
PHYSICAL REVIEW B VOLUME 35, NUMBER 2 15 JANUARY 1987-I

Microscopic theory of electrodynamic response of diffuse jellium surfaces
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A finite-slab mixed Fourier representation is used to study, within the random-phase approxima-
tion, the electromagnetic response of a jellium-metal film of arbitrary thickness, with a general form
of the single-electron potential barrier defining the surface. Application is made to the calculation
of various optical properties both for simple steplike potential barriers and the Lang-Kohn self-
consistent potential. It is found that smooth potential barriers tend to support a localized collective
excitation within the electronic charge-density tail at the surface, which is manifested by a dramatic
enhancement of the optical power absorption. For thin films, finite-size oscillations are found in the
surface response function below the plasma frequency, which are more pronounced for the steplike
than for the Lang-Kohn potential well.

I. INTRODUCTION

The modern optical methods for the characterization of
clean and adsorbate-covered metal surfaces, such as the
different types of difference reflection spectroscopy, exci-
tation of surface plasmons, ultraviolet photoemission, etc. ,
cannot satisfactorily be described within the framework of
classical Fresnel optics, which considers only transverse-
wave solutions of Maxwell's equations. Incident light
with a finite normal component of the electric field vector
induces screening charges in the surface region, which ex-
tend typically some angstroms into the metal and produce
a longitudinal contribution to the electromagnetic surface
fields. This longitudinal electric field depends strongly on
specific surface properties, for instance, the unperturbed
electronic charge-density profile, and determines the
surface-specific experimental results. An adequate theory
should realistically describe both the optically induced
charges, i.e., optical electron-hole pair or collective plasma
excitations near the surface, and the effect of the detailed
electronic surface structure on the optical response.
Phenomenological generalizations of Fresnel optics have
emphasized one or the other of these aspects, but a con-
sistent treatment requires a microscopic theory of elec-
tromagnetic surface response. '

Microscopic approaches to metal optics, based on the
jellium model for conduction electrons and on the
random-phase approximation (RPA) for their response
properties, have been presented by Feibelman, ' by
Maniv and Metiu (MM), and by Gerhardts and Kem-
pa (GK). Feibelman used Maxwell's equations to calcu-
late the linear response to the self-consistent electric field
of electrons kept inside a jellium halfspace by the effective
surface potential calculated by Lang and Kohn. He con-
sidered an incident plane light wave and made extensive

use of the fact that its vacuum wavelength is much larger
than the typical spatial extent of optically induced charges
("long-wavelength limit" ). Since he worked in real space
and did not include bulk damping effects, a clever treat-
ment of long-range field contributions owing to propaga-
ting plasma waves and to Friedel-type oscillations was
necessary in the numerical calculations.

Maniv and Metiu avoided the restriction of long wave-
lengths and addressed the RPA response of a jellium slab
to an arbitrary external electromagnetic field, including,
for example, the field of an oscillating dipole near the sur-
face. Working in a mixed Fourier representation, MM
recognized that the simultaneous occurrence of long-range
"bulk" fields and short-range "surface" fields leads to nu-
merical problems which can be circumvented by a suitable
renormalization of the dielectric response tensor. In
the renormalized version, only the short-range effects
remain to be calculated numerically, whereas the long-
range effects are treated analytically. Using the mixed
Fourier representation of Maxwell's equations for a jelli-
um halfspace, Gerhardts and Kempa showed that, in the
long-wavelength limit, longitudinal fields, which are of
short range, decouple from the transverse long-range
fields, and they obtained results equivalent to those of
MM's renormalization procedure.

A shortcoming of the explicit calculations of both MM
and GK is the use of the simple infinite-barrier model
(IBM) for the effective potential. It is well known' that
the IBM leads to a much steeper electron-density profile
than the more realistic Lang-Kohn potential. As a conse-
quence, some surface response properties calculated by
GK, e.g. , the photoabsorption spectrum, show strong
disagreement with Feibelman's results.

The purpose of the present paper is to extend the mixed
Fourier formalism to arbitrary one-dimensional potential
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wells, so that a systematic investigation of the effect of
the specific surface potential on several response proper-
ties becomes possible. The idea is simple: Since the elec-
tron density outside the metal decays rapidly both in the
ground state and under illumination, one can introduce
two auxiliary infinite potential barriers sufficiently far
from the physical surfaces of the metal slab so that nei-
ther the electron density in the ground state nor the opti-
cal response properties are considerably affected. Then
the mixed Fourier representation can be applied between
the barriers, whereas we have vacuum fields outside. The
selection of the barrier positions is admittedly somewhat
arbitrary, but our computations have shown that, for pho-
ton frequencies co of the order of the plasma frequency co~
or smaller, the procedure is rather insensitive to the exact
location of the auxiliary infinite barriers, provided that
their distance from the jellium edge is larger than about 4
A. In recent work on the static and low-frequency
response of metal surfaces similar models have been
used. "

The paper is organized as follows. In Sec. II we briefly
recall some basic results of the IBM calculation by MM
and indicate the modifications necessary to include
smooth surface potentials. Especially, we summarize the
important results for surface-sensitive quantities in the
long-wavelength limit. In the Appendix we sketch the
derivation of these results within the alternative approach
in the spirit of GK, starting from Maxwell s equations for
the slab geometry. This demonstrates the equivalence of
the approaches.

