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A high-Q torsional oscillator was used to measure the superfluid density and excess dissipation in
thin films of *He as a function of temperature and film thickness. The effects of rotation on the
Kosterlitz-Thouless transition were studied and the rotation-induced dissipation was measured. The
first direct measurements of vortex diffusivity D as a function of the temperature through the
superfluid transition were obtained. We find that D is a rapidly varying function of temperature in
the vicinity of the transition. It is very small well below the transition, increases to order #/m at the
static transition temperature, and appears to diverge at the point where the superfluid density van-
ishes. The diffusivity also appears to be insensitive to the presence of *He impurities and to the na-

ture of the substrate.

I. INTRODUCTION

In recent years there has been a great deal of interest in
two-dimensional (2D) superconducting and superfluid *He
systems. In these systems, thermally activated defects
(i.e., vortex-antivortex pairs) are the dominant fluctuations
and mediate the transition to the respective superconduct-
ing and superfluid phases. The static theory of these 2D
phase transitions, which fall in the same universality class
as the XY model,! has been a great success. The theory,
first developed by Kosterlitz and Thouless,? associates the
transition from the superfluid to the normal phase with
the unbinding of thermal vortex-antivortex pairs at the
static transition temperature Txy. This unbinding is a
cooperative effect which destroys the algebraic long-range
order of the system at a nonzero superfluid density pre-
dicted by the theory.?

Kosterlitz and Thouless? used renormalization-group
techniques to solve the problem of a dilute gas of logarith-
mically interacting vortex-antivortex pairs. By consider-
ing the effects of smaller pairs on the interaction between
the members of larger pairs, they were able to extract a
scale-dependent dielectric constant and vortex-pair-
excitation probability. The scale dependence of these pa-
rameters is given by the Kosterlitz-Thouless recursion re-
lations. For an unbounded experiment carried out at zero
frequency, the recursion relations are iterated to infinite
scale. The transition temperature is defined as the largest
temperature for which the vortex-excitation probability no
longer vanishes at infinite scale (i.e., infinite pair separa-
tion).

To interpret experiments at finite frequencies, the
Kosterlitz-Thouless static theory must be incorporated
into a more comprehensive theory that accounts for the
dynamic response of the vortex plasma to an oscillating
field. Ambegaokar and Teitel* have shown that the
vortex-diffusion length rp is the characteristic separation
beyond which pairs can no longer equilibrate to the exter-
nal field. This leads to two modifications of the static
theory.® First, because pairs larger than rp, do not partici-
pate in the renormalization, the Kosterlitz-Thouless recur-
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sion relations are not iterated out to infinite scale but to a
finite cutoff. This, in effect, shifts the transition tempera-
ture up from Tt to a new frequency-dependent dynamic
transition temperature T,. Second, the effective dielectric
constant becomes complex to account for dissipative vor-
tex motion.

Since rp is, by definition, proportional to the square
root of diffusivity, it is apparent that D is the primary
transport parameter of this theory and is of fundamental
interest. In this paper, we report the results of an investi-
gation of the effects of rotation on the Kosterlitz-Thouless
transition in thin films of *He and present direct measure-
ments of D as a function of temperature through the tran-
sition. A brief discussion of these results has been pub-
lished.®

II. THEORY AND PREVIOUS EXPERIMENTS

A. 2D superfluidity

It has been known for a long time that thermal fluctua-
tions (i.e., phonons, spin waves, etc.) become important in
2D systems and that these fluctuations can destroy the
long-range order commonly observed in their three-
dimensional (3D) counterparts. As far back as 1930,
Bloch’ showed that there is no finite spontaneous magne-
tization in 2D magnetic lattices at nonzero temperatures.
Peierls® showed in 1935 that there can be no long-range
order in one- or two-dimensional crystals at finite temper-
atures. Finally, in 1967, Hohenberg® provided a rigorous
proof that the superfluid order parameter is destroyed in
two or fewer dimensions, at finite temperatures.

This somewhat overwhelming theoretical evidence for
the absence of superfluidity in two dimensions is, howev-
er, in conflict with many experimental results. Superfluid
flow in thin films of helium had been observed as far back
as 1940 by Long and Meyer.!® The rate of heat transfer
in unsaturated films was measured by Bowers et al.!! in
1951. Their data displayed superfluid character and
showed that the A point was suppressed in thin films.
The first solid evidence of superfluid behavior came from
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third-sound measurements in which temperature waves
were propagated in thin films of helium.'> The third-
sound measurements of Rudnick!’ in the late 1970s
showed clear evidence of a superfluid transition. Finally,
in 1978, Bishop and Reppy'# used an oscillating substrate
method to provide the first quantitative characterization of
the superfluid transition in thin films of helium.

The apparent discrepancy between theory and experi-
ment raises the question as to whether or not one can
define a “‘superfluid” density for a system for which there
is no traditional long-range order. To answer this ques-
tion, one starts by defining a local condensate wave func-
tion which is analogous to the 3D wave function,

W(r)=|(r) | e . 2.1

Now if the spatial variations of the amplitude of the wave
function are on a sufficiently large scale, then well below
T;, only fluctuations in its phase will be important, in
which case the effective Hamiltonian can be written as

#n (T)

=) f (Vé)2d*r

m (2.2)

where n (T) is the number density of helium atoms in the
condensate. The areal superfluid density o is analogous
to the spin-wave stiffness constant in magnetic systems
and can be defined as!

ﬁZ
m*kT

[ d* (Vé(r)-ve(0)) . 2.3)

(o) '=

(It is beyond the scope of this paper to discuss the rela-
tionship between the condensate and the superfluid
fraction—for the purposes of the present discussion we
will blur the distinction.) If a Gaussian form of Eq. (2.2)
is used then the expectation value in Eq. (2.3) is easily
evaluated and we find that

o,=mn(T) . (2.4

Thus, though no long-range order exists in these 2D XY
systems, it is possible to define an effective superfluid den-
sity which may display many of the characteristics of 3D
superfluidity.

The role of dimensionality in superfluid behavior is
more clearly seen by defining the correlation function,

G(r)=(¥(r¥*0)) . (2.5)

In three dimensions, if there is no long-range order then
G (r) decays exponentially

G(r)cexp[—r/&(T)],

where §(T) is a temperature-dependent correlation length.
This is clearly the case for liquid helium above T,. Hell
exhibits long-range order in momentum space which can
be represented by a ground-state condensate wave func-
tion which is phase correlated throughout the fluid

(2.6)

(W(r)) o Vipeid” 2.7

where p is the condensate number density. The phase
correlation breaks the symmetry of the noncorrelated
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wave function and leads to a nonzero asymptotic value for
G(r),

lim G (r)=const=£0 .

r— oo

(2.8)

In two dimensions, the thermal fluctuations previously
discussed can lead! to an algebraic decay in G (r)—very
similar to that observed in 3D systems near a critical
point,

G(r)« 2.9

)

where 7(7) is a nonuniversal temperature-dependent ex-
ponent. This type of system is said to have ‘“‘algebraic
long-range order” and displays superfluid behavior.

B. Kosterlitz-Thouless theory

As outlined above, phase fluctuations in the condensate
wave function are energetically favored over amplitude
fluctuations in 2D systems. This fact leads to algebraic
decay in the order parameter which is believed to be a
general characteristic of 2D superfluidity. Kosterlitz and
Thouless? identified the primary mechanism for such fluc-
tuations [which is not included in the simple-phase Ham-
iltonian of Eq. (2.2)]. They predicted that vortex-
antivortex pair excitations would dominate the fluctua-
tions at sufficiently high temperatures and could in fact
destroy the algebraic long-range order of the system.
They used a simple free-energy argument to demonstrate
this possibility. The energy of a single isolated vortex in a
system of dimension L is easily found to be'

2 0
s

E—

In(L /ry) , (2.10)
where r, is the vortex core radius and ¢? is the unrenor-
malized areal superfluid density. The entropy associated
with such an excitation 1s obtained by noting that there
are N =(L /ry)? places in which the vortex can be placed.
The entropy is therefore

S=k In(N)

=2k In(L /r,) . 2.11)

Since both the entropy and the energy scale as In(L /ry),
it is clear that the free energy of a vortex excitation
F =E — TS changes sign at a well-defined temperature
ol
2m?k
Below T, the energy term dominates F and vortex exci-
tations are suppressed. Above Ty, the entropy term
dominates and thermally activated free vortices will spon-
taneously appear in the system-—destroying the phase
coherence.

The energy required to create an isolated vortex Eq.
(2.10) is much greater than that required to create a
vortex-antivortex pair E.. Thus a thermally activated pair
is much more likely to appear than a single isolated vor-

tex. It is easily shown that the energy of a rectilinear pair
varies logarithmically in pair separation #,

Txr= (2.12)
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2
In(r/ro)+E, .

E,=2mo? (2.13)

This is a long-range interaction which can lead to dramat-
ic cooperative effects in a many-body system.

