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We solve the electronic structure problem self-consistently for a series of crystalline solids, con-

taining Sn as a component, with the use of the first-principles scalar-relativistic linear muffin-tin-

orbital method in the local-density approximation. The crystals considered are the two allotropes a-
Sn and /3-Sn as well as the compounds SnOq, SnMg, , SnSb, and SnTe. The derived band structure is

discussed and compared to previous calculations and experimental information. By extension of the
radial integration of the Dirac equation to well within the nuclear regime, the valence-electron con-
tribution to the charge density on the nuclear site is obtained. Excellent agreement is found when

comparing with experimental isomer shifts. A value of AR /R =(1.34+0.07) g 10 for the relative

change of the radius of the " Sn nucleus upon excitation is deduced. The observed trends in the iso-

mer shifts are interpreted on the basis of the decomposition of the crystal wave function into angu-
lar momentum character.

I. INTRODUCTION

The isomer shift of the 23.875-keV resonance of the" Sn Mossbauer isotope has found wide application as a
spectroscopic tool for investigating the electronic struc-
ture of solid-state systems. ' For the basic research on
the elemental semiconductors and semiconducting com-
pounds the " Sn isotope has proven valuable as a probe to
monitor the local chemical bond. Thus, when substitu-
tionally implanted in the group-IV semiconductors and
III-V compounds, the measured isomer shift reveals in-
formation on the electronic and vibrational properties of
the host crystal. For pure crystalline solids the
Mossbauer isomer shift can also provide valuable infor-
mation on the electronic structure, and the present work is
aimed at the interpretation of isomer shifts in some corn-
pounds, in which Sn represents a component. The crys-
tals studied are the two allotropes of tin, a-Sn, and P-Sn,
as well as the largely covalent binaries of SnSb, SnTe, and
SnMg2 and the ionic rutile-structured Sn02.

The isomer shift is related to the change in transition
energy between two nuclear levels, which is caused by the
electrostatic interaction of the nuclear charge distributions
with the surrounding electron gas:

&ts=ct(p (0)—p (0))

where b, ts is the resonant isomer-shift velocity, p, (0) and
p, (0) are the electron densities on the nuclear site (the
contact densities) in the absorber and source materials,
respectively, and cz is the nuclear calibration constant,
which is often parametrized in terms of the relative
change in nuclear radius between the two levels involved
as a =yAR /R, where y is a numerical constant. '

The extraction of the optimum information about the
solid state from isomer-shift measurements requires an ac-
curate value of the calibration constant a to facilitate a
conversion to density units. Being a purely nuclear factor,
a could be determined from first-principles nuclear-

physics models, but these have not yet reached a level of
accuracy that suffices for the present purpose. " To keep
the present calculations reasonably simple, we represent
the nucleus by a uniformly charged sphere of radius
R =1.2A' fm, where A is the atomic mass. The values
of p(0) in Eq. (1) have been obtained as mean values of the
self-consistent electron densities in the nuclear volume.
There is no doubt that the model of the nucleus adopted
has some effect on the contact densities, but we are con-
vinced that the model of the uniformly charged nucleus is
superior to the point nucleus or to some other models con-
taining several additional parameters not always known
with the precision needed.

The usual line of attack has until now been to compare
the experimental values of b, ,s in Eq. (1) with calculated
or independently measured electron contact densities. The
latter approach utilizes the internal conversion' of
valence electrons in a solid, but only few such experiments
have been reported. ' This technique is, however, likely to
become prominent in the future as experimental resolution
improves.

By far the most common calibration procedure relies on
calculated electron contact densities, and many approxi-
mations have been invoked to obtain this quantity. Cxen-

erally, the use of atomic calculations is widespread,
though recently also molecular and cluster calculations
have been reported for some isotopes. To use atomic cal-
culations for the calibration of Mossbauer isomer shifts
one needs as extra input the assumption (or estimate) of
some atomic configuration which can be taken as
equivalent to the actual configuration in the solid. Furth-
ermore, the Wigner-Seitz model' confines the atom to a
finite sphere, which represents the amount of space allot-
ted to the atom in the solid. This widely used model in-
troduces as an extra parameter the radius of the sphere,
and the proper value of this is not always easy to assess. '

Perhaps, the best attempts to calibrate Mossbauer iso-
topes along these lines have been those calculations which
derive the equivalent atomic configuration —in terms of
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the effective (fractional) occupancies Z, and Z~—from
parametrized tight-binding calculations. ' ' Subsequent-
ly, the electron contact density of the (confined) atom in

Z Z
the configuration s 'p ~ is calculated from a Dirac-
Fock-Slater procedure. In this approach no presumptions
on the electronic structure of the Mossbauer atom are
used as input, but this information is rather derived from
a solid-state scheme. However, still a number of adjust-
able parameters are present in such calculations, and they
should only be regarded as a serious first step towards the
proper incorporation of solid-state effects into the calcula-
tion of electron contact densities. In this work we calcu-
late the electronic structure of the crystals that are of our
concern, from a genuine first-principles solid-state calcu-
lational scheme, so that no estimates either on the ap-
propriate radius or the effective configuration of the atom
are required.

The linear muffin-tin-orbital (LMTO) method' '' has
been adopted for this purpose. It has proven a fast and
reliable method for determining the electronic structure of
a variety of solid-state systems such as metals, semicon-
ductors, and surfaces. In contrast to the tight-binding cal-
culations mentioned above, this method allows us to
iterate the crystal potential and charge distribution to
self-consistency. The electron contact density is directly
obtained by inspection, provided that the radial integra-
tion of the Dirac equation has been started well within the
nuclear regime. In the version of the method used here,
the actual crystal unit cell is approximated by spheres
around the atomic sites. As the crystal wave function in
this geometry naturally is decomposed according to its an-
gular momentum character, the content of electrons of s,
p, d, etc. character within each sphere are convenient
numbers by which to describe the electronic structure of
the solid under study. These occupancy numbers are the
reminiscence of the atomic effective occupancies Z, and
Zz discussed above, but in the LMTO scheme they are
not unique but always related to some specific sphere size.
Thus, when we compare occupancy numbers of a
Mossbauer atom in different solids, it is always with the
reservation that the pertinent sphere radii need not be
equal.