In Sec. III the formal properties of the longitudinal
dielectric matrix, such as sum rules, are discussed. In Sec.
IV we present numerical results for different quantum-
mechanical surface models and discuss their physical im-
plications. A short summary and conclusions are given in
Sec. V.

II. FORMAL RESULTS

A. Renormalization procedure

We consider an electron gas bounded by a one-
dimensional potential well, as illustrated schematically in
Fig. 1. Auxiliary potential barriers at z =0 and z =L are
introduced on both sides of the potential well, and the
positively charged jellium background is situated between
a and L —a. The distance a is chosen sufficiently large
so that the final results are practically independent of a.
For computational convenience, we assume inversion
symmetry of the unperturbed system with respect to

1z = —L.2

The general dielectric response tensor II (K,z,z', co) of
the bound electron system, as well as the bare (vacuum)
photon propagator D' '(K, z,z';co), can be expanded in the
mixed Fourier representation corresponding to a slab of
thickness L, which is determined by the positions of the
auxiliary barriers. The subscripts v denote timelike
(v=O) and spacelike (v=1,2, 3) components, and K is the
two-dimensional wave vector parallel to the slab, which
has translational symmetry in the x-y plane. The result-
ing self-consistency equation for II ~ within the RPA is
given by

~ii~infin) te barrier

h
I

ective potential

electron density

0 a Ll2 L-a L

FIG. 1. Model system with a jellium slab of width L —2a, lo-
cated symmetrically between two auxiliary infinite potential bar-
riers. Electron density and effective potential are indicated.

II .(k, k') =ll' '.(k, k')

2~ L —g II„„'(k,p)
PP P

xD„"'(p,p') Il„(p', k '), (2. 1)

where k, k' and p,p' all take values of the form n~/L
with n equal to odd (even) integers for a symmetric (an-
tisymmetric) response. ' The structure of this equation
is identical to that of the corresponding equation in the
IBM; the only difference concerns the explicit form of
the bare polarization tensor 11'„' (K,k, k', co) which must
be recalculated anew for each single-electron model poten-
tial.

The great advantage of using this representation is,
however, that the bare photon propagator Dp('i(p, p') is
identical to that of the IBM calculation, ' so that the re-
normalization scheme applied in the IBM calculations is
applicable also in the present more general situation. Ap-
plication of this renormalization procedure transforms
Eq. (2.1) into

g ek„p„II„(p,k') =II' „'(k,k'),
PP

where the renormalized dielectric tensor is defined by

(2.2)

uk~ p„5k» p„+2' —L II~ „'(k,p )D „' '(p ), (2.3)

and D& '(p) is the diagonal part of the vacuum photon
propagator Dp(ol(p, p ). This renormalization eliminates
from the self-consistency equation all the nonadditive
long-wavelength contributions, which generate the reflect-
ed photon beam. ' A formal solution for the renormal-
ized response tensor II ( k, k ') in terms of the inverse
dielectric matrix e k k ~ is given by

II~ ~(k, k') =[2' LD'„(k')] '(5k~ k ~ Ek» k „) . —(2.4)

In the long-wavelength limit, where the coupling be-
tween the transverse and the longitudinal components of
the response tensor can be neglected, the short-
wavelength response function, which dominates the opti-
cal properties over a length scale of a few angstroms
around the surface, is completely determined by the in-
verse of the density-density dielectric matrix Ekp k p. '

Furthermore, if the sources of the external electromagnet-
ic fields are located outside the auxiliary infinite barriers
as, for instance, in the case of an incident plane wave con-
sidered in the present paper, the individual components of
ekpkp contain a surplus of information, and the short-
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wavelength dielectric response is completely determined
by the sum'

el (K k ci))—:g el OI 'o(K'co)
k'

(2.5)

This result can also be obtained from the evaluation of
Maxwell's equations, which yields as a simplified version
of Eq. (2.2) (cf. also the Appendix)

formulas derived previously within the IBM for calculat-
ing various surface-sensitive observables, provided that
the bare polarization IIo 0(K,k, k';co) is calculated for the
actual effective potential sketched in Fig. 1. For example,
the surface-sensitive component of the electric field [i.e.,