Kosterlitz and Thouless used renormalization tech-
niques to solve the statistical problem of a 2D gas of loga-
rithmically interacting vortex-antivortex pairs. They ac-
counted for the attenuating effect of smaller pairs on the
interaction between the respective members of larger pairs
by introducing a scale dependent dielectric constant € into
Eq. (2.13). A large test pair polarizes the intervening pair
plasma which in turn screens some of the bare interaction.
The resulting effective interaction can be written as

2
[ ik, .
o r'&(r')

fi

0
E, =270,
m

(2.14)

Note that Eq. (2.14) is logarithmic in r/r; when €=1.
To obtain a self-consistent determination of &(r), one
starts with the general relation between € and the suscepti-
bility X(r),

er)=1+4mx(r) . (2.15)

The susceptibility is related to the polarizability a(r) by
X(r= ["alrdn(r), (2.16)
ro

where n(r) is the number density of pairs. Equations
(2.15) and (2.16) can, in principle, be used to determine
€(r) once a(r) and n (r) are known.

The polarizability per pair of a charged plasma is given
by

a(r)—qi(rcosm | £=0 »

oFE
where g is the charge of a pair member, E is the applied
electric field, and 6 is the angle between the dipole mo-
ment and E. This system is analogous to the vortex-pair
system with the following transcription:
2

(2.17)

2¢°=27m0?

4 (2.18)
qEsza?;iX (V,—V,),

where v, and v, are the normal fluid and superfluid ve-
locities, respectively. Equation (2.17) can easily be evalu-
ated by assuming that the field giving rise to the polariza-
tion (i.e., the field of the large test pair) is relatively con-
stant over the dipole pairs. Under this assumption, the
differentiation with respect to E and the limit £—O0 can
be performed before integrating out the thermal average.
After carrying out the differentiation and the limit, we can
easily evaluate the average over the Boltzmann factor,

expl —E, (r)/kT]=(r /ro)*""*Teexp(Eqr cos0 /kT)

Xexp(—E./kT) (2.19)
in which case
2,2
97T
a(r)= KT (2.20)
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which translates to
wKor?
alr)=——— (2.21)
2
in the 2D helium system, where
2
0 ﬁ
Ko=0? |- /kT : (2.22)
m

The probability P of a pair existing in an area L2 is
equal to the sum of

exp[ —E,( |1, —1; | /rg)/kT] (2.23)

over all possible r; and r;. We can transform the sum
into a double integral by assuming that exp(—E,/
kT) << 1 and simply counting the possible configurations.
There are (L /ry)* possible locations for the first pair
member and 2mrdr /r3 possible locations for the second in
an annulus with radius r and width dr. Therefore,

dp(n=L2 |27 oot E (/KT (2.24)
ro ro
and we identify
dn(r)=dP(r)/L? (2.25)
in which case Eq. (2.16) becomes
X(n= [ a(r)expl _E,,(r)/kT]g’TT%d—’ . (2.26)

Equations (2.15) and (2.26) can now be combined for a
self-consistent determination of the effective interaction.
The result is the famous Kosterlitz-Thouless recursion re-
lations from which a scale dependent dielectric constant
and vortex-pair-excitation probability y? can be extracted

—1 —1 31 20790y 70
- I')dl
K-\(D=Ky'+4n foy()d,

, 2.27)
yHD=y3exp |41 =27 [ K(l’)dl’] ,
0
where
I=In(r/ry) ,
K- Wh=&D/K, , (2.28)

y% =exp(—E_./kT) .
The measured superfluid density o in this theory is

o,=0AT) /e, (2.29)

where o(T) is the temperature-dependent background
areal superfluid density—of order p (T)h, where h is the
film thickness. The vortex-excitation probability y? is re-
lated to the density of pairs per unit area of separation
bn (r) by

yir)

r4

dn(r)=

(2.30)

In principle, the recursion relations of Eqgs. (2.27) can be
used to predict the static Kosterlitz-Thouless transition in
an unbounded system by iterating them to / =« from a
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locus of initial conditions
i =0,T)=y}T) ,
K(1=0,T)=KyT) .

(2.31)

The static transition temperature Tt is defined as the
smallest temperature for which

Jim yA1, Txr)#0 (2.32)
or equivalently by
1lim &, Txr)=1Ky/2 (2.33)

and is the temperature at which pairs of infinite separation
unbind. Above Tt both & and y? become large, indicat-
ing that ¢ is being renormalized to zero and that very
large pairs are becoming significantly probable. Note that
Eq. (2.33) implies that

2km?
US(TKT)=7TKT . (2.34)
This is the central result of the static theory. Equation
(2.34) predicts a universal jump in superfluid density at

the static transition temperature.

C. Linear dynamic theory

Since many experiments are performed at finite fre-
quencies, in which there is an oscillating superfluid flow,
it is important to incorporate the static theory of Sec. II B
into a more comprehensive theory that accounts for the ac
response of the vortex plasma. The motion of vortices is
assumed to be diffusive in these systems so that it is intui-
tively clear that the vortex-diffusion length 7, should play
an important role in the dynamics. This length, in fact,
determines the crossover between smaller pairs which can
equilibrate to the oscillating field and larger pairs which
cannot. The theory outlined below, which was developed
by Ambegaokar, Halperin, Nelson, and Siggia>'®
(AHNS), relates rp to the response of the superfluid in
terms of a complex dynamical dielectric constant €
defined by

Viw)=[1—€e )]V, (0), (2.35)

where w is the frequency of oscillation. This generalized
dielectric constant is analogous to € in the static theory
and has contributions from both bound pairs and free vor-
ticity.

Ambegaokar and Teitel* derived the response function
of a test pair in an oscillating field and extracted the cor-
responding contribution to the dielectric constant. They
considered the equivalent problem of the diffusive motion
of charged rods in an oscillating electric field. The
motion of the rods is governed by the Langevin equation,

dr —2D dU

= (2.36)
dt kT Or

+n(t),

where r is the vector along the length of the rod, D is the
rod diffusivity, U is the potential energy of the rod, and 75
is a Gaussian noise source satisfying
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(ntmP(t')) =4D8 g8t —1') . (2.37)

This last relation is a statement of the dissipation-
fluctuation theorem and is discussed in Sec. I E. The po-
tential U is

r dr'
ro r'E(r’)

Ul(r)=2q* —g8E-r—2u, , (2.38)
where 2u, is the chemical potential for the creation of a
rod and 8E is a small external (oscillating) electric field.
Again, the vortex language is recovered using Eq. (2.18).

The response function is a solution to the Fokker-
Planck equation, which is obtained from Eq. (2.36)

%%8n (r,t)

3%8n (r,1)
2 ’

+2D
ar

(2.39)

where 6n (r,t) is the density of pairs per unit area of sepa-
ration. Ambegaokar and Tietel solved this equation to
first order in 8E. They then used the resulting expression
for &n(r,t) to calculate €,—the bound pair contribution
to €. In general,

adn

=142 dirr——

& (w)=1+42mg f rT2E

which when combined with the solution of Eq. (2.39) be-
comes

(2.40)

de

dr (2.41)

glro),

€ (w)=1+ f:’ dr

where g (r,w) is a complex pair response function approxi-
mated by
14D

— 5 (2.42)
14D —ir‘w

glr,w)=

and dé/dr is determined from the recursion relations of
Sec. I B. The response function varies rapidly compared
to de/dr so that the former may be approximated by

Re[g (r,0)]=6(14D —r’w)
(2.43)
Im[g (r,w)]=4mrd(r —rp)
where © is a step function defined by

1 forx >0,

=10 forx <0,
and rp is the diffusion length

rp=v14D Jo . (2.44)

Inserting Eqgs. (2.43) into (2.41), the resulting expression
for €, in the vortex language is

Re(e,)=2(l,) (2.45)

Im(e,) =K myl,) , (2.46)

where
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1 14D the fact that the potential energy U(r) has a saddle point
l,=—=In . (2.47) at r =(r,,0) where,
2 oré
ro 24 (2.54)
Thus the physical interpretation of Eq. (2.45) is that pairs ° Ee(r,) '

larger than rp do not contribute to the renormalization of
0?0 so that the iteration must be truncated at / =/,. Equa-
tion (2.46) accounts for pairs with separation of order rp.
These pairs are maximally out of phase with the oscillat-
ing field and give rise to dissipation.

Free charge (vorticity) is assumed to diffuse in the mac-
roscopic electric (superfluid) field. This gives rise to an
additional imaginary contribution to the dielectric con-
stant

€r=i4mn;q’D /(kTw) (2.48)

where n; is the areal density of free charges. In the vor-
tex language

€r=i4n;mKoD /o . (2.49)

There are two possible sources of free vorticity: that in-
duced from rotation and that arising from pair dissocia-
tion. Pair dissociation occurs when pairs are thermally
activated over the separation at which they are still
bound. Below Tkr, all pairs are bound (in an infinite sys-
tem), at least for infinitesimal external fields. Above Tk,
a correlation length £, can be defined which represents
the length scale at which pairs begin to unbind. The
thermally activated free vortex density is believed to be re-
lated to £, by'®

ng=F/&% , (2.50)

where F is a parameter of O(1). In terms of Kosterlitz-
Thouless theory, & is defined by the value of / at which

y2(I) iterates back to order y} (see Fig. 7). AHNS have
shown that in the temperature domain,
21
~ryex = |, 2.51
&4 0 €Xp bV ] ( )
where ¢ is the reduced temperature

and b is a nonuniversal parameter. There is no simple
physical interpretation of b-—it presumably reflects the
temperature dependence of the bare superfluid density and
vortex fugacity.