II. THE LMTO METHOD

Although the LMTO method is by now well established
in solid-state physics, so far little attention has been paid
to it by Mossbauer spectroscopists; therefore, a very con-
cise review of the method will be reproduced here to facil-
itate the discussion of the results obtained in the following
section. The method is thoroughly discussed in Refs. 17
and 18.

The Hamiltonian for a system of interacting electrons
in a solid can be greatly simplified by the theorems of
density-functional theory, ' ' according to which all
ground-state properties can be derived from the solutions
of the one-particle Hamiltonian,

H(r) = —V'+ V,„,(r)+ VH(r)+ V„,(r) .

Here the potential is decomposed into the external V,„„

the Hartree VH, and the exchange-correlation V„, parts;
throughout this work we use the local-density approxima-
tion with the parametrization of V„, as provided by
Vosko, Wilk, and Nusair. '

In the LMTO method the wave functions for a given k
point in the Brillouin zone are sought as a linear combina-
tion of Bloch sums of muffin-tin orbitals

t/r"(r) =gal ge' Xi (r—R) .
L R

(3)

4'r(r, E) =Pl(r E t)+(E E~)PI(r, E—I) . (4)

The radial function P~ is obtained by solving the Dirac
equation in the limit of zero spin-orbit coupling at an ap-
propriately chosen energy E &.

' ' ' Expansion (4) has
proved accurate over ranges of order 1 Ry corresponding
to typical valence-band widths in solids. The radial func-
tion has to be matched to the solutions outside the atomic
spheres so that the resulting muffin-tin orbital LI is
everywhere continuous and differentiable.

In the LMTO method the muffin-tin approximation is
replaced by the atomic sphere approximation (ASA), in
which the touching muffin-tin spheres are expanded a lit-
tle to include all of space. The ASA improves on the
muffin-tin approximation by allowing for a spatial varia-
tion of the potential in the whole unit cell, but the conse-
quence is a violation of geometry. The conceptual and
computational simplifications of the ASA are, however,
significant. A first-order correction for the overlap of
spheres has been derived by Andersen, ' and this is ap-
plied throughout the present work. Furthermore, to di-
minish overlaps in relatively open structures, additional
("empty") spheres are introduced on high-symmetry inter-
stitial sites. Thus, the diamond structure of a-Sn, the
NaC1 structure of SnSb and SnTe, and the fluorite struc-
ture of SnMg2 are all described in terms of an fcc lattice
with four sites in the basis, cf. Table I.

The energy eigenvalues E" and the coefficients aI are
obtained by numerical diagonalization of the secular equa-
tion

g(HL'L E +l. 'L )+L
k k k k

L

where

Hk (gk ~H ~gk )

0L'L ~+I. '
I
+L ~

The elements of these matrices are easily evaluated; how-
ever, the expressions are rather lengthy (see Ref. 18 for a

Here R denotes the lattice points and L is a combined in-
dex, l. =(q, l, m), where q labels the atoms within the
basis and I, m are the usual angular momentum quantum
numbers.

To determine the muffin-tin orbitals 7z, the true crys-
talline potential is replaced by a potential, which is spheri-
cally symmetric inside touching spheres centered on the
atomic positions and constant in the remaining parts of
space. Inside the muffin-tin sphere the basis function is
expanded in spherical harmonics times a radial function
P~ and its energy derivative P~
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q2

q4

a-Sn

Sn
Sn

empty
empty

SnTe

Sn
empty

Te
empty

SnMg2

Sn
Mg

empty
Mg

TABLE I. Three different crystal structures all describable in

terms of an fcc lattice with four spheres in the basis, at
qz= 4 (1,1, 1), q3 —

2 (1,1, 1), and q4
——4 (1,1, 1),

by letting different spheres be empty.

TABLE II. Energy eigenvalues in eV at I", X, and L for the
n-Sn band structure. The present calculation is compared to the
nonrelativistic pseudopotential (PP) calculation of Ref. 28 (PP)
and the relativistic OPW calculation of Ref. 29 (ROPW). Ex-
perimental data are collected according to the present authors'
estimates from the data published in (a) Ref. 30, (b) Ref. 29, and
(c) Ref. 31. The values L 3 and X& are tentatively obtained by
subtracting the L3-L& transition energy from the L& conduction
state and adding the X4-X& transition energy to the X4. state.
With the exception of the L l and I 2 states, spin-orbit splitting
is not considered for the experimental data, but given for the
two calculations, which we compare with.

coinplete listing). From the solutions aL of (5) the crystal
charge distribution can be calculated. This may be used
to construct a new potential, or, if self-consistency has
been achieved, the contact density may be determined.

In this work the basis of muffin-tin orbitals includes s,
p, and d orbitals, i.e., nine orbitals per point in the lattice
basis. The summation over k points in the Brillouin zone
is performed by the tetrahedron method.

III. BAND STRUCTURES

A. Grey tin

I vs

I &s

X)
X4
X)

Present

—10.52
—0.73

0.00

2.51

—7.59
—2.47

1 ~ 1 1

PP

—9.85
—0.30
—0.87

0.00
2.05
2.75

—7.04
—2.15

1.62

ROPW

—10.59
—0.42
—0.65

0.00
1.96
2.43

—7.59
—2.43

0.97

Expt.

—0.3, ' —0. 16'

0.00

2.6b

—7.5(5)'
—2.8(1)'

07d

Grey tin or u-Sn is the stable allotrope of tin below
13'C at normal pressure. The crystal structure is dia-
mond with a lattice constant of 6.483 A (at 90 K). In
Fig. 1 is displayed the self-consistent and scalar-
relativistic band structure of a-Sn obtained by the LMTO
method as sketched in the preceding section. Further-
more, a correction for the leading nonspherical com-
ponent of the potential inside spheres was incorporated.
Figure 2 shows the partial densities of states.