E,(z) for z inside the slab near the slab boundary] can be
computed by using Eq. (V.6) of Ref. 6, that is,

g ego g p(K;co)e ~
'(K, k', co) = 1

k'
(2.6) E,(z) =E,'"'[(1+» +»'"'")e

even 'k0[+(» »'"'")e— +be, (z)], (2.7)
B. Surface-sensitive observables

As we have already mentioned, the introduction of the
auxiliary infinite barriers and the use of the corresponding
mixed Fourier representation enable us to adopt all the

where E,'"' is the z component of the incident field, r'
(»'"'") is the odd (even) reflection coefficient defined in
Eq. (IV.30) of Ref. 5, ko ——(co/c)cosP with P the angle of
incidence of the photon beam, and

be, (z)= —g [e( '(k) —1](l+e ' )(»' "+—, )+—g [e I '(k) —1](1—e ' )(»'"'"+ —, ) . (2.8)

odd

Here we have omitted the arguments K and co of the ef-
fective inverse longitudinal dielectric function introduced
by Eq. (2.5).'

Equations (2.7) and (2.8) are valid for any value of the
slab thickness L and, therefore, can be used for very thin
films and for a semi-infinite metal as well. In the limit
koL~oo (semi-infinite metal), the odd and even contri-
butions to the reflection coefficient r become equal,
» =»'"'"= , », and the sums in Eq. —(2.8) can be replaced
by integrals. Then, the singular terms exp( ikoL) in E—q.
(2.8) cancel each other and

odd

(2.9)

On the other hand, for a very thin film (koL «1), Eq.
(2.8) reduces to

b.e, (z) = —g [e ~ (k) —1](» + 1),sin( kz)

k &0
odd

(2.10)

»=2» =(tang) Uoo

where

(2.1 1)

since in this limit r =2r' . Note that formally the results
for be, (z) are the same both for a very thin film and a
semi-infinite metal. The values of the reflection coeffi-
cients in the two limits, however, are quite different. For
a semi-infinite metal, one can use, to a good approxima-
tion, the expression given by the classical Fresnel formula,
while for a very thin film, one may use Eq. (IV.47) of Ref.
5, i.e.,

Uoo =i—(cosP) —g [e~ (k) —1]odd ~ 4 ——1 1

c Lk&0 k
odd

(2. 12)

In the Appendix we derive a formula which includes the
effect of the transverse field, too. We can also give im-
mediately an expression for the photoabsorption due to
energy transfer processes through the longitudinal field by
using Eq. (VI.5) of Ref. 5, that is, '

Y(co) =—(sing)(tang)
l
I+»

l g Im[ e I (k)—]/k' .
C L k&0

odd

(2.13)

III. DIELECTRIC MATRIX

A. Formal evaluation

It is clear now that the interesting longitudinal correc-
tions to the classical Fresnel optics are determined by the
effective inverse dielectric function el (K,k;co), which is
the solution of the set of linear equations (2.6). Thus, the
key quantity to be computed is the kernel of this equation,

Again this approximation is valid both for very thin films
and for a semi-infinite metal. It should be noted, howev-
er, that only in the thin-film limit Eq. (2.13) yields a
well-defined quantity. In the semi-infinite limit the sum
in Eq. (2.13) develops a long-wavelength singularity,
which should be treated carefully. To handle the long-
wavelength contribution to the photoabsorption correctly,
one should take into account also the transverse com-
ponents of the electromagnetic field, which yield an effec-
tive cutoff of the long-wavelength singularity (cf. the Ap-
pendix).
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the density-density dielectric matrix ei, oi, o(K;co). This
can be done through the relation [cf. Eq. (2.3)]

&go, g'o(Kick) =5g g +2' LIIo o(K, k, k', co)4'/(k'), (3.1)

once the density-density component of the bare polariza-
tion tensor is known. The latter will be calculated from
the standard RPA formula appropriate for a system
which is translational-invariant in the x -y directions:

2 (Q ) (E, ~)
8~ „„E„@+K—E„g—AG

(3.2)

Here f is the Fermi function, K and Q are wave vectors
in the x-y plane, and co—:co+iysgn(co) is the complex
photon frequency, the imaginary part of which is deter-
mined by the phenomenological damping constant y.

A proper way to introduce y without violation of the
equation of continuity has been discussed in Ref. 4. The
energies appearing in Eq. (3.2) are of the form

E„g——e„+iri (Q„+gy )/(2mo), (3.3)

(3.5)

with E„and P„(z) the energy eigenvalues and eigenfunc-
tions of the one-dimensional Schrodinger equation corre-
sponding to the model potential under study, which in-
cludes, in addition to the actual surface potential, the two
auxiliary infinite barriers. The free-electron mass is
denoted by m0.