D. Finite amplitude effects

The theory outlined in Sec. IIC assumes that
infinitesimal external fields are used to probe the vortex
plasma. In practice this assumption is easily violated—
requiring an analysis of nonlinear finite amplitude effects.
In the charged plasma formalism, the energy of a pair in
an electric field E is

r dr’
ro r'E(r’)

U(r)=2q2 —qE-r—2u, . (2.53)
The dipole term in Eq. (2.53) leads to two major
modifications of the linear theory. The first is related to

AHNS have used the 2D Coulomb plasma analyses of
McCauley!” and Huberman et al.'® together with the nu-
cleation theory of Langer and Reppy'’ to calculate the
rate R at which pairs nucleate over 7, and dissociate. The
calculation begins by obtaining the Fokker-Planck equa-
tion given by Eq. (2.39). This is then solved by expanding
U (r) in the neighborhood of (r,,0)

4

.

exp(— U /kT)~—p(1.) exp[27K (1,)]
¥

c

7K (1,)(6x)?
><exp *"2—
rC
— 7K (1, )(8y)?
Xexp |————— |, (2.55)
where
L. =In(r./ry) (2.56)

and 8x and 8y are deviations from (r.,0). The number of
pairs separating across the saddle point, per unit area per
unit time, is

R = Zr—lz)yz(lc ) exp[27K (1,)] 2.57)

c

in the vortex formalism.

To determine the steady-state density of free vorticity
n., resulting from this nucleation process, one must also
consider the rate of recombination. The rate of change of
n. is

n.=R —V,o.n?, (2.58)

where o, is the cross section for pair recombination (of
order r.) and V), is the average vortex velocity perpendic-
ular to the flow. The vortex velocity is obtained from Eq.
(2.35)

V,«<2uK (l.)D /r, (2.59)
and the steady-state solution to Eq. (2.58) is
172
R
n.= 27K (L) (2.60)

The second modification of the linear theory comes in
the derivation of the recursion relations outlined in Sec.
IIB. Clearly, a finite flow field will change the pair
distribution—causing pairs to ‘“stretch” and polarize.
Therefore, the dipole term in Eq. (2.53) must be included
in the Boltzmann factors which arose in the calculation of
the plasma polarizability a(r) and separation density
dn(r). Gillis et al.?® derived a set of modified recursion
relations for a vortex pair in a finite (oscillating) superfluid
flow field. The energy of such a pair Eq. (2.53) can readi-
ly be used in the Boltzmann factors if it is assumed that a
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typical pair lifetime is much longer than the oscillation
period of ¥ so that the dipole term can be averaged over
all possible orientations of the pair. The susceptibility is
then

X(r=mKy [7r¥on(r)edr?, (2.61)
ro
where
2 1
(an(r)>0=X§exp —2mK, [’ f’l Io(CoV,r /KT)
ro ro r'é(r’)
(2.62)

and I, is a zeroth-order modified Bessel function. The
modified recursion relations resulting from Egs. (2.61) and
(2.62) are

K- )=Kg'+4r fo[yz(l’)dl’ (2.63)

yAN=y3exp 4l —27 fOIK(l')dl’ ]IQ(Z’FKOe[VS/Vo) :

(2.64)
where

i

mry ’

Vo= (2.65)
Note that the finite-amplitude recursion relations differ
from the linear relations only in the I, factor in Eq. (2.64)
and that setting V, equal to zero recovers Kosterlitz-
Thouless relations.

E. Vortex diffusivity
The diffusivity of a vortex line is defined as

D=4 [ VL0V, (0)dr (2.66)

where V (¢) is its velocity at time ¢. This equation mea-
sures the area swept out per unit time by a randomly
walking vortex.

In a 3D system, D is approximately equal to the “bulk”
diffusivity determined as follows: Vortices are acted upon
by the collective excitations of the fluid (i.e., rotons, rip-
plons, phonons) and thus provide a coupling mechanism
between the superfluid and normal fluid components.
Hall and Vinen?! studied the interaction of a vortex line
with the normal fluid and identified a drag force per unit
line length of the form,

f,=B(V, —V,)+B2xX(V, -V,), (2.67)

where Z is the unit vector along the core of the line, and B
and B’ are phenomenological drag coefficients. There is
also an interaction between a vortex line and the
superfluid (Magnus force),

szpSF(VL—Vs) ) (268)

where I'=27#%/m and p, is the bulk superfluid density.
Finally, if the substrate on which the line terminates is
“rough” then vortex lines will hydrodynamically “pin” to
microscopic protuberances. This produces a static
friction-type force of the form??
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—(fp+fy) for |fp+Fy | <f,,
T £,V for [fp4fy ]SS, ,

where V, is the substrate velocity, VU, is a unit vector in
the direction of (V; —V,), and f, is the static pinning
force per unit line length, of order

£, (2.69)

FZ
~ 4L

where L is the line length and b is the interline spacing.
Assuming that a vortex line has negligible inertial mass,
the sum of the forces acting on it must balance,?

5 In(b/ry), (2.70)

fo+fy+fp=0 2.71)

and the line moves with a velocity which satisfies Eq.
(2.71). If f, is neglected (the substrate is smooth) then the
solution to Eq. (2.71) is

27D, fip 25 (V
L= T ZX(V,—=V)+C(V, =V )+V,, (2.72)
where
D, :kT—————pﬁ (2.73)
(I'p;,—B')*+B
is the “bulk” diffusivity and
(o, T —B')[p,
c=1-—F P 2.74)

(Tps—B')?+B?

This expression relates D, to vortex interactions with
ripplons, rotons, and phonons through the phenomenolog-
ical drag parameters B and B’. To be self-consistent,
however, the fluctuations in the local superfluid and
normal-fluid velocities which actually give rise to diffusive
motion, must be included in Eq. (2.72). This is done by
adding a small fluctuating velocity term to the right-hand
side of the equation, as in the case of Eq. (2.36), whose
autocorrelation function is proportional to D, Eq. (2.37).
This noise term not only has contributions from rotons,
phonons, and ripplons but may also have contributions
from surrounding vorticity. Clearly, in two dimensions,
where vortex-pair fluctuations become important, a test
vortex may experience substantial fluctuations in the local
superfluid velocity field as a result of the motion of sur-
rounding pairs.

The importance of understanding the origin and tem-
perature dependence of diffusivity in 2D helium systems is
apparent when one realizes that almost all finite frequency
experiments performed on the Kosterlitz-Thouless transi-
tion have been interpreted via the AHNS theory outlined
in Sec. IIC. Though D is the primary transport parame-
ter of this theory, its value has for the most part been as-
sumed to be of order #i/m in the literature. This value
has been argued purely on dimensional grounds by
AHNS and misleadingly implies that D is temperature in-
dependent.

Diffusivity appears in two ways in the dynamic theory:
it comes in logarithmically in the cutoff /, to the bound
pair contribution to € and it is a prefactor in the free vor-
tex contribution to €. Previous efforts to fit the former to
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experimental data have not been very successful because
of 1,’s logarithmic dependence on D. The first such effort
was that of Bishop and Reppy?* who used an oscillating
substrate to measure the dissipation and superfluid densi-
ty of thin films of helium as a function of temperature
through the transition. Their experiment essentially mea-
sured the real and imaginary parts of €, see Sec. III B, to
which they compared the predictions of the AHNS
theory. They fit their data to an approximate solution of
the recursion relations which is valid for small reduced
temperatures

Re[e, ] 1—0.5X (1)

(2.75)
Im[e, ] Y%(1I,),
where
X(1,)=0.5V't coth(0.56V't1,) ,
(2.76)

4rY(l,)=0.5bVt csch(0.56V't1,) for ¢t <O,

and b is the nonuniversal parameter of Sec. II C which ab-
sorbs information about Ko(T) and y3(T). [The hyperbol-
ic functions in Eq. (2.76) become sinusoidal for ¢t >0.] A
typical measurement of the reduced period, which is
roughly proportional to the superfluid density, and the ex-
cess dissipation of Bishop and Reppy’s oscillator is shown
in Fig. 1. The solid lines are fits to the data using Egs.
(2.75) and (2.76) for €, and Eq. (2.50) for the thermal free
vortex contribution. The fit uses six parameters:
o (Txt), b, 1,, F, Txt, and €' (€' is to account for the
anomalous dissipation tail on the cold side of the peak).
The fit shown in Fig. 1 is for /, =12 which corresponds to
D =20%/m. This is roughly an order of magnitude larger
than conjectured by AHNS.