The lowest valence band is almost entirely Sn s-like,
and the second is also predominantly of Sn s character
but with an admixture of Sn p character. The third and
fourth bands are Sn p-like with some weight in the empty
spheres.

The energy eigenvalues at a few key symmetry points of
the Brillouin zone are listed in Table II, where also avail-
able experimental information is quoted together with two
previous calculations of the a-Sn band structure, the self-
consistent and nonrelativistic pseudopotential calculation

LI

L3

—9.02
—6.33

—1.15

0.08

—8.16
—5.56
—1.41
—0.75

0.58

—9.07
—6.28
—1 ~ 39
—0.98

0.15

—1.3"

0.09, ' 0.32'

'Reference 30.
Reference 29.

'Reference 31.
The transition energies of Ref. 32 are used.

'Same as Ref. 30, but spin-orbit corrected (Ref. 33).

of Srivastava, and the fully relativistic orthogonal
plane-wave (ROPW) but non-self-consistent calculation of
Ref. 29. The experimental data on the a-Sn band struc-
ture are scarce, and the values of Table II may be subject
to some uncertainty. The overall agreement of the present
calculation with experiments is quite good. The largest

a —Sn Energy Bands
S = 3.0203 a u

12.0
Partial DOS Q. —Sn

0.60

0.00

9.00

Ct

6.00

3.00

I
i ~

11
i

i

i' (ii
I i I

il
i I

i i
i
1

I

i
i

-0.30
X L Q W N K

FIG. 1. Scalar-relativistic band structure of a-Sn.
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FIG. 2. Partial densities of states of a-Sn.
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discrepancy is in the upper valence band in the b direc-
tion, where the angle-resolved photoemission spectroscopy
(ARPES) measurements of Ref. 31 yield a somewhat
larger dispersion than exhibited by the calculated bands.
The calculated position of the somewhat troublesome I 2

state is too low by -0.6 eV, but this is a general feature
of local-density-approximation (LDA) calculations of
tetrahedral semiconductors also encountered in Si, Ge,
and GaAs. ' The indirect gap at I z&-I.

&
comes out

quite small but positive in accordance with experiment.
Considering the other two calculations quoted in Table

II, a striking agreement between the results of the present
calculation and the ROPW calculation of Ref. 29 is noted.
Except for the I 2 state, all energies of both valence and
conduction states are equal to within 0.1 eV. This is rath-
er surprising, since the effective crystal potential used in
Ref. 29 was a superposition of overlapping atomic poten-
tials, which are relativistic, self-consistent, and included
exchange through the Kohn-Sham parametrization of the
LDA. However, the crystal potential itself was not iterat-
ed to self-consistency, and as it is generally important to
do this, the accordance of the two calculations is indeed
puzzling. The positions of the I &5, X~, and I.3 conduc-
tion states are calculated to be somewhat higher in the
present work than in Ref. 29. This is probably due to the
overestimation of the nonspherical potential variation in-
herent in the present approach.

The calculation of Srivastava did iterate the crystal
potential to self-consistency, but did not include relativis-
tic effects (except spin-orbit coupling). The general trends
of scalar relativistic effects, discussed in Ref. 23, may
therefore be recognized by comparing with the present
calculation: The lowest valence band drops by 0.8 eV
when scalar-relativistic effects are included [as compared
to 0.3 eV for Ge and GaAs (Ref. 23)], and all the conduc-
tion states likewise shift downwards, most the I.

~
and X&

states. Also the I 2 is lowered, though surprisingly only
by 0.4 eV, whereas the antibonding s state in Ge and
CxaAs was seen to drop more than the bonding I

&
state.

B. White tin

White tin or P-Sn is the stable form of tin at tempera-
tures above 13'C at zero pressure. The P-Sn crystal struc-
ture is body-centered tetragonal with a two-atomic basis
of coordinates q, =(0,0,0) and qz ——(a/2, 0~c/4) and a
flat conventional cell with a =5.812 A and c/a
=0.5433. Tin is the only element that crystallizes in
this structure at ambient conditions.

The P-Sn structure fits naturally into the general trend
of greater metallicity or less covalency as one passes down
the group IV of the Periodic Table. The lighter elements
C, Si, and Ge all crystallize in the diamond structure—
with experimental band gaps of 5.4, 1.2, and 0.75 eV
respectively —whereas the heavier Pb is fcc and metallic.
Sn in the a-Sn phase is a semimetal with an exactly van-
ishing band gap. P-Sn may be looked upon as a large dis-
tortion of the a structure by a uniaxial compression along
the z (or c) axis accompanied by an expansion in the xy
plane. The number of nearest neighbors is still four —at
positions (+a/2, 0,c/4) and (0, +a/2, —c/4) at a distance
3.02 A away —but the ideal tetrahedral angle of 109.5 is

I3
— Sn Energy Bands

5 = 35&CC a u

LLJ

Z:

0.00

-0.40
I P 5 V

FIG. 3. Scalar-relativistic band structure of P-Sn.

now replaced by angles of 94.0' and 149.5' between the
directions of nearest neighbors. Furthermore, two next-
nearest neighbors at (0,0, +c) are only slightly more dis-
tant (3.18 A), making the effective coordination closer to
S1x.

Si and Ge are known to undergo phase transformations
into the P-Sn structure upon application of hydrostatic
pressures around 125 and 110 kbar, respectively, and a
similar transformation has been predicted for C at 12
Mbar, a pressure by far beyond present experimental ca-37

pability. The symmetry properties of the P-Sn point
group D4& have been discussed by Miasek and Suffczyn-
ski."