Introducing the dimensionless Fourier coefficients
L

Wi", '" =2 dz cos(kz)P„*(z)P„(z) (3.4)
0

with k =m~/L and m integer, we obtain for the double
cosine transform of Eq. (3.2) in the zero-temperature lim-
it, in which the two-dimensional Q integral of Eq. (3.2)
can be done analytically,

2

IIoo(K, k, k';co)=
z g Wi", '" WP '"A (K,n, n';co),

2(irL )

[K~O, F(u) = —1/2u] we need only

m0
A (O, n, n', co)= — e 1—E„(eF—E„)(e„—E„)

eF ( E„—E„) —(iris')

(3.9)

Together with Eq. (3.5) this yields for the dielectric ma-
trix [cf. Eq. (3.1)] in the long-wavelength limit

4 ( EF —s„)( E„—E„)
&ao, a o(0 oi) =&ii

Cn (EF

X Wi", '" Wi", '", (3.10)

where ao ——A' /(e mo) is the Bohr radius.

B. Symmetry and sum rules

One of the advantages of having two infinite barriers
included in the single-electron potential is that the wave
functions P„(z) as well as any response functions of the
system strictly vanish at z =0 and z =L. This implies
sum rules for the Fourier coefficients of cosine
transforms. For instance, the bare polarization matrix
IIoo(K, k, k';co) (as well as the full one 11oo) satisfies the
exact sum rules

where

m0 kF
M(K, n, n';co) = 1—

2~g2 K

1/2
~n 8(1—s„/s )

g 11,",'(k, k') =g Il,",'(k, k ) =0,
k k'

and the coefficients defined in Eq. (3.4) satisfy

(3.1 1)

X[F(u+ )+F(u )], (3.6)
g Wi", '" =0 .

k
(3.12)

with e(x) the unit step function, sz the Fermi energy,
kF ——(2moEF )' /A' the Fermi wave number, K =

~

K ~,

and

(E„e„+KGi)/e~ K2/k—F-
(K /kF )( 1 —e„/EF )

'i

1 ' (1 —x')' '
F(EE)=—J dx

vr —& x —u

1/2
1

(3.7)

(3.&)

The function E(u) is analytic in the complex u plane with
a branch cut at —1(.. u (.. 1. In the long-wavelength limit

(If one restricts the sums to k )0, the k =0 terms should
be taken with a factor —,'.) For the numerical calculation
of these coefficients, a sine expansion of the wave func-
tions with Fourier coefficients

c„(k)=(2/L)'~ J dz sin(kz)P„(z) (3.13)

is convenient. We will consider only such models for the
single-electron potenial which are symmetric with respect
to the center z = —,

' L of the slab. Then the wave functions
have definite parity; they are real, even or odd functions
of the variable z —,

' L. The coefficients —c„(k)
(n =0, 1,2, . . . ) vanish if P„(z) and sinkz have different
parity, i.e., c„(k)=0 if P„(z) is an even (odd) function of
z —, L and if m =Lk/ir —isan even (odd) integer. Simi-
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larly, the coefficients Wk'" defined in Eq. (3.4) vanish if
the product P„(z)P„(z) and the function coskz (or,
equivalently, the integer number kL/rr) have different
parity. As a consequence, only k and k' values of the
same parity, either both odd or both even multiples of
~/L, are coupled by the dielectric matrix, Eqs. (3.1) and
(3.10). As emphasized in Sec. II, for very thin films and
for semi-infinite metals, only the odd response modes
need to be considered explicitly. We take advantage of
this simplification in our numerical computations.

Inserting the sine expansion of the wave functions into
Eq. (3.4), one obtains (for pL /~=0, 1,2, . . . )

Wg'" =pc„(k)c„(k )(5k k&+6k k z
—&k+k,z),

k, k'

(3.14)

where the sum is over all values kL/~=1, 2, . . . and
k'L/rr=1, 2, . . . , and the sum rule (3.12) is evident. In
order to satisfy the sum rules (3.11) and (3.12) exactly also
in the numerical calculations, where only a finite number
of coefficients is available, we proceed as follows. First,
we choose an upper bound P larger than the maximum
values of k and k' we want to keep in the dielectric ma-
trix (3.10). Then we compute c„(k) and c„(k') by numer-
ical integration according to Eq. (3.13) for all values of
k &P and k'&P. Finally, we compute for all values p &P
the coefficients Wz"'" according to Eq. (3.14); however,
with the additional restriction k +k' & P.

An advantage of our approach is that the coefficients
WI",

'" and the energy eigenvalues c„ in Eq. (3.10) must be
calculated only once, even if one wants to calculate the
dielectric matrix for different frequencies co. Green's-
function methods, on the other hand, require a new nu-

merical integration of Schrodinger s equation for each
value of co. The n' sum in Eq. (3.10) converges reasonably
quickly and is truncated at a sufficiently high energy c„.
Note that a truncation is not necessary for the simple
IBM, where Eq. (3.13) reduces to c„(k)=5„k, so that no
sum is left in Eq. (3.14) and the n' sum in Eq. (3.10) be-

comes trivial.