Diffusivity has also been extracted from thermal con-
ductivity data in a manner similar to Bishop and Reppy’s
approach. Agnolet et al.>> have measured the thermal
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FIG. 1. Data from Ref. 18. The reduced period and excess
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are fits using the dynamic theory of AHNS. The dashed line is
the static theory prediction.
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conductance of helium films in conjunction with torsional
oscillator measurements of the superfluid density. The
film conductance as given by the AHNS theory is

mXS kT

Kgm= 27#Dn, 2.77)

where S, is the entropy per unit mass of the vapor above
the film, L is the latent heat of evaporation per unit mass,
X is a cell geometrical factor, and n ¢ is the density of
thermally activated free vortices. Inserting the expression
for n;, Eq. (2.51), into Eq. (2.75)

mXLS kT

41
K =
film 27HD

bVt

2

ro €Xp (2.78)

Agnolet et al. used the torsional oscillator data to deter-
mine Tgr and then plotted In(Kg,, ) versus V't from their
conductance data, see Fig. 2. From the slope and inter-
cept of the plots they were able to extract b and D /r.
They reported D /r3=6Xx10"" sec™! for Tyr=1.28 K
which corresponds to D =0.8%/m.

Finotello and Gasparini*® have also extracted b and
D /r} from conductance measurements in thin films of
helium. They used essentially the same method as Agno-
let et al. (without the oscillator) and reported
D/ri=5x10"12 sec™! for Ty in the range 1.4-1.9 K.
This corresponds to D =0.1%/m.

Implicitly implied in the analyses of the experiments
discussed above, is that D is independent of temperature
near the transition. There is no reason to believe that this
is so, and Kim and Glaberson®’ have, in fact, provided
firm experimental evidence for a strongly temperature-
dependent diffusivity in the region near the transition.
They measured the effect of a known density of rotation-
induced free vorticity ng on a high-Q third-sound reso-
nant cavity. They observed a damping of the third-sound
resonance which they associated with the diffusive motion
of the induced vorticity. Using the AHNS third-sound
analyses, it is easy to show that D is proportional to the
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FIG. 2. Data from Ref. 19. The reduced period and dissipa-
tion of the torsional oscillator are shown along with the total cell
conductance (open circles). The 7, indicated is Tkt in the
present notation.
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excess full width resonance induced by rotation, Aw,

p—— Ko 2.79)
47 #Hi/m) ngo,
where n is given by the expression
ng=mQ/mvh, (2.80)

and Q is the rotation angular velocity. Kim and Glaber-
son characterized their data by

# 2

kT
O.S

D=0.17

(2.81)

and reported D =0.4%/m at T =Tygr. Equation (2.81) is
a rapidly increasing function of T near Tkt in that o is
renormalized to zero in that region. This observed rapid
variation in D near Tyt may explain the wide discrepancy
in diffusivities reported in other experiments which do not
directly measure it.

III. EXPERIMENTAL METHOD

A. Oscillating substrate method

We have utilized the oscillating substrate method of
Bishop and Reppy?* in which we monitor the period and
amplitude of a high-Q torsional oscillator, containing a
small amount of *He, as the temperature is swept through
the Kosterlitz-Thouless transition. This method is a vari-
ation of Andronikashvili’s®® technique for measuring the
superfluid density in bulk *He. The original Androni-
kashvili experiment made use of a stack of closely spaced
disks which were attached to a torsion fiber so as to form
a torsional oscillator. The disks were placed in a helium
bath and the resonant frequency was monitored as a func-
tion of temperature. The disk spacing was chosen to be
much smaller than the viscous penetration depth of the
normal fluid, thus clamping the normal component to the
oscillator. Since the superfluid component did not couple
to the oscillator, the effective moment of inertia of the
latter was a direct measure of p;.

The present method of using a high-Q torsional oscilla-
tor with a resonant frequency of 500 Hz has two advan-
tages over the relatively low-Q -low-frequency method of
Andronikashvili. First, because there is little damping in
the torsion member, the amplitude of the oscillator is very
sensitive to changes in the internal dissipation of the
superfluid. Second, with this method one is able to
achieve very stable resonant frequencies—in our case, we
were able to measure period changes on the order of one
part in 10°. This corresponds to a sensitivity to less than
one hundreth of one layer of helium on the substrate.

The experimental apparatus is shown in Fig. 3. The os-
cillator and isolation masses were contained in a vacuum
can surrounded by a helium bath. The oscillator itself
consisted of four main parts: the experimental cell into
which helium films were deposited, a high-Q Be-Cu tor-
sion rod, a set of capacitive pickups which detected the os-
cillatory motion of the cell, and a magnetic drive. The
cell was made of magnesium and was approximately 2.5-
cm high and 2.5 cm in diameter. It contained a stack of
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FIG. 3. Diagram of the oscillator and isolation system. For
clarity, only one detector is shown.

approximately 9100 0.1-mil Mylar disks which formed the
substrate. The disks were simply ‘“‘pressed” into the cy-
lindrical cell which left about a 1200-A spacing between
them and a 1-cm® dead space in the stack assembly. To
ensure that the helium would make its way through the
entire stack, a small pin hole was punched in the center of
each disk before being placed in the cell. The effective
substrate area of this arrangement was about 8.0 10*
cm?. Helium was introduced into the cell through a 1/8-
in. hole that ran up through the Be-Cu rod and the two
isolation masses to a capillary at the top of the vacuum
can.

The Be-Cu torsion rod was machined before annealing
it at 650 F for 2 h. This annealing process hardened the
rod so as to minimize hysteretic losses in the oscillator.
The rod was machined with flanges on either end and was
connected to the cell and the lower isolation mass with
machine screws and indium o rings.

Two 2-cm-high and 1-cm-wide fins were machined out
of the top of the cell as part of the capacitive detector sys-
tem. The fins were located opposite to one another with
their edges lying on the same diameter. The other half of
the two pick-up capacitors were attached to an epoxy jig
on the bottom side of the lower isolation mass. The pick-
up capacitors were connected in parallel and were careful-
ly adjusted so as to eliminate sensitivity to transverse
“bending” modes of oscillation. The average plate separa-
tion was dy=2.5X 1072 cm and the effective capacitive
area was A4, ~2.0 cm?.

The oscillator was driven by a superconducting coil, at-
tached to the lower isolation mass, which interacted with
a small samarium-cobalt ferromagnet epoxied to the top
of the cell. The drive coil was carefully shielded to
prevent crosstalk with the detectors. Typical drive
currents were tenths of a milliamp.

The cell was set into oscillation by a positive-feedback
arrangement that consisted of the detectors, the magnetic
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drive, and a constant current feedback circuit. The
dC, /dt signal from the detectors was fed to a current to
voltage converter with gain of 10° V/A. The resulting
amplified signal was then fed to the feedback circuit
shown in Fig. 4 which in turn supplied the superconduct-
ing drive coil. The drive circuit consisted of a phase
shifter, a zero-crossing detector, and a constant-current
source. The phase shifter was adjusted to positively feed
back the signal to the drive coil. This caused the system
to spontaneously oscillate at its resonant frequency (deter-
mined by the cell and the torsion member) much in the
same way a public address system will “screech” if the
microphone is held too close to the speaker. The zero-
crossing detector and constant-current-output stage were
designed to allow the drive to be independent of the am-
plitude of oscillation.

The two upper isolation masses along with their
stainless-steel torsion members formed a second-order
mechanical filter. This system isolated the oscillator from
the cryostat which served two functions. First, mechani-
cal vibrations from the cryostat, which were substantial
during rotation, were greatly reduced thereby improving
our signal to noise ratio. Second, the isolation system
helped to reduce energy losses arising from vibrational
coupling to the cryostat. At low temperatures, where hys-
teretic losses in the Be-Cu rod are small, this coupling be-
comes important and can limit the Q of the oscillator.

B. Response of oscillator and measurement of D

The oscillator system described in Sec. III A was used
to determine the effective mass (i.e., the superfluid density)
and dissipation of thin films of *He as a function of tem-
perature. To simplify the analysis of its response we can
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FIG. 4. Schematic of the detector and positive feedback cir-
cuit. The dashed lines indicate components attached to the oscil-
lator.

work in “linear” units by dividing the moment of inertia
and torsion constant by 1R 21, where R, is the cell ra-
dius. At resonance, the amplitude of oscillation is

A=—, (3.1)

where fj is the driving force determined by the setting of
the drive circuit output, k, is the effective spring constant,
and Q is the quality factor of the oscillator. For constant
fo and constant external damping,

Ad-'<AQ !, (3.2)

where AQ ~! represents changes in the superfluid dissipa-
tion. The films we will be considering are quite thin (a
few layers of atoms) compared with the normal-fluid
viscous penetration depth and the normal component is
always clamped to the substrate.