P-Sn is somewhat more close packed than a-Sn; touch-
ing spheres will cover 53% of space as compared to o.-Sn
34% and fcc 74%%uo. One may therefore hope to be able to
perform an LMTO calculation of P-Sn without introduc-
ing empty spheres to fill out space (anyway, there is no
obvious high-symmetry interstitial site, where an empty
sphere seems suitable). To cover a volume equal to the ac-
tual crystal volume by atomic spheres, we must expand
the touching spheres by 23%, whereby the total volume
inside overlap regions amounts to —13%, which is some-
what worse than in the diamond structure with empty
spheres. The atomic radius thus becomes 3.51 a.u.

The self-consistent scalar-relativistic band structure of
P-Sn calculated with this approach is presented in Fig. 3,
and the valence-band density of states with the s, p, and d
components projected out are presented in Fig. 4. The
calculations presented used a mesh of 130 k points in the
irreducible wedge of the Brillouin zone. The two lowest
valence bands are seen to practically separate from the
upper ones. They are the bonding and antibonding s
bands, whereas the upper valence bands are predominant-
ly of p character. There is no gap between the s and p
bands, but a marked depletion in the density of states is
seen in the region from —0. 10 to 0.15 Ry in Fig. 4.

Very few calculations of the band structure of white tin
have been reported in the literature. Miasek used the
OPW method for calculating the band structure in select-
ed k points. Weisz used a semiempirical pseudopoten-
tial method fitting the pseudopotential form factors to get
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and 40 are significantly at variance with those of Table
III.

The only experimental information which we are able
to use for comparison is a measurement of the density of
states by x-ray photoelectron spectroscopy (XPS). The
experimental resolution is not comparable to the
computer's, but the three main peaks of Fig. ~ at 520,
410, and 95 mRy below the Fermi level —are easily
resolved. The experimental values are -0.50, 0.41, and
0.11 Ry, respectively, in excellent agreement. Also, the
depletion between s and p bands is easily seen, and a
width of this region of -0.25 Ry is estimated, in accor-
dance with Fig. 4.

0.00-0.40 -0.20 0.00
E (Rg)

0.20 0.40 0.60 C. Tin telluride and tin antimonide

FIG. 4. Partial densities of states in P-Sn.

a Fermi surface consistent with experiments. Craven re-
peated this calculation a few years later and found good
quantitative agreement with de Haas —van Alphen experi-
ments. Ament and de Vroomen ' have done a fully rela-
tivistic augmented plane-wave (APW) calculation using
the Xa scheme for exchange and correlation effects; how-
ever, it was not iterated to self-consistency. Finally, Ihm
and Cohen did a self-consistent nonrelativistic pseudo-
potential calculation to study the phase transition a~P.
In the present work we both iterate the crystal potential to
self-consistency and iriclude all relativistic effects, except
spin-orbit coupling. The effects of spin-orbit interaction
are of the order of 0.5 eV in the band energies, and as
some of the degeneracies of the scalar-relativistic bands
will be lifted, they are rather important for a detailed dis-
cussion of the complicated Fermi surface. This will not
be attempted here. Also, some of the band crossings in
Fig. 3 will be forbidden.

In Table III we compare the present calculation with
the relativistic APW (RAPW) calculation of Ref. 41.
There is a general agreement on the topology of the ener-

gy bands and the typical quantitative discrepancies on the
energy eigenvalues are of the order 0.1—0.2 eV. Both of
the semiempirical pseudopotential calculations of Refs. 39

r+
r;
r+
r;
Xi
L2
L3
P2
Pl

Present

—11.34
—3.90
—1.97

2.71
—9.21
—7.83
—5.28
—6.26
—3.84

RAPW

—11.3
—3.7
—2.0

2.9
—9.0
—7.7
—5.0
—6.0
—3.6

TABLE III. The energy eigenvalues at selected symmetry
points for P-Sn. The present work is compared to the RAPW
calculation of Ref. 41. All values are in eV and relative to the
Fermi level.

The binary compounds of tin with its nearest neighbors
in columns V and VI of the Periodic Table, antimony and
tellurium, are of considerable interest in the context of
Mossbauer experiments. This stems from the fact that
' 'Sb and ' Te also are important Mossbauer isotopes. It
is a powerful check of the reliability of the adopted ca1cu-
lational scheme that we are able to extract from the same
calculation two quantities, which can be compared to in-
dependent experimental isomer shifts.

SnTe belongs to the class of binary compounds of ele-
ments from groups IV and VI of the Periodic Table,
which also comprises the salts of Pb with S, Se, and Te.
These materials show peculiar properties in being
narrow-gap semiconductors with a direct gap at the L
point of the Brillouin zone. For a general review of these
materials, see Ref. 45.

SnSb and SnTe have, respectively, nine and ten valence
electrons per molecule. This does not favor the
tetrahedral coordination, which is so strongly dominant
when eight valence electrons per molecule are present.
Rather, the bonding properties of SnTe, being isoelectron-
ic with Sb, are very similar to that of this element. Thus,
as Sb in the arsenic structure may be thought of as a dis-
torted simple cubic arrangement, SnTe is found in a
rhombohedral crystal structure, which constitutes a very
slight distortion of the NaC1 structure, the binary analog
of the simple-cubic structure. In the NaC1 structure each
atom is surrounded by six nearest neighbors of the oppo-
site kind, at the apices of an octahedron, and the p orbi-
tals provide bond orbitals favoring exactly this symmetry.
However, due to a slight hybridization with s and d orbi-
tals, a small distortion occurs. The distortion of the ideal
NaC1 structure is, however, much less than the analogous
distorted simple-cubic structure of antimony. The cubic
right angles thus change into 89.88' in SnTe, and at
temperatures above about 160 K the ideal NaC1 structure
is actually stable.