IV. APPLICATION AND NUMERICAL RESULTS

It was suspected that the electron density profile at a
metal surface strongly affects the optical response proper-
ties. ' ' In this section we will present results for three
different surface-model potentials: the self-consistent ef-
fective potential calculated by Lang and Kohn, which
has been used in Feibelman's response calculation; the
simple IBM employed by MM and by CxK; and further a
so-called finite-barrier model (FBM) with the surface po-
tential represented by a single step. Results on strongly
charged jellium surfaces, for which the electron density is
altered by the applied static electric field, have been re-
ported elsewhere. '

In the long-wavelength limit, which will be considered
exclusively in this section, and for sufficiently large film
thickness, numerous response properties can be expressed
conveniently in terms of the surface response functions
dz(co), d~~(co) first introduced by Feibelman, ' in order to

describe the electromagnetic response of a jellium
halfspace. They are defined as

dz ——f dz[E, (z) —E,"(z)]/[E,"(out) —E,"(in)], (4.1)

d~~
——f dz[D„(z) —D„"(z)]/[D„"(out)—D„"(in)] . (4.2)

Here, the superscript cl refers to the classical transverse
field, which varies discontinuously at the surface, out (in)
indicates the region outside (inside) the metal, and the in-
tegrals extend over the surface region, where the actual
fields E,(z),D„(z) deviate from the classical fields. The
film thickness or, alternatively, the damping constant y,
shall be so large, that in the center region the actual fields
are equal to the classical fields. As shown in the Appen-
dix, we determine the classical fields by specifying a
transverse dielectric constant e, in the slab region
0&z &L. Then, from the RPA result for the dielectric
tensor,

—g(z) =(1—1/e, ) 'E,'(z)/D, (0), (4.3)

with the limiting values g(0) = —1 and g(L /2) =0. Intro-
ducing the optically induced charge density p, which satis-
fies the equation 4~p=V-E=dE, /dz, we can write Eq.
(4.1) in the form

L/2
dz —— dz zp z

L/2 L/2f dzp(z)= f dzzp(z) .

(4.4)

Employing Eq. (2.10), we then obtain

1 4 1d, = 1 ——
ok

odd

(4.5)

with the last term, 1/e„ taken instead of 1 in order to
avoid the long-wavelength singularity mentioned at the
end of Sec. II (cf. the discussion in the Appendix).

Results for the frequency dependence of d&, calculated
from Eq. (4.5) for three selected model potentials, are
shown in Fig. 2. The film is chosen thick enough to en-
sure that, for the actual damping parameter, the longitu-
dinal field becomes small near z = —,'L but, on the other
hand, thin enough to sustain odd response modes only.
Obviously, the results for the three models are dramatical-
ly different. The real part of dz —

d~~ which, according to
Eq. (4.4), can be regarded as the center of gravity of the
induced charge density, takes negative values for the
Lang-Kohn and the FBM potential, if the frequency is
low. That means the center of gravity of the induced
charge density lies outside the jellium for these two
models, whereas for the IBM, Re(dq —d~~) is positive, i.e.,
inside the jellium, for all frequencies below the plasma
frequency co~. Also Im(d~ —dj~) =Imd~, which is closely
related to the longitudinal-wave share of the photoabsorp-
tion coefficient [cf. Eq. (2.13)]

e (z,z') =Biz —z')[1+(e,—1)n (z)/n+ ],
[with n (z) the electron density and n+ the jellium densi-
ty] one obtains, for the left-hand surface, d~~

——a, i.e., the
location of the jellium edge. ' ' ' The integrand in Eq.
(4.1) can be regarded as a normalized longitudinal field, '

which can be written in the form (cf. the Appendix)
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In order to shed some light on the poletype structure
mentioned above, we calculated for the Lang-Kohn model
the surface-sensitive part g' of the induced electric field
and the induced charge density p [cf. Eqs. (4.3),(4.4)]. In
Fig. 3, results for frequencies ~/co& ——0.625, 0.775, and
0.925 are presented. Pronounced structures in the field g
are obtained for co/co~ -0.7 to 0.8, and the induced charge
density resembles a dipole layer, as is expected for the
resonant excitation. '' ' ' The effective inverse longitu-
dinal dielectric function e t (k) itself, shown in Figure 4
for the same frequencies, exhibits a resonancelike struc-
ture at co/~&-0. 775, k=0.9 A ' as well. This struc-
ture, marked by the arrows in Fig. 4, vanishes rapidly if
the frequency is changed. It is very similar to structures
due to plasmon excitations at frequencies above co~.