The period of oscillation is related to its total effective
mass, M (including the film) by
172

P= — .
27 ko (3.3)

Because the superfluid does not couple to the substrate,
we can write M as

M=M,—M, , (3.4)

where M is the mass of the cell, the substrate, and the
normal fluid and M, is the superfluid mass. M, is related
to o, by

M,=o0 4, , (3.5)

where A, is the substrate area. Assuming M, >>M,, the
period of the oscillator is

P=py|1—L % 3.6
=%o [1=73 M, (3.6)
Dropping the Py and M, notation,
20P 044
P = M (3.7)

where AP is relative to P. The area to mass ratio in Eq.
(3.7) determines the sensitivity of the system. This quan-
tity was determined by first attaching known masses to
the oscillator and measuring the resulting changes in the
period to determine its effective mass, M =56 g, and
spring constant, ko=5X 10 erg/cm. The area of the sub-
strate was taken to be the geometrical area of the Mylar
disks, A;=8.0x10* cm? and 4,/M =1430 cm?/g.

Equations (3.2) and (3.7) relate changes in the ampli-
tude and period of the oscillator to changes in the dissipa-
tion and density of the superfluid film. To make use of
the dynamic theory of Sec. IIB one must express the
response of the oscillator in terms of the complex dielec-
tric constant €, defined by Eq. (2.35). The momentum
density of the film is simply

g=0 V(1) +(o—ad)V, (1), (3.8)
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where o is the areal mass density of helium and
V,(t)=V,e ™",
V,(1)=V, e ",

(3.9

Using Eq. (2.35), we can write the reaction force on the
substrate as
d
F()="28 4
() a

=id,w[oV,(t)—o% 'V, (1)] . (3.10)

The average energy dissipated in one cycle is

AE = —P{(Re[F(1)-V,(O)]) (3.11)
and the corresponding change in Q ~! is the ratio of AE

to the energy stored, E = 1MV},

0
AQ—IZ_Af.z_ﬂ

_ 1
wmE M e

(3.12)

The reaction force of Eq. (3.10) also produces a period
shift

P M

Ao
24P =——TRe(e ! .

(3.13)

In practice we measure the reduced period 2AP /P and
excess dissipation AQ ~! of the oscillator as a function of
temperature. By inverting Egs. (3.12) and (3.13) we can
then extract € as a function of temperature

2AP
Aso? P
Re(e)= : — (3.14)
M (2AP/PY+(AQ-D)
Ao? -1
Im(e)= 27 AQ (3.15)

M  (2AP/PP+(AQ ')

The vortex diffusivity D is determined by measuring the
contribution of a known free vortex density ng to Im(e).
This is done by first measuring Im(e) as a function of
temperature with the cell at rest and then repeating the
measurement with the cell rotating at a frequency Q. As
discussed in Sec. Il A, rotation induces a free vortex den-
sity which is proportional to the rate of rotation Eq.
(2.80). According to Eq. (2.49) the difference between
these rotating and nonrotating measurements of Im(e) is
proportional to D

i

D :[In’l(E)Q—Im(E)o]mI*(—‘Q .
0

(3.16)

C. Experimental procedure

Shown in Fig. 5 is a schematic diagram of our experi-
mental system. It consists of four main parts: (1) oscilla-
tor and feedback circuit, (2) outer bath thermometry and
regulation system, (3) cell thermometry, and (4) computer
data aquisition system. The entire cryostat along with
low-level amplifiers were rotated on top of a servomotor
driven turntable capable of rotation speeds of up to 12
rad/sec. It was necessary to amplify small signals before
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FIG. 5. Block diagram of the electronic instrumentation.

sending them off the table in order that they be well above
the typical 1 mV slip ring noise.

The experimental procedure began by first regulating
the outer bath at T'=2.15 K and then introducing ap-
proximately 100 um of helium gas into the vacuum can.
This was done to facilitate the thermal contact with the
outer bath and had virtually no effect on the Q of the os-
cillator. Helium was then transferred into the cell as the
period of the oscillator was monitored. The thickness of
the film & was obtained from the period change using the
equation

2AP  phA;

P IY; (3.17)

After transferring helium to the cell the system was al-
lowed to anneal at 1.25 K for approximately 20 min.
This was done to ensure that the helium had completely
condensed onto the substrate and had saturated the stack.
The temperature was then swept up as the period was
monitored in order to roughly locate the transition. After
finding it, a temperature scale of order 100 mK was cali-
brated to span the transition and the outer bath was regu-
lated a few millidegrees above T,. The oscillator was then
allowed to ring-down and an exponential was fit to decay
of its amplitude (see Fig. 9). The characteristic decay
time 7 was a direct measure of the background dissipa-
tion,

£
T

Q5'= (3.18)
and was used to calibrate changes in the amplitude of the
oscillator to changes in the internal damping. Typical
values of Q' were 5.5x107°t0 6.5x10° depending on
the temperature at which the data was taken and the
amount of gas in the 1-cm? dead space of the cell. After
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calibrating the thermometry and the Q ! of the oscillator,
its period and amplitude were measured as the outer bath
temperature was slowly swept across the appropriate
range. A typical temperature scan took 4 h to complete
and each data point was averaged over 96 sec. The mea-
surements of the period and Q were relative to their
respective values ~10 mK above T,.. This corresponded
to measuring 2AP/P and AQ ~!. These measurements
were first performed with the cell (i.e., the table) at rest
and were then repeated with the cell rotating.

IV. NONROTATING DATA

A. Kosterlitz-Thouless transition

Shown in Fig. 6 are the reduced period and excess dis-
sipation of the oscillator for a typical nonrotation transi-
tion. These are essentially the results of Bishop and Rep-
py.'* The reduced period is roughly proportional to the
superfluid density and qualitatively displays Kosterlitz-
Thouless behavior. Note the rapid fall in superfluid den-
sity at the dynamic transition temperature 7,.. Though
the superfluid “jump” is rounded from finite frequency
effects, its magnitude agrees well with the prediction of
Eq. (2.34). The static transition temperature Tk is also
displayed on the plot and represents the temperature at
which the transition would have occurred at zero frequen-
cy. The nonzero superfluid density above Tkt is a conse-
quence of the fact that large pairs cannot participate in the
renormalization of 0%, The large dissipation peak at T, is
due in part to pairs with separation of order rp and in
part to free vorticity from pair dissociation. As shown in
Fig. 6, we did not observe the anomalous dissipation tail
reported by Bishop and Reppy (see Fig. 1). This may be
associated with the difference between our cell geometries.
They used a coiled Mylar substrate in which the substrate
normal was perpendicular to the axis of oscillation,
whereas, our substrate normal was oriented along the axis

FIG. 6. The reduced pgriod (solid lines) and excess dissipa-
tion (dashed line) for a 14-A film. The arrows indicate the loca-
tion of the static Txr and dynamic 7, transition temperatures.
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of oscillation (and rotation). Bishop?® has indicated that
the excess dissipation tail was observed to be cell depen-
dent and probably was not an inherently interesting prop-
erty of the system.

B. Fits to the data

We have numerically integrated the recursion relations
of Egs. (2.27) from a locus of initial conditions

2 0
% o,(T)
= — | — = 4.1
Ko=m m kT @.1)
yo=ytexp(—CKq) , 4.2)

where y? and C were varied to fit our data. The back-
ground superfluid density 0(T) was determined by first
measuring 2AP /P during the transfer of helium to the
cell to determine the total thickness of the film hy. The
effective or dynamic film thickness is Ay minus the thick-
ness of the “dead layer” trapped by the van der Waals at-
traction to the substrate Ap;. In principle the dead layer
can be determined by first measuring P at T =0 and then
repeating the measurement with a known amount of heli-
um in the cell. This assumes, of course, that Ap; is a
weak function of temperature. The lowest temperature
accessible to our system was 1.2 K so that we were only
able to make a reasonable estimate of hp . We took
hpL,=10.2 A for all of our data and the background
superfluid density as

oA T)=(hy—hpLlps(T) , 4.3)

where p,(T) carries its temperature dependence.’® The
form of the vortex pair excitation probability, Eq. (4.2),
was chosen to be analogous to the form taken by Fiory
et al.®! for a Ginsburg-Landau superconductor, where the
parameter C is a measure of the vortex core energy.

A schematic of the solutions to Egs. (2.27) is shown in
Fig. 7. The initial conditions are labeled by / =0 and the
diffusive cutoff by the dashed !/ =/, curve. Note that
above Txt, which corresponds to K ~!/m=0.5, y begins

TT 1T T 11T 1T 11T 1 rrrrrrr

0.03

002

[oXe]}

T 1T 1T 11T r1r 1 1rrrr 11 1T

FIG. 7. A schematic of the solutions to the Kosterlitz-
Thouless recursion relations. The / =0 line represents the initial
conditions and the / =/, line represents the diffusive cutoff. The
I, line is determined by y(/, )=y(I=0) and defines
§y=roexpl,.
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to get large. As discussed in Sec. II C the iterations were
truncated in this region at the values of / for which
y2(I)=~y3. This defined the two dimensional correlation
length which is related to the density of thermally activat-
ed free vorticity by Eq. (2.50).