Similar behavior is encountered for SnSb, though the
atoms of this compound do not in their free ground state
have the appropriate number of p electrons to occupy all
bonding p orbitals. For this reason some degree of pro-
motion of the metallic s electrons into covalent bond orbi-
tals must be expected with an associated influence on the
electron contact density. The distortion of the NaCl lat-
tice is given by the bond angle in this case being 89.7,
and it is preserved also at elevated temperatures.
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Partial 0 0 S Sn in Sn Sb TABLE IV. Band energies of SnTe and SnSb at selected
symmetry points in eV (relative to valence-band top for SnTe
and Fermi level for SnSb). The SnTe calculation is compared
with the RAPW calculation of Ref. 57 and experimental infor-
rnation.
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the anxiety to get a consistent picture of the energy levels
aroun t e gap.d h Herman et al. performed a relativistic
OPW calculation and Rabii an APW calculation,
without iterating the crystal potential to self-consistency.
Tung and Cohen and Bernick and Kleinmann have
employed the empirical pseudopotential method, and
Robertson employed a parametrized tight-binding
method. The only self-consistent calculations previous y
reported appear to be the relativistic APW calculation o
M 1 d H ndry and the recent relativistic pseudopo-e vin an en

Both oft t' 1 calculation of Rabe and Joannopoulos. ot oen ia c
these references use the Baldereschi specia -poin s
method for obtaining the crystal charge density. Melvin
and Hendry used only three special points and concluded
that the effects of spin-orbit coupling indeed are rather
small compared to the scalar-relativistic effect. However,
Precise spin-orbit coupling caused a gap to open up at the
L point, their scalar-relativistic calculation finding SnTe a
semimetal, and is therefore of a distinct qualitative influ-
ence. As mentioned, the scalar-relativistic calculation o
this work does produce a gap at L, as did that of Rabe
and Joannopoulos. 58

In Table IV are listed the eigenvalues at the high-

' t I X and L for the two LMTO calcula-symmetry points, , an
57tions of this work. The results of Melvin and Hendry

are likewise quoted for comparison, as are the experimen-
tal SnTe data available. Neither experimental nor theoret-
ical data on the band structure of SnSb seem to have been

ublished. Experimental data on SnTe stem from photo-
emission studies providing a mapp' gin of the density of
states. However, assigning specific structures of this to
certain band extrema is ra eb d t is rather difficult. It is sufficient to
say that the identifications of the table agree with the ca-
culations to wit in eth' 1 eV. For the experimental informa-
t oncerning the gaps, namely the direct L z-L

&
anion c

alonthe position of the second valence-band maximum g
the X line, we get excellent agreement when considering
the fact that spin-orbit coupling is not included in t e cal-
culation. c ua y,A t 11 the true valence-band maximum and
con uc ion-d t -band minimum are not exactly at t e
points, but at points on the hexagonal face 3—% o
distance towar s t e p

'
d th 8 points. Here other calculated gap

ofhas shrun to . ek 002 V. This peculiar gap structure o
SnTe agrees with the experimental picture as we as

57, 63with other calculations.
~ ~ ~ ~ ~

Comparing t e n eth SnTe calculation with the relativistic
and self-consistent APW calculation of Melvin and Hen-
dry, a systematic trend is observed, as the valence-band
energies o e presenf th resent work fall 0.2—0.5 eV below those
of Ref. 57. We have no explanation for this but note t at
a downwards shift of the upper L2 and Li states by 0.3
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eV in the present work will bring the two calculations in
perfect agreement. 40.0

Partia( D 0 5 Sn in 5n Mg,

D. SnMgg

SnMg2 is in many respects similar to the zinc-blende-
structured compounds. This is due to the number of
valence electrons being eight per molecule in both cases.
Sn provides four electrons, in the atomic ground-state
configuration 5s 5p, and each Mg provides two electrons
with the 3S atomic ground-state configuration. The
crystal structure of SnMg2 is fluorite, which —as men-
tioned in Sec. II—is very similar to the zinc-blende struc-
ture: The tin atoms occupy a fcc sublattice, while the Mg
occupy two fcc sublattices displaced, respectively, —,

' and
—

4 of the body diagonal relative to the Sn lattice. Each
Mg atom is therefore surrounded by four tin atoms in the
same tetrahedral coordination as found with the zinc-
blende compounds. Thus, the formation of sp orbitals
on the Mg atoms appears favorable. However, each tin
atom is surrounded by eight Mg atoms at the corners of a
cube; this high coordination rather favoring metalliclike
bonding on the Sn atoms.

The self-consistent scalar-relativistic band structure of
SnMg2 is depicted in Fig. 9 with the partial density of
states in Figs. 10(a) and 10(b). The calculation used equal
radii of all constituent spheres.

The band structure of Fig. 9 is indeed very similar to
that of the zinc-blende semiconducting compounds. The
maximum of the valence bands is at 1, while the
minimum of the conduction bands is found at X (in the
present calculation the X3 conduction state actually dips
below the valence-band maximum). From the l-projected
density of states, Figs. 10(a) and 10(b), the first valence
band is recognized as the Sn s band. The second band has
mixed Sn p and Mg s character, whereas the upper two
are predominantly Sn p-like with some Mg p admixture.
The first conduction band appears to have mostly Mg s
and p character.

The only previously reported calculations of the band
structure of SnMgz that we are aware of are two empirical
pseudopotential calculations. ' In Table V the present

Sn Mg, Energy 8ands
5 =314B3 QU
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'

FIG. 9. Scalar-relativistic band structure of SnMg2.
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FIG. 10. (a) Sn partial densities of states in SnMg2. (b) Mg
partial densities of states in SnMg2.

calculation is compared to that of Ref. 64. Experimental
information on SnMg2 is scarce. UPS (Ref. 66) and XPS
(Ref 67) m.easurements of the valence-band density of
states are able to resolve the three main peaks of Figs.
10(a) and 10(b) stemming from the first, second, and third
and fourth bands, respectively. According to Ref. 66, the
peak tops are located at 8.5, 4.3, and 1.4 eV below the top
valence state, whereas our calculation gives 7.9, 4.0, and
1.6 eV, respectively, so the agreement is good.