Finally, in Fig. 5 we examine the effect of the damping
parameter y on the surface response function dz, calculat-
ed for the Lang-Kohn model ~ For the reduced damping,
y=0. 03co&, finite-size effects become visible, which are
due to resonances in the dielectric function eko t, o(0;co)
[cf. Eq. (3.10)]. The finite-size effects occur because the
single-electron energy levels, which are broadened by the
damping, do not overlap completely in the potential well.
The resonance condition for the frequency cu can be writ-
ten as

fico=e„—c,„(n'=n + l, n +3,n +5, . . . ), (4.7)

with c.„ the energy of the highest occupied wave function.
For the example under discussion, the number of occupied
wave functions is given by n =23, and the first resonances
occur at n

' =24, 26, 28, 30, and 32, as indicated by the ar-
rows in Fig. 5. Only odd response modes are considered
here; therefore, n+n' must be an odd integer. In the
FBM, the finite-size effects are present as well, whereas in
the simple IBM, they are completely absent due to the
peculiar features of the coefficients 8'I", '" discussed at the
end of Sec. III. It should be noted here that, if the value
of the damping y is so small that the artificial discrete na-
ture of the spectrum above the vacuum edge becomes evi-
dent, the results at high frequencies are distorted by artifi-
cial finite-size effects due to the auxiliary infinite barriers.

Experimentally, finite-size oscillations should be seen,
e.g. , in the power absorption below the plasma frequency
[cf. Eq. (4.6)], provided that the damping constant y and
the thickness of the metal film are sufficiently small. We
want to stress that, apart from the finite-size effect, our
result for the surface response function d&, obtained for a
jellium film, closely resembles the corresponding result of
Feibelman for the semi-infinite case.

V. SUMMARY

We have applied the mixed Fourier formalism, previ-
ously employed by Maniv and Metiu and by Gerhardts
and Kempa to discuss surface response properties in the
framework of the oversimplified IBM, to the general case
of an arbitrarily shaped surface-barrier potential. A finite
jellium slab model was used, and auxiliary infinite poten-
tial barriers were situated sufficiently far away from the
surfaces, so that the electron distribution in the ground
state, as well as in the optically excited states, is practical-
ly independent of the actual position of the auxiliary bar-
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APPENDIX: MIXED FOURIER
TRANSFORMATION OF MAXWELL'S EQUATIONS

We consider Maxwell's wave equation

V(V E)—V E=(co/c) D
for fields of the form

E(r, t) =E(z)exp[i (q„x cot)]—(Al)

in the slab geometry and assume local isotropic dielectric
constants e, and eb for z ~0 and for z & L outside the
slab, respectively. We assume incident p-polarized light
with wave vector (q„,O,p, )=(e, )' (co/c)(sina, O, cosa)
(here we choose the direction of incidence as in Ref. 7, i.e.,
opposite to that of Sec. II) so that E~

—=0 and

E„(z)= E, (cosa)(e ' ——re ' ),
(A2)

E,(z) =E,(sina)(e ' +re ' ),

riers. Our method has several advantages over a direct
real-space approach. For instance, cosine Fourier expan-
sions yield exact sum rules, which can be employed to
check numerical results. The Fourier coefficients of the
density fluctuations have to be calculated from the nu-

merically determined wave functions only once for all fre-
quencies.

Our calculations for thin jellium films with the
surface-barrier potential of Lang and Kohn have shown
that the surface response function di(co), calculated by
Feibelman for the semi-infinite system, can closely be
reproduced already with films of about 60 A thickness.
Finite-size oscillations in the frequency dependence of
dz(co) can be removed by choosing a sufficiently large
phenomenological damping parameter y, which leaves the
overall structure of d~(co) nearly unchanged.

Different surface-model potentials yield a completely
different behavior of the surface response function d~(co),
which results in a dramatic increase of the optical power
absorption, provided that the low-density tail of the elec-
tron distribution at the surface leaks out sufficiently far.
This confirms previous results for the Lang-Kohn model
and for the IBM, which could not be easily compared,
since they were obtained with different approaches.
Moreover, our calculations of the optically induced elec-
tric field and charge density support the asser-
tion' ' ' ' that the enhanced photoabsorption obtained
for the Lang-Kohn potential, which is in good agreement
with the experimental photoyield spectrum of alumi-
num, is due to a collective excitation mode, which is
localized in the low-density tail of the electronic charge-
density profile.

Finally, our calculations predict, that the optical spec-
tra of very thin metal films ( —100 A) can show finite-size
oscillations below the plasma frequency. Experimental in-
vestigations of this effect would be valuable.
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E„(z)= E—b (cosP)e

E,(z) = —(tanP)E„(z) .
(A3)

For 0 & z & L inside the slab the x components (z com-
ponents) of the electric field E(z) and the displacement
D(z) are expanded in a cosine (sine) Fourier series accord-
ing to