The recursion relations straightforwardly give the real
and imaginary bound pair contributions to € for T < Tkt.
Just above T'xt, however, free vortex contributions begin
to dominate as more and more pairs dissociate. In order
to obtain adequate fits to the data, the density of these
broken pairs must be estimated. As outlined in Sec. II C,
y2(1,) measures the number of pairs with separation rp.
It is reasonable to assume that y2(/,) is also a rough mea-
sure of the number of pairs with separation substantially
larger than rp—which cannot equilibrate to the field.
Though these large pairs are bound, they are dynamically
similar to free vorticity. Therefore, we have taken the
thermal free vortex density, at all temperatures, to be

2
(1
ny— 2 dm) @.4)
r3 exp(2l,,)
where
1, for y1,)<yd,
1, = 4.5)

1, for y21,)>pd .

Once K ~YI) and y*(l) were determined, Egs. (2.45),
(2.46), and (2.49) were used to evaluate Re(e) and Im(e).
The theoretical response of the oscillator was then ob-
tained using Eqs (3.12) and (3.13). The result of a fit to
the transition in Fig. 6 is shown in Fig. 8. The relevant
parameters used in the fit are the followmg h=14.0 A,
D =2%/m, C =0.46, ry=1.5 A and y?>=0.40. Note that
a constant diffusivity was used despite the fact that the
present paper reports temperature-dependent diffusivities
in Sec. V. This was done for the sake of simplicity since
the (nonrotating) fits are relatively insensitive to D. The
long-dashed curves in Fig. 8 represent the theory and
agree quite well with the data. The short dashed curve

represents the predicted reduced period using a
T T T L T
-
i ! !
156 157 158 159 160 L6l
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FIG. 8. The reduced period and excess dissipation of a 14-A
film (solid lines). The long dashed lines are fits using the AHNS
theory with p2=0.40 and C =0.46. The short dashed line is a
fit using a temperature-independent background superfluid densi-
ty.
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temperature-independent background superfluid density

O( T =1.585). Clearly, the temperature dependence of

9 is not negligible—even at this relatively low tempera-
ture

It was hoped that the microscopic parameters y? and C
would be temperature independent so that all of our data
could be fit by simply making small variations in the mea-
sured film thickness. This was not the case, however, as
indicated by the parameters obtained in the fit to the tran-
sition shown in F1g 9: h=44.2 A, D =2#%/m, C =0. 08,
ro=1.5 A and p2=0.07. This film is roughly three
times thicker than the one in Fig. 8 and required substan-
tially lower values of y2 and C. A possible explanation
for the discrepancy in the parameters is that we may have
been naive in assuming that 0?=#hp,(T) for relatively thin
films. The fluctuation spectrum of these films may be
significantly different from that of the bulk superfluid. It
is also possible, of course, that the microscopic parameters
are indeed temperature dependent. Including the effect of
reasonable temperature-dependent healing lengths'® on
hpy does not qualitatively affect these conclusions.

As a final note, the short-dashed line in Fig. 9 demon-
strates the role of the temperature dependence of ¢%(T) in
sharpening the transition in thicker films. Close to T},
o2(T) becomes a strongly decreasing function of tempera-
ture and the renormalization occurs over a relatively
short-temperature span. The approximate ‘“near-fixed-
point” solutions listed in Sec. II E account for this effect
with the temperature dependent parameter b at the ex-
pense of losing physical insight into its origin.

C. Finite amplitude effects

The transition displayed in Figs. 8 and 9 were well
within the linear regime. This was verified by doubling
the amplitude of oscillation and rescanning the transi-

tions. This resulted in a negligible change in 2AP /p and
AQ~!. To test the theory of Sec. IID, the superfluid
I T T T T
g —
& .
o
) ]
=1
L

FIG. 9. The reduced period and excess dissipation of a 44- A
film (solid lmes) The long dashed lines are fits using the AHNS
theory with y2=0.07 and C =0.08. The short dashed line is a
fit using a temperature-independent background superfluid densi-

ty.
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density and dissipation of a film was measured as a func-
tion of oscillator drive. Unfortunately, the measurements
in this part of the experiment were complicated by the
nonlinear response of the oscillator itself at large ampli-
tudes. The raw data had to be “linearized” by first
measuring the amplitude and period as a function of drive
current iy (the torque of the drive was assumed to be pro-
portional to i;) and then fitting the deviations from linear
behavior to polynomials. The film’s contribution to the
reduced period was easily extracted by monitoring the
amplitude of the oscillator and factoring out the nonlinear
part via the polynomial fit. The excess dissipation of the
film was more difficult to extract. It was done by assum-
ing that at resonance, fractional changes in internal damp-
ing were equivalent to fractional changes in the drive
current—the effect of which we had previously calibrated.
An iterative procedure was used to calculate the damping
necessary to bring the oscillator amplitude down to the
observed levels at a given drive current.

Shown in Figs. 10 and 11 are the linearized reduced
period and excess dissipation for the film of Fig. 8. The
period was relatively insensitive to the drive current ex-
cept at the highest values at which there was some round-
ing. The dominant effect was a systematic widening of
the cold side of the dissipation peak. These effects are at-
tributed to pair stretching and pair breaking as a result of
large superfluid flows.

The nonlinear theory was tested by applying the
modified recursion relations, Egs. (2.63) and (2.64), to our
data. The values of y? and C obtained from the fit in Fig.
8 were assumed to be amplitude independent and were
used in the numerical integration of the equations. The
effects of pair breaking were taken into account by includ-
ing the steady-state pair dissociation density of Eq. (2.60)
into the calculation of n r and by truncating of the itera-
tion at the smallest of the two relevant length scales; /,,
and /. =In(r,/ry), where,

2mh

Al o

The only adjustable parameter in the fits was the aver-
age superfluid velocity ¥ used in Egs. (2.63) and (2.57).
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FIG. 10. The reduced period of a 14-A film for various values
of the oscillator drive current i .
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FIG. 11. The excess dissipation of a 14-A film for various
values of the oscillator drive current i .

We did not measure the nominal capacitance of the detec-
tors C, so that we were unable to precisely calibrate the
substrate velocity ¥V, in terms of the detector output volt-
age V,,. We were, however, able to obtain a reasonable fit
to our data by assuming V, =BV¥,,, where 8 is an adjust-
able calibration parameter and using Eq. (2.35) to deter-
mine V. The theoretical predictions are shown in Figs.
12 and 13 for B=~0.1 Vsec/cm. (This value of B is con-
sistent with the typical 1-V output of the current
amplifier.) The theory seemed to work best at modest
substrate velocities—the predicted widening of the dissi-
pation peak was somewhat too large at the highest veloci-
ties and the theory underestimates the growth in the peak
height with increasing V,. This leads us to believe that
the modified recursion relations may be inadequate for
very large superfluid flows. This may be related to Maps
and Hallock’s observation of an apparent saturation in the
number density of velocity-induced free vortices as deter-
mined from thermal conductance experiments.3?

T T T T
_Vb(IO'zcm/s)
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—_ 17.6 -
ke 21.7
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= 389 |
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1 1
1.57 1.58 1.59 .60 1.61

T (K)

FIG. 12. The prediction of the nonlinear theory for the re-
duced period of a 14-A film for various values of the substrate
velocity V,. These curves are to be compared with the data in
Fig. 10.
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FIG. 13. The prediction of the nonlinear theory for the excess
dissipation of a 14-A film for various values of the substrate ve-
locity V. These curves are to be compared with the data in Fig.
11.

V. ROTATING DATA AND DIFFUSIVITY
A. Rotating transitions

Shown as solid lines in Figs. 14-16 are the reduced
period and excess dissipation for three typical nonrotating
transitions. The figures are presented in order of increas-
ing film thickness with the first being one of the thinnest
films investigated and the last the thickest. The dashed
curves represent the same transitions at a rotation speed
of Q=8 rad/sec (ng=1.6x10* cm~2). Note that in all
three films, rotation produced no discernable change in
the reduced period. This is expected since ng does not
contribute to Re(e). We also did not observe any sys-
tematic shift in the transition temperature with rotation.
Rotation did cause some small random shifts in tempera-
ture which we attributed to the thermometry.

The obvious effect was a rotation induced damping on
the cold side of the dissipation peak that grew dramatical-
ly as T approached the dynamic transition temperature.
This dissipation was observed to extend over 100 mK in

T T T T T
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()
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>
Z 9 1
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>
©
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o
a
Ob=cceo--=-- =7 77"
1.25 1.27 .29 1.31 .33 .35
T (K)

FIG. 14. Solid lines—reduced period and excess dissipation
with the cell at rest, for a 6.4-A film. Dashed lines—reduced
period and excess dissipation while rotating at ) =8 rad/sec.
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FIG. 15. Solid lines—reduced period and excess dissipation
with the cell at rest, for a 11.4-A film. Dashed lines—reduced
period and excess dissipation while rotating at 0 =8 rad/sec.

the thinner films and less than 30 mK in the thickest.
The magnitude of the effect was also observed to be thick-
ness dependent with the largest excess dissipations occur-
ring in the thinnest films. We believe that this excess
damping, which was linear in Q for T < Tr, is a direct
measure of vortex diffusivity.