Concerning the fundamental gap of SnMg2, experimen-
tal information is also limited. According to Ref. 68 the
gap is indirect of magnitude 0.185 eV, while another
conduction-band minimum is found at 0.35 eV above the
valence-band edge. This gap is often quoted as the
minimum direct gap of SnMg2, though the original refer-
ence states that it can be situated anywhere in the Bril-
louin zone. The calculation of this work indeed gets the
minimum conduction state off the zone center at X,
where, as mentioned, the fifth band actually dips below
the valence-band edge, making the calculated SnMgz crys-
tal a semimetal. However, this is no more peculiar than
what is encountered with other semiconductors and is due
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TABLE V. SnMg& energies at symmetry points compared to
those obtained by the empirical pseudopotential method (EPM)
in Ref. 64. At K only the lowest conduction state is given. All
values are in eV relative to the top valence state at I .

I .DGi

Sn 0, Energy Bands
5 = 2.6787 a u.

Present EPM 0.50

r,
I is
r,
I vs

—9.10
0.00
1.44
2.44

—8.5
0.0
1 ' 8
2.4

w 0.00

4J
Z

Xi
X4
Xs
X3
X,

—7.45
—4.56
—2.09
—0.07

0.40

—6.9
—4.3
—2.0

0.2
0.6

-0.50

—1.00
t Q X Y 2 U R T R

Li
L2
L3
Li
L3

—7.93
—4.76
—0.84

0.71
2.41

—7.3
—4.5
—0.8

0.9
2.4

0.54 0.7

E. Tin dioxide

to the manifest shortcoming of the LDA in the descrip-
tion of the band gaps of semiconductors. ' ' The next
conduction-band edge of the present calculation also ap-
pears at X, about 0.4 eV higher than the valence-band
maximum. Other edges are at K and L at 0.5 and 0.7 eV
above the valence bands, but the minimum direct gap, at
I, is 1.4 eV. Thus, we must conclude that the next
conduction-band edge cannot be at I but most probably
at X with L and X as other possibilities. The quantitative
separation between the conduction-band edges is not well
produced in our calculation and spin-orbit coupling must
be considered before better agreement can be expected.

The above findings are in agreement with those of Refs.
64 and 65. For the lower valence states the empirical
pseudopotential method generally gets higher energy lev-
els, which may be due to the relativistic effects incor-
porated in the present work.

FICs. 11. Scalar-relativistic band structure of Sn02.
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this choice, which may account for the discrepancies men-
tioned.

The Sn02 band structure is displayed in Fig. 11 and the
partial density of states in Figs. 12(a) and 12(b). From
these figures we recognize the four deep-lying corelike ox-

ygen s-bands and the 12 valence bands of predominantly

The Sn02 crystal structure is rutile, which is a simple
tetragonal lattice with two formula units per unit cell.
Each Sn atom is surrounded by six oxygens in a distorted
octahedral coordination. Due to the distinct ionic charac-
ter of this compound, it is of considerable interest in con-
nection with the calibration of Mossbauer isomer shifts.

The LMTO band structure of Sn02 has been discussed
in a previous publication. Some qualitative experimen-
tal facts are not reproduced, notably the direct character
of the band gap and the symmetry properties of the top-
most valence state at the zone center, but quantitatively
the discrepancies are not large. The calculations used
equally large spheres for Sn and 0, which makes it possi-
ble to contain the Sn + core within the sphere as well as
the valence-electron charge cloud of a negatively charged
oxygen ion. Unfortunately, larger overlaps result from
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FIG. 12. (a) Sn partial densities of states in SnO2. (b) O par-
tial densities of states in Sn02.
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O p character. However, there appears to be a significant
admixture of Sn s character into the O s bands and lower
valence region, and Sn p and d character into the upper
valence bands. Thus, a significant degree of covalency is
present in the SnOz crystal with substantial impact on
the interpretation of Mossbauer isomer shifts, as will be
discussed in Sec. IV.

IV. THE ELECTRONIC STRUCTURE

In Table VI are listed the key quantities describing the
electronic configuration at the Sn containing crystals.
These comprise the electron contact density at the Sn nu-
cleus and the decomposition of the crystal wave function
into angular momentum character inside the sphere
around the Sn nucleus, the radius of which is also given.
The experimental values ' of the isomer shifts relative
to a SnO2 source are likewise given. For SnSb and Sn02
the results of two calculations are listed. The calculation
of SnSb with S=2.85 a.u. used this sphere size for all
constituent spheres, i.e., for the Sb sphere and the empty
spheres as well, whereas the second calculation kept the
same total crystal volume but chose the radius of the Sn
and Sb spheres 20% larger than the empty spheres, at
3.09 a.u. Similarly, for SnQ2 one calculation used equally
large Sn and O spheres with S=2.68 a.u. , while the
second calculation adopted the oxygen radius 10% larger
than the tin radius, but the same total volume. These ad-
ditional calculations were on1y aimed at getting the occu-
pancies pertinent to different Sn sphere sizes, but did not
use enough k points in the Brillouin-zone sampling to ob-
tain a converged electron contact density. All other calcu-
lations used equally large spheres for all constituents.

In a-Sn the s-electron content within the Sn sphere is
1.41 electrons. This is somewhat larger than the 1.35 and
1.19, which have been derived for Ge and Si in completely
analogous calculations illustrating the trend of increas-
ing metallicity on descent down group IV of the Periodic
Table. Antoncik has calculated the number of s elec-
trons in Si, Ge, and a-Sn from a tight-binding scheme to
be 1.35, 1.50, and 1.56, respectively. These numbers refer
to a geometry without empty spheres and are not directly
comparable to the occupancy numbers of the present
work, but they appear to be consistently 0.15 higher. The
widely anticipated valence-electron structure of Sn as s'p
is seen to be far from correct. The dehybridization of the

sp bond orbitals increases down the group IV due to the
larger promotion energy, which accompanies the larger
atomic volume. This dehybridization is quite significant
in Ge and a-Sn, and in the next element, Pb, it is com-
plete, as this element is not found in any covalent crystal
structure. The sp picture is only a qualitative concept
referring to the symmetry of the diamond crystal struc-
ture, but the extent to which the electronic Bloch wave
functions build up their amplitude in the bond regions is a
matter of tradeoff between the depth of the potential here
and the depth of the potential well around the constituent
atoms.

