us
even further out of the van Hove region and into the
crossover region. Figure 8 shows that, here again, F3(Sl)
gives a good fit to the processed data. The values of
D& ——8& required for these fits are exhibited by the solid
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FIG. 7. Kinetic coefficient vs inverse square root of the fre-
quency (in MHz). D~ is the ejective value of B~, the van Hove
parameter. The curve shows the monotonic rise that is expected
theoretically when the frequency drops below the van Hove
range and enters the precritical crossover region.

FIG. 9. Attenuation in neper/cm vs 10 t, where t is the re-
duced temperature, for the two frequencies 1.0 and 0.6 MHz.
Data:, 1 MHz (Ref. 11); ~, 0.6 MHz (Ref. 11); 0, 1 MHz
(Ref. 12); , 0.6 MHz (Ref. 13). The curve is the two-parameter
fit of the theory to the data of Ref. 13, obtained for aq ——0.124
cm ' and B~——2. 1)&10 cm /sec, and shows the characteristic
linear dependence on Q ' ~ t near the A, point.
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SUCHAL 8 POBELL

0.6 MHz

The value of the kinetic coefficient, D& ——8&
=2. 1X10 cm /sec, that has been used for the fit in
Figs. 9 and 10 is exhibited by the triangle in Fig. 7. The
monotonic trend of increasing D& with decreasing v is
qualitatively what is to be expected upon leaving the van
Hove region and entering the precritical and crossover re-
gion. ' ' The curve in Fig. 7 exhibits the frequency
dependence of D& that is indicated by including in the
theory dynamic interaction e6'ects to two-loop order.
(The absolute strength of the kinetic coefficient has been
multiplied by a renormalizing constant so as to bring our
predicted curve into agreement with the points in Fig. 7.)

0
lo

I I I I

IO

I I I I I

IO IV. SUMMARY

FIG. 10. Comparison of theory (dashed curve) with measure-
ments (Ref. 13) (solid curve) of the temperature dependence of
the attenuation at 0.6 MHz. The temperature dependence of a
shown by the dashed curve is identical to that shown by the
solid curve in Fig. 9.

circles in Fig. 7. The error bars attached to these two en-
tries are intended as a semiquantitative indication of the
scatter evident in the data. "

Proceeding to even lower frequencies, we are confront-
ed with some discrepancies between the measurements at
the same frequencies of Williams and Rudnick" on the
one hand, and those of Carey, Buchal, and Pobell, ' and
of Buchal and Pobell, ' on the other hand. These
discrepancies are exhibited in Fig. 9. The squares show
the Williams-Rudnick" values of e in nepers/cm plotted
versus t . The Carey et aI. ' data and the Buchal and
Pobell' data are displayed by the circles. The open and
solid symbols show the measurements at 1.0 and 0.6
MHz, respectively. Neither of the 1.0-MHz runs' can be
fit by our theory. However, for the 0.6-MHz run of
Buchal and Pobell, ' we find the good fit that is exhibited
in Figs. 9 and 10. The solid curve in Fig. 10, which is the
same as that of Fig. 9 of Ref. 13, displays the 0.6-MHz
measurements of Buchal and Pobell. ' The solid circles
that we have placed on our Fig. 9 were obtained by read-
ing ofF the curve in Fig. 9 of Ref. 13. The dashed curve
in our Fig. 10 shows the same two-parameter theoretical
fit as in Fig. 9. As t is, by definition, identical to

up to a numerical factor, the theoretical curve in
Fig. 9 is the same as that shown in Fig. 3, except for the
inclusion of the

~
Cz

~

denominator (method B). A 2%
deviation of the theoretical function from the data occurs
relatively close to the A, point, at the reduced temperature
of t=2&10, or at the van Hove reduced frequency of
0=70.

Guided by some studies of the related problem of the
critical attenuation in a binary liquid, we have presented
an improved treatment of the same phenomenon in liquid
He. We have taken the interaction of the order-

parameter Auctuations into account to first order by
representing the frequency-dependent specific heat by the
logarithm of the single-loop integral, computed in three
dimensions. As demonstrated in Sec. II, this is clearly an
improvement over our earlier D=4 theory, which neglect-
ed the interactions. As evident in Figs. 3 and 4, the re-
sulting agreement with the experimental data is excellent,
both in regard to the scaling property and in regard to the
actual fit of F3, the theoretical three-dimensional (3D)
scaling function, to the data. The linear dependence of F3
on 0, ' that is shown in Fig. 3 is an important charac-
teristic of the 3D theory, and is evidently verified by the
data. (This linear dependence on v near the critical point
is, in fact, a general feature of three-dimensional critical
dynamics. '

)

In Sec. III we have examined data at frequencies low
enough that the order-parameter relaxation rate is no
longer expressed by the van Hove formula B&~ . Never-
theless, motivated by our two-loop dynamic calculations,
to be presented in a separate paper, we have proceeded
here purely phenomenologically, using the single-loop
theory. We have found, as demonstrated in Figs. 4, 8,
and 10, that the shape of the attenuation function is well
fit for frequencies as low as 5, 3.17, 1.75, and even 0.6
MHz. (At and below I MHz there is some disagreement
in the experimental literature. " '

) For each frequency,
it is necessary only to multiply 8& by a temperature-
independent factor. The frequency dependence of this
factor is exhibited in Fig. 7 and is in good accord with the
theoretical expectation.
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