B. Measurements of diffusivity

The respective diffusivity measurements for the transi-
tions shown in Figs. 14-16 are displayed in Figs. 17-19
in units of #/m. Note that in all three films, D seems to
be approaching zero well below Tk, is of order #/m near
transition (as conjectured by AHNS) and apparently
diverges at 7,. The systematic increase in the sharpness
of this behavior with increasing film thickness may be re-
lated to the sharpening of the transitions themselves. This
trend is clearly demonstrated in Fig. 20 which displays D
versus reduced temperature for various film thicknesses.

Note that nothing particularly interesting happens at
Tkt in the diffusivity plots. One might expect that D
would diverge at the static transition temperature since
that is the temperature at which very large pairs begin to
unbind —possibly causing substantial low-frequency fluc-
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1.86 .87 1.88 .89 .90 191
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FIG. 16. Solid lines—reduced period and excess dissipation
with the cell at rest, for a 30.5-A film. Dashed lines—reduced
period and excess dissipation while rotating at {1 =8 rad/sec.
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FIG. 17. Diffusivity measurement for the data shown in Fig.
14.

tuations in the local superfluid velocity in the vicinity of a
test vortex. We believe that the reason that D remains
finite just above Tkt is that our system is simply not sen-
sitive to these large scale fluctuations that necessarily
occur over many cycles of oscillation. This point is dis-
cussed in more detail in the next section.

We have investigated the effect of changing the sub-
strate by predepositing a layer of argon onto the mylar.
This was done by transferring 1 atm of argon to the cell
at room temperature. There was approximately 1 cm® of
dead space in the cell and 15 cm?® in the transfer line on
top of the cryostat. Therefore, assuming that almost all of
the gas solidified onto the substrate at helium tempera-
tures, a 100-A film was deposited. The smaller van der
Waals attraction of argon (or perhaps smoothing of the
substrate associated with the predeposition) resulted in a
thinner dead layer and a corresponding increase in T, for
a given film thickness. There was, however, no observed
change in either the magnitude or temperature depen-
dence of D as seen in Fig. 21.

We have also investigated the effects of small *He con-
centrations on D. A 5% solution of *He was formed in
the cell by monitoring the period change of the oscillator
as pure He was transferred to a known thickness of “He.

D (h/m)

1.53 .54 1.55
T(K)

1.56 1.57 1.58

FIG. 18. Diffusivity measurement for the data shown in Fig.
15.
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FIG. 19. Diffusivity measurement for the data shown in Fig.
16.

The effect of the *He was to shift 7. downwards (*He de-
creases the effective o) but it did not affect D. In fact,
within experimental error, the values obtained in the 3He
solution were identical to those obtained in pure *He for a
film having the same transition temperature, see Fig. 22.

C. Comparison to other measurements

Figure 23 displays a plot of D(Tkt) as a function of
Tk, where Tyt is taken to be the temperature at which
our measured o, satisifies Eq. (2.34). Though D varies
dramatically near the transition D(Tgt) ~#/m in the
thinner films and falls to ~ 1(#/m) in the thickest films
(>25 A).3? These values should be compared with those
of Kim and Glaberson?’ who obtained
D(Tgt)~0.4(/m) for 1.3 K< Tkt < 1.5 K from third-
sound attenuation on a quartz substrate. The temperature
dependence of our measurements is in qualitative agree-
ment with that of Kim and Glaberson who reported rap-
idly increasing diffusivities near the transition. This is
discussed in more detail in Sec. V E.

Finotello and Gasparini*® have also reported D(Txr)
versus Tt obtained from thermal conductivity measure-
ments on mylar. Their values, however, are roughly an

0 0 20 30 20 50
103 (T -T)/ Te

FIG. 20. Diffusivity plotted as a function of reduced tempera-
ture for various film thicknesses 4 (A).
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FIG. 21. Solid line—diffusivity measurement for a 10.9-A
film on Mpylar. Dashed line—diffusivity measurement for a
comparable film on an argon substrate.

order of magnitude smaller than ours and show substan-
tial scatter. This may be a consequence of their experi-
mental method which we believe does not give a reliable
measure of diffusivity. The thermal conductance of their
films is proportional to (n fD)_1 so that near the transition
it is difficult to separate the temperature dependence of n,
from that of D (see Fig. 2). Their crucial assumption that
D is independent of temperature in the vicinity of the
transition does not appear to be justified.

D. Comparison to theory

There are few theoretical predictions for diffusivity to
which we can compare our data. AHNS (Ref. 4) used the
definition of D, Eq. (2.66), to show that D is finite at Tk t.
They failed, however, to address the question as to how D

J

D [ [ [ [ [ (sn(R,s;08n(R,x'5t))ryrjdrd*r'd*Rd R dt

and if the integration over dR' is neglected
D [ [ [ 8;8R—R"8n(rr,r,
Xexp(—14Dt /r*)d*r dR dr . (5.3)

The time dependence in Eq. (5.3) has its origins in the as-
sumed diffusive relaxation of the plasma. AHNS ignored
this time dependence and reported

D [*8n(rridr . (5.4)
ro
If we make the substitutions
2
sn (r) =20 (5.5)
r
and [ =In(r /ry), then Eq. (5.4) becomes
D “y2Ahdl . 5.6
« [y (5.6)

3
103 (T, -T)/ T,

FIG. 22. Solid line—diffusivity measurement for a pure *He
film. Dashed line—diffusivity measurement for a 5% >He film
with a comparable 7.

behaves in the region Tyt <7 <7.. Their analysis is
nevertheless enlightening and is outlined below. They as-
sume that the vortex line velocity in Eq. (2.66) is propor-
tional to the local superfluid velocity arising from sur-
rounding pairs. In the dipole approximation, in which
only distant pairs are considered,

Vi(t) f

R >>2r

d’R [ d sn(R,5;0)(r-V) {—RZ— RNCRY
R

where 6n is the distribution of vortex pairs with separa-
tion r and location R, relative to the test vortex. To sim-
plify the calculation, AHNS assumed that the effects of
the test pair could be ignored. The problem reduces to
calculating

T T T T T
1.5 e © -
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~ |oF e o° —
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FIG. 23. Diffusivity measured at Txr as a function of Tkr.
@®—present data, ©—Ref. 25, and O—Ref. 24.
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This equation can be simplified using Eq. (2.27)

D« lim (K~ '(H)—Kq! 5.7
which is indeed finite at T =Tgr. This expression grows
rapidly as T approaches T. and predicts D «€ for large €.
Though this simple calculation implies that D increases
near T,, its behavior is too sharp when compared with
our data (€ changes little until T~ T,).

If the time dependence of Eq. (5.3) is taken into ac-
count and the integral from t =0 to « is performed then

172
D« [ fo“’ y2(1) exp(2D)dl (5.8)
which is divergent since y*(I) <!/ =2 near Tgy.'® This ex-
pression can, however, be applied to our data by perform-
ing the time integral over one period of oscillation. This
is equivalent to neglecting the fluctuations which occur on
a time scale large compared to the period. Clearly, our
system is not sensitive to vortex motion of wavelength
much greater than r,. We have also only considered con-
tributions from pairs with separation smaller than rp.
This is consistent with the temporal truncation and we
have

—2mr}

D« folmyz(l)exp(Zl) 1—exp dl . (5.9)

r& exp(2/)

This expression was numerically evaluated using the pa-
rameters for the transition in Fig. 8. The resulting curve
along with the data is shown in Fig. 24. The predicted
variation in D is too rapid near the transition and does
not extend down sufficiently far in temperature.

There are also contributions from local pairs and from
the movement of the pair centers to the diffusivity which
were not included in the calculation of Eq. (5.9). These
should be of the same order as dipole contributions and
may be important in characterizing D. A more careful
calculation, which is beyond the scope of this investiga-
tion, is obviously needed.