A direct comparison of the occupancy numbers of P-Sn
with those of a-Sn is hindered due to the fact that empty
spheres were used in the a-Sn calculation but not in the
P-Sn calculation. However, the electron contact density is
found to be larger in P-Sn in accordance with the antici-
pation that this phase is more metallic and therefore has
more s-electron character in the wave function. The con-
figuration of a Sn atom in P-Sn is found to be
s ' p d, which may be compared to the results of
Ref. 75. These authors performed an analysis of the
chemical shifts of the 3d core levels of a-Sn and P-Sn and
combined it with Mossbauer isomer shifts and with re-
sults of internal conversion measurements to estimate an
s-occupancy number of P-Sn of n, =1.6+0.3, while the
change in s occupancy in going from the a phase to the P
phase was found to be An, (a P)=0. 1——0.2 electrons.
These numbers are in excellent agreement with the present
calculations and constitute an encouraging experimental
confirmation of the results of the present calculations.

The sequence of a-Sn, SnSb, and SnTe may be looked
upon as a series of binary alloys of tin with the neighbor-
ing elements of Z=50, 51, and 52. As discussed in Sec.
III C, the diamond structure is only favorable when eight
valence electrons per unit cell are present as in a-Sn,
whereas SnSb and SnTe with nine and ten valence elec-
trons crystallize in (a slightly distorted version of) the
NaCl structure, whose symmetry is that of pure p orbi-
tals. In SnTe the number of p electrons supplied by the
atoms exactly saturates the available bonding p orbitals,
so that no promotion of s electrons takes place. The Sn s
occupancy is consequently higher in SnTe than in a-Sn.
The Sn p electron content is low in SnTe, indicating that a
large transfer has occurred, mainly into the empty
spheres, which do not to the same extent represent

TABLE VI. The experimental isomer shift (A&s in mm/sec relative to a Sn02 source) together with calculated quantities describing
the electronic structure of the tin compounds. S is the radius of the sphere around the tin nucleus in atomic units, p(0) is the electron
contact density of Sn in atomic units (ao ), and ni the number of electrons of angular momentum character I within the Sn sphere.

a-Sn

2.012(12)

P-Sn

2.542(5) 2.77(2)

SnTe

3.460(15)

SnMg2

1.860(5)

S
p(0)

3.02
62.33

3.51
65.64

2.85
69.45

3.09 2.94
78.64

3.15
59.46

2.68
30.3

2.51

n,
n~

nd

1.41
1.77
0.13

1.62
2.04
0.34

1.39
1.19
0.12

1.52
1.43
0.20

1.57
1.00
0.12

1.46
2.35
0.05

0.69
0.94
0.44

0.57
0.71
0.31
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charge-depleted regions as is the case with the empty
spheres in the diamond structure. The increased s content
and decreased p content of the Sn sphere in conjunction
lead to a large value of the electron contact density of Sn
in SnTe.

The charge cloud of Sn in SnSb does not have as much
s character as its counterpart in SnTe. Thus, if we inter-
polate between the two calculations of SnSb quoted in
Table VI to a sphere volume equal to that used for Sn in
SnTe, we may estimate the occupancy numbers of this
sphere to be n, =1.44, nz

——1.26, i.e., 0.13 s electrons
fewer than seen in SnTe. This suggests that some degree
of promotion into bonding p orbitals has taken place, as
the atomic p electrons do not by themselves saturate the
bond orbitals. The accompanying increase in Sn p elec-
tron content in SnSb reflects the smaller ionicity of this
compound, and both of these trends account for the lower
Sn electron contact density in SnSb in comparison with
SnTe. However, the s-electron occupancy is still higher in
SnSb than in e-Sn, indicating that the aforementioned
promotion of s electrons is not as pronounced in SnSb as
in cx-Sn. Also, the a-Sn crystal is not ionic, giving rise to
larger Sn p-electron content in this material.

SnMg~ is the only tin compound considered in this
work, where tin takes on the role of the anion. Compar-
ing the occupancy numbers of this compound with those
of a-Sn, practically the same s-electron content is seen,
around 1.4. A slightly larger s-electron content in SnMgz
would be in accordance with the eight-fold coordination
of the Sn atom in this compound, which favors the metal-
lic nondirectional bonding more. It is not possible to tell
from the quoted numbers whether this is the case, as the
different volumes of the respective Sn spheres blur the
picture. However, it is evident that the Sn sphere of
SnMg2 has accommodated more p electrons than its coun-
terpart in a-Sn, the difference being around 0.6 electrons.
This reflects the larger electronegativity of Sn in compar-
ison with Mg, causing a charge transfer towards the Sn
atom. The charge pileup on Sn is mainly in the outermost
regions of the sphere having p character. Thus, it can be
concluded that the lower electron contact density of
SnMg2 in comparison with e-Sn is a consequence of the
increased shielding of the s electrons away from the nu-
clear region, which is mediated by the larger p-electron
charge cloud. This effect may be somewhat reduced by a
slightly higher s-electron occupancy of Sn in SnMgz.

Finally, the rutile-structured SnOz compound shows
distinct ionic properties. Thus, the electron contact densi-
ty is roughly half the value seen in a-Sn and the occupan-
cies show 0.6—0.7 s electrons around Sn, to be compared
with the 1.4 s electrons of a-Sn. The total electron con-
tent of the Sn sphere is 2.1 and 1.6 for the two sphere
choices adopted, showing that a large amount of charge
has been dragged away from the Sn atom and towards the
0 atom. On the other hand, it is far from the total
valence charge of 4 that has left, demonstrating that a sig-
nificant degree of covalency is present in the bonding of
rutile SnO2.