E&(z) =—g 8'&(k)e' (Lk Itr =0, + 1, +2, . . . ),
k

(A4)

in z &0, whereas the transmitted beam in z & L has the
wave vector (q„,O,pb) =(e&)' (co/c)(sinP, O, cos/3) and

ikz

L t, q c q /co —e~(q) et(q)

with q, =k, t„=—k/q, and t, =1 [note that ej.(q) is an
even function of k]. The constants r, Eb, D, (0), and
D, (L) in Eqs. (A2), (A3), and (A9) are determined by the
standard matching conditions (E„and D, continuous at
z =0 and z =L). It is important to note that, for reason-
able assumptions on the asymptotic behavior of the ej(q)
(e, /q ~0, et~1 for kazoo), the sine series (A10) for
f, (z) is not absolutely convergent, and f,(0+)&0. The
same is true for the longitudinal displacement field given
by Eq. (A5a), which is easily evaluated as

with 8'„(—k) =8'„(k) and 8', ( —k)= —8', (k) and simi-
larly for W„(k). Taking the cosine (sine) transform of the
x (z) component of Eq. (Al) and introducing "longitudi-
nal" ( 8't, &t ) and "transverse" ( 8'„&,) field com-
ponents which are parallel and perpendicular to the vec-
tors q=(q„, O, k), respectively, we obtain Maxwell's equa-
tions in form

—Nt(q) = —[D,(0) e'" D, (L—)],
q

(c/co) q 8', (q) —N, (q)=(k/qx)&t(q) .

(A5a)

(A5b)

The response properties of the metal slab are described by
constitutive equations of the form

&;(q)= g g e;~(q„,k, k', co)8'J(q'), i =t, l . (A6)
j=t 1 k'

F, (q) =&,(q)/8', (q), j =t, I, (A7)

we may write the nontrivial part of Eq. (A6) in the long-
wavelength limit as

, e»(q„,k, k', to)e—, '(q') =1,
k

(A8)

In the long-wavelength limit the following approximation
is appropriate: neglect the coupling between longitudinal
and transverse field components, Et~ =6~t =0, replace e«by
the local Drude dielectric constant et = 1 —~~ /
[co(co+i@)]of the bulk metal, and take the limit q„~O in
e~~. The component e~~ of the dielectric tensor may either
be calculated from the current-current correlation formula
for the conductivity tensor or from the density-density
response function. (The equivalence follows from the gen-
eralized f-sum rule and the equation of continuity. )

Introducing effective dielectric functions

D (z) =—g " Mt(q)e'

with

=g„(z)D,(0)+ ri~„(L z)D, (L—), (A 1 1)

g„(z)= —icosh[q (L —z)]/sinh(q„L),

g, (z) = sinh[q„(L —z)] /sinh(q„L),

(A12a)

(A12b)

p(z) =h (z)D, (0)—h (L z)D, (L), —

with

(A13)

h (z) =(4nL) ' g exp(ikz)[e t '(q) —1],
k

(A14)

where we assumed et(oo)=1. For D(0)& D( L), the van-
ishing of p(z) near the infinite potential barriers implies
h (0+ ) =h (L ) =0, i.e., two sum rules:

+[1—I/et(q)] =0
k

(A15)

must hold for the sum over the even and the odd values of
kL/vr separately. For D, (0)=D,(L) (thin film) only the
odd-integer sum rule survives. The limits of a very thin
film and of a semi-infinite metal can easily be computed
from Eq. (A10). First we consider the reflection coeffi-
cient r defined by Eq. (A2), which, owing to the matching
condition at z =0, is given by

so that D, (0+)=D, (0), D, (L ) =D, (L), and V.D'=0 in-
side the slab. We find, that f,(0+)= I/et(q~ oo ),
f, (L ) =0, and consequently, E,(0+)=D, (0) let( oo ),
E,(L )=D,(L)!et(oo). If we assume et(oo)=1 and vac-
uum outside the slab, e, =eb ——1, we obtain both D, and
E, continuous at z =0 and z =L, as it should be. For
the induced charged density we obtain from
4'(r, t) = V E=V.(E—D ) the cosine expansion

which is just Eq. (2.6) with

et o, a'o(K'co)=(q/q )e»(q k k 'cu) .

Here we took advantage of the decoupling of odd and
even response modes.

From Eqs. (A4), (A5), and (A7) one obtains for the elec-
tric field in the slab

r = [1+e,(tana)Qo]/[1 —e, (tana)Qo],

with [cf. Eq. (A9)]

Qo ——E„(0)/D, (0)=f„(0)—f„(L)D,(L)/D, (0) .

The matching condition at z =L yields

D, (L)/D, (0)=f„(L)/[f„(0) (cotP)/eb] . —

(A17)

(A18)
E~(z) =f&(z)D, (0)+gj'&(L z)D, (L), —

where g„=—1, g, = + 1, and

(A9)
Now we separate even and odd contributions to f„(0),de-
fining
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2f„'"'"=f„(0)+f„(L), 2f„' =f„(0) f—„(L) . (A19)

f„"'"= 1/[iq„L FI(0)]+0 (coL /c),
whereas, to leading order in coL /c,

(A20)

For a very thin film, cpL/c « 1, f„'"'" is dominated by the
large k =0 term [see Eq. (A10)]

factor of the longitudinal field, Eq. (2.10), this term can
be neglected.