Huber** used the analysis of Taylor and McNamara,
which relates the diffusivity of a charge in a 2D plasma to
the fluctuations in the electric field, to derive an explicit

35

FIG. 24. Solid line—diffusivity measurement for a 14-A film.
Short-dashed line—prediction of Eq. (5.9) from AHNS analyses.
Long-dashed line—prediction of Eq. (5.17) from Huber’s analy-
ses.
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expression for D. He considered the analogous problem
of a 2D charged plasma in a high magnetic field in which
the Larmor radius is much less than the Debye length. In
this “guiding center” approximation the system is formal-
ly equivalent to the T =0 vortex plasma. The equation of
motion of a center is

dax _
dt

<

47 [BX V9

(5.10)

where c is the speed of light, B is the magnetic field, and ¢
is the electrostatic potential. The potential satisfies

Vi¢=4r S (e;/18(r—x;) , (5.11)
j

where e/l is the charge per unit length. The energy of
two oppositely charged centers is

o2
:—I—In(r)+const , (5.12)

where r is the separation. The vortex formalism is

recovered by

—2ce
IB

eZ
<SR KT /e .

sti/m ,
(5.13)

The Taylor and McNamara result for the diffusivity of
a guiding center plasma in thermal equilibrium is

2
2 C kmax 2 dk
fkmm < | E(k) 1 ) k ’

- 47B?

where ( |E(k)|?) denotes the thermal average of the
square of the kth Fourier component of the electric field
and k., and kg, are the spectrum limits. The integrand
of Eq. (5.14) can be evaluated using the Debye-Huckle ap-
proximation

(5.14)

47kT
1+kA2
the Debye

(|Ek)|*)= (5.15)

where A is AHNS make the

identification

ny=8mA*)"'=02n&% )",

length.

(5.16)

where £, is the correlation length of Eq. (2.51). Huber
makes the reasonable assumption that k;, ~27/L where
L is a typical dimension of the system and that
Kmax=~2m/& . Using Egs. (5.15) and (5.16) to evaluate
the integral he reports

L

#
p=2-2 |1 —
[m J §+(1+7T2)1/2

172
] . (5.17)

Though Eq. (5.17) theoretically increases as T— T, and
seems to predict the correct order of magnitude, we did
not have an independent determination of £, nor did we
understand how this theory applied to T < Txy. Further-
more, assuming reasonable values for £, (see Sec. IV B),
our measured D diverges much more strongly than pre-
dicted by Eq. (5.17), see Fig. 24.
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Finally, Petschek and Zippelius*® have calculated the
effect of bound pairs on D and predict that D should be
renormalized downwards from its ‘“bare” value D, as
roughly D, /€. Either this prediction is wrong or else our
data reflects a rapid variation in D, unaccounted for in
their theory.

We believe that the AHNS analysis is qualitatively
correct and that diffusivity arises from the fluctuating ve-
locity field of the vortex plasma via the fluctuation-
dissipation theorem D o« {n?) where 7 is a Gaussian noise
source acting on a test vortex. As the plasma is heated,
pairs in the vicinity of this test vortex become larger and
more numerous, thereby increasing the magnitude of 7
which in turn contributes to D. Thus except for some
small background contribution from rotons, phonons,
and/or substrate, D seems to be a manifestation of the na-
ture of the phase transition.

E. Characterization of data

We have made an unsuccessful attempt to find a func-
tional dependence of D which collapses all of our data
onto a single curve. This conflicts with Kim and
Glaberson’s?’ report that D« (T /o,)?, independent of
film thickness. Their experiment, however, was compli-
cated by the fact that their films had a thickness which
was a relatively strong function of temperature. They also
only reported measurements over a rather small range of
T,’s and were unable to measure D significantly above
Tkt. Our data does, however, suggest that D diverges via
a power law in reduced temperature. Shown in Fig. 25, is
a log-log plot of D versus the inverse of the reduced tem-
perature (7. —T)/T. for several film thicknesses. The
upper curves are for the thinnest films and have a slope of
~1. The behavior of the lower curves is much more rap-
id and may be a consequence of vortex pinning. Thus it
appears that, in thin films, D diverges as [T, /(T,.—T)].
This temperature dependence also seems to be consistent
with the nonlinear superfluid dissipation data of Gillis
et al.?®® They measure the onset of nonlinear dissipation
in a Helmholtz resonator, operating at o~ 6000 rad/sec,
and numerically integrate a set of modified recursion rela-
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FIG. 25. The log of the diffusivity plotted as a function of the
log of the reduced temperature. The upper curves are for the
thinnest films. The solid line has unity slope to aid the eye.
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tions for which D is varied to fit their data. Their mea-
surements fall in the range T/Tx1 <0.5 (Txr~1.2 K)
and are best fit with D~0.01%/m at T/Tyy;~0.3.
Given that Ty is typically about 5 mK below T,, this
value of D is quite close to what one would predict by ex-
trapolation from our high-temperature data.

F. Local finite amplitude effects

We have considered the possibility that the behavior of
our rotational data does not entirely represent a tempera-
ture dependence in D. It is not unreasonable to assume
that pairs in the vicinity of a free vortex are “‘stretched”
by its local velocity field, thus increasing the average pair
separation at all temperatures. Since the cold side of the
dissipation peak arises from pairs with 7 ~rp, this effect
could cause a widening of the peak similar to what we ob-
serve. We have used the finite flow recursion relations of
Gillis et al.?® to estimate the magnitude of this effect.
This was done by calculating AQ ~(7), where 7 is the ve-
locity field of an arbitrary rotation induced vortex,

#
v(g)= mé £Q,
where § is the distance from its core. The flow induced
dissipation was then averaged over the extent of the field

(5.18)

,
AQ‘I(U)z—/:—U [ 2mea0 " p©lde, (519
where rq~1'ng is the interline spacing, r, is the
diffusion length, and A, =m(r} —r3). The lower limit of
the integral reflects the fact that only pairs with separation
of order rp give rise to dissipation and that these pairs
cannot be closer than rp /2 to a rotation vortex. This cal-
culation predicts a widening of the peak which is an order
of magnitude smaller than what we observe, see Fig. 26.
It also does not account for the extent of the rotating dis-
sipation tail. We therefore believe that we were indeed
measuring diffusivity.

G. Free vortex density of a rotating plasma

It is important to demonstrate that the free energy,
F=E —QL, of a rotating 2D vortex plasma is minimized
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FIG. 26. Predicted widening of the peak due to local finite
flow of rotation-induced vorticity.
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by introducing the free vortex density ng given by Eq.
(2.80),

m{l

mh

The analyses of our data assumes that ng is given by this
expression and that there is no net rotation induced polar-
ization. We will first consider the case of a rotating film
in which T < Tyt and no=0. If we take V(r) to be the
average superfluid velocity in the rotating frame, then for
temperatures well below T'xt, for which =<1,

ng= (5.20)

Vr)=—Qr , (5.21)

where r is the radial distance from the axis of rotation. In
general, however, Eq. (2.35) predicts that the superfluid
will rotate as a solid body at a frequency less than Q

Vi(r)=—Qr /e, (5.22)

where € is the sratic dielectric constant of the film (rota-
tion induces dc flow). The free energy of the system is
minimized when ¥;=0 in the rotating reference frame,
which according to Eq. (5.22) cannot occur by polariza-
tion of the plasma alone. Therefore, free vorticity must be
allowed to enter the system. To see that the equilibrium
density of this rotation induced vorticity is, in fact, given
by Eq. (5.20) we will consider an electric charge analog of
the vortex plasma.

Consider a cylindrical dielectric with infinite azimuthal
extent having a dielectric constant €. In equilibrium, this
cylinder contains many randomly oriented dipoles and no
net polarization or polarization charge density. Now in-
troduce a uniform background charge density p,. The
effect of the background charge is to induce a screening
polarization charge. The analogy is the following (except

for the detail of the directions)'®:

EsV,
Pb

Z =0,
260 =

(5.23)

where E is the electric field and €, is permittivity of free
space. The electrostatic equations determining the polar-
ization P and displacement field D are

V-P=—p,, (5.24)
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V-E=(p, +p,)/€ , (5.25)
D=¢E+P, (5.26)
D=e¢¢,E , (5.27)
where p, is the polarization charge density. Equations
(5.26) and (5.27) imply that
P=¢y(e—1)E, (5.28)
where
g Pt (5.29)
2e€,

inside the cylinder. The analog of allowing vortices to
freely enter and move through the film is to allow a
nonzero conductivity, o, in the dielectric. Since the free-
charge contribution to € is proportional to ¢ /w, where ©
is the frequency of the applied field, it is obvious that, at
dc, free charges give rise to an infinite dielectric constant
which implies no electric field, polarization, or polariza-
tion charge in the cylinder. The free charges brought in
from the outside must have a density such as to just can-
cel p;, which in the vortex formalism, is equivalent to Eq.
(5.20).

Implicit in all of this discussion is the assumption that
the free-energy minimum vortex density is obtained in our
experimental situation. Because we never observed hys-
teresis with respect to rotation and because we observed
the same excess dissipation whether we began rotating at
low temperatures and warmed through the transition or
began the experimental run by rotating at high tempera-
tures (e.g., above the A point), we are convinced that the
rotation induced vortex density was indeed its equilibrium
value.

VI. CONCLUSION

In summary, we have made direct measurements of
vortex diffusivity, a parameter of crucial importance in
describing the dynamical 2D phase transition as well as in
interpreting thermal conductance experiments, and ob-
serve a rather strong divergence at T,. This divergence
suggests that the dynamics of the phase transition itself
are responsible for the diffusivity. No adequate theory
now exists which fully accounts for the observed behavior.

*Present address: AT&T Bell Laboratories, Murray Hill, NJ
07974.
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