The experimental isomer shifts are plotted against the
calculated valence electron contact densities in Fig. 13.
The linearity is very good. As the experimental data are

isomer Shifts in Tin Compounds.
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FIG. 13. The experimental isomer shifts of the Sn corn-
pounds plotted against the calculated valence-electron contribu-
tion to the electron contact density.

so accurate, the deviations from linearity indicate the
magnitude of calculational fluctuations. From a least-
squares fitting we get a value for the relative change in
nuclear radius of

=(1.34+0.07) )& 10

The calibration of the " Sn resonance has been at-
tempted by many authors. A recent compilation of the
nuclear calibration factor obtained in previous works may
be found in Ref. 13. Ignoring the earliest crude estimates,
it is probably safe to say that values of b,R/R seem to
converge towards a value in the range hR /R
=(0.7—1.8)X10 . Our value (8) is in excellent agree-
ment with this, falling right in the middle. The methods
used for calibration generally fall in two groups. The first
group follows the same strategy as here, i.e., compares
measured isomer shifts to calculated electron contact den-
sities derived from more or less sophisticated schemes.
The second group attempts to derive an independent ex-
perimental value of the electron contact density with
which to compare the Mossbauer isomer shifts. The
internal conversion of valence electrons in a solid is used,
but large experimental difficulties prevail. It is, however,
encouraging to see the general agreement on the value of
the calibration constant obtained by these two approaches.
The attempts to calculate the change in nuclear radius be-
tween the excited- and the ground-state level from first
principles using some model for the nuclear state are
scarce and the accuracy limited.

The pressure dependence of the isomer shift of the
"Sn resonance in P-Sn has been investigated by the
present authors in a previous publication. In the present
work we have also varied the volume of a-Sn to get (via
the Pettifor pressure formula) ' predictions for the
equilibrium lattice constant and bulk modulus, as well as
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TABLE VII. Calculated and experimental lattice parameter,
0

a in A, bulk modulus B in Mbar, and volume derivative of the
electron contact density, in a o, for a-Sn and /3-Sn.

—3

dp(0)
d lnV Configuration pcore(0) p.,)(0)

TABLE VIII. Electron contact density of a free Sn atom in
several valence configurations. The contribution from the
[Kr]4d' core is separated out as p„„(0),whereas p„,~(0) is the
contribution from the fifth shell. Units are a o

'.

o,-Sn calc.
expt.

6.528
6.483'

0.51
053

14.2

P-Sn calc.
expt.

5.588
5.812'

0.57
0.579'

12.8
14.5(5)"

'Reference 26.
Reference 78.

'Reference 34.
Experimental value of d(A&s)/dP from Ref. 79 converted by

AR/R value of Eq. (8) and the average bulk modulus B=0.72
Mbar in a 0—100 kbar range.

5s Sp
Ss Sp'
Ss Sp
Ss 'Sp
Ss '5p
Ss'Sp'
Ss'Sp
Ss Sp"
Ss Sp
Ss Sp
Ss 5p'
Ss'5p'

183 254. 51
183 254. 82
183 255. 59
183 254. 87
183 255. 13
183 255. 86
183 257.30
183 255.27
183 255. S4
183 256. 18
183 257.53
183 259.93

76.93
80.82
85.25
41.04
43.23
45.21
47. 13

1.25
1.45
1.66
0.94
0.00

the volume dependence of the electron contact density.
The results are listed in Table VII, which also quotes the
P-Sn results for comparison. The calculated a-Sn equi-
librium lattice constant is only 0.7%%uo from the experimen-
tal value, whereas the p-Sn lattice constant is 4% too
small. The bulk moduli are in very good agreement with
experiments. (An earlier measurement of the bulk
modulus of a-Sn of 1.2 Mbar (Ref. 80) appears to be at
variance with both the measurement of Ref. 78 and the
theoretical calculations of Refs. 28, 42, and 81, which get
709, 456, and 420 kbar, respectively, for this quantity. )

The volume dependence of the electron contact density in
p-Sn is 15%%uo off the experimental value, which we consid-
er an excellent result taking into consideration the relative
scarce experimental information. Unfortunately, no data
on the pressure variation of the electron contact density in
a-Sn is available, which is mainly due to experimental dif-
ficulties, as the a phase readily transforms into the p
phase upon pressure. We note, however, that it is of the
same unusual sign and the same magnitude as in /3-Sn.

To test the validity of the frozen-core approximation in
connection with calculations of the electron contact densi-
ty, we list in Table VIII the results of some calculations
(LDA, fully relativistic) of a free Sn atom in various
charge states. The electron contact density is split up into
the contribution from the [Kr]4d' core and the valence
contribution. Except for the case of the fully ionized
Sn + ion, the core contribution to the electron contact
density varies a little, even when large fluctuations in
valence configuration is imposed. As the actual variations
in occupancy numbers of Table VI are less drastic, we do
not feel uncomfortable about the frozen-core approxima-
tion. In fact, it is not difficult to build into the LMTO

scheme a self-consistency procedure for the core, which is
what is needed to perform a stringent test of the frozen-
core approximation, but the values of Table VIII seem to
suggest that the effort is not worthwhile, as the variation
of electron contact density in solids primarily is an effect
of the variation of the valence charge distribution with
chemical composition.

V. CONCLUSION

In this work we have calculated the electronic structure
of a series of crystals, in which Sn is found as a com-
ponent. The band structures were discussed both in rela-
tion to experimental information and in relation to previ-
ous theoretical investigations. The electronic charge den-
sity on the site of the Sn nucleus was calculated and com-
pared with experimental isomer shifts. The agreement
was excellent, providing for the first time a truly
parameter-free calibration of the " Sn isomeric transition
with a 5% accuracy. The same result is a powerful test of
the LMTO calculational scheme since it is applied to so
different crystal structures and yet produces so good
linearity of the isomer shift versus contact density curve.
The decomposition of the crystal wave function into an-
gular momentum character within each atomic sphere
was demonstrated to be very convenient for interpreting
the variations of the isomer shift with chemical environ-
ments.
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