Whereas the E„(z) field in a very thin slab is practically
constant, the E, field has an interesting z dependence. To
lowest order in coL/c, only odd values of kL/~ contri-
bute to E,(z) [cf. Eqs. (A9), (A10), and (A22)], and the
contributions containing e, (q) can be neglected,

2
pdd 1 ct) L

c qx

4iq„

p k ei(k)
Qd(i

(A21)

Then f„' /f„"'"-(q„L)~&&1, and Eq. (A18) reduces to

E,(z) =D, (0) 1+—g4 sin(kz)
L k.o

Qdd
e, (k)

—1 +O(q, L)

D, (L)/D, (0)= 1+iPbLF((0) Ieb,
whereas Eqs. (A17) and (A18) yield

(A22}

With Fi(k)~1 for kaz oo, we obtain

(A26)

Qp
——— (cot/3) [1+(cot/3)/(eb f„"'")—4eb (tan/3)f„" ]

Eb

cot/3 1+IPb L —1
Fb Eb

8q.'
+ l Eb

PbL k &p k Fi(k)
Qdd

(A23)

(tan P) g, —1
8 2 1 1

L k ~p k et(k)
Qdd

This result reduces to that obtained from local Fresnel op-
tics for reflection from a thin surface layer of width L
and dielectric constant e, on top of a dielectric halfspace
with eb, if one replaces F~(k) with e, . Note that the re-

flection amplitude r, Eq. (A16), is directly proportional to
the thickness L of the slab, if the dielectric on both sides
is the same, eb=e„cos/3=cosa. For eb ——e, =l and

a=P=P, one obtains

I Q7r = ———(cosp) L [~,(0) 1]2 c

E,(0 ) =D, (0)=e, (1+r)E,'"'(0 ),
where Eq. (A2b) and the matching condition D, continu-
ous is taken into account and r is given in Eqs. (A16) and
(A23). For e, =1, one recovers Eq. (2.10). For the semi-
infinite system, on the other hand, one obtains with the
approximation e, (q) =e, from Eqs. (A9) and (A10)

1 k, 2 f k sin(kz)
0 2

1 1
X

~r(q)
(A27)

in agreement with Ref. 7. The z dependence of E, near
the surface is in agreement with Eq. (2.9).

In order to calculate the important contribution of the
longitudinal fields to the power absorption, it is con-
venient to treat the transverse fields within the approxi-
mation F, (q) =e&(0)=E„wit—h a "bulk" dielectric constant
e, independent of q. Then Eqs. (A9) and (A10) are
evaluated to yield E=E'+E', where E'=D/e, with

D„(z)=g„(z)D,(0)+r/~„(L z)D, (L), —
(A24)

(A28)

which is in agreement with Eq. (2.11); however, it includes
also the contribution of the long-wavelength transverse
field described by F~(0) =F,(0). For a semi-infinite metal,
on the other hand, the k sums converge to k integrals,
f„'"'"=f„' = z f„(0),f (L)~0, and D,(L)~0. Approxi-
mating F, (q) in Eq. (A10) by the bulk dielectric constant
e, of the metal, one obtains"

g, (z) = i (k, jq„)cos[k—,(L —z)]/sin(k, L),
g, (z) =sin[k, (L —z)]/sin(k, L),

and

E„(z)= ——gi qI 1

&1(q}

(A29a)

(A29b)

Qp
—f„(0}=—

qx &~

2
dk

qx 1

in p q &I(q)

(A25)

z [e'HD (0}+~ e'k(L )D (L}]—
(A30)

where (q, O, k, ) is the wave vector of the transverse wave
in the metallic halfspace, q +k, =e,co /c . If we omit
the small second term on the right-hand side of Eq. (A25),
we obtain from Eq. (A16) the classical Fresnel result for
the reflection amplitude. The correction term to the
Fresnel result is important for the interpretation of reflec-
tion spectroscopy experiments. ' '' However, in the pre-

L
P = —,

' f dz Re[j(z).E'(z)]=P'+P'
0

(A31)

into contribution

Using j=ico(E—D)/4vr, we can separate the total power
absorption
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P'= Im ——J dz
~

D(z)
~

(A32) P'= —
~

D, (0)
~

—g Im
Ft(k)

due to the transverse field and a contribution

P= — dzIm D*z E z
8~

(A33)

containing the longitudinal field. In Eq. (A33) we may
neglect the small x component of E' and the z dependence
of D, to obtain for the power absorption related to the
longitudinal field at the surface which is exposed to the
incident light

(A34)

Dividing (for E =Et, = 1, a=/) by the incident flux
c cosP

~
E,

~

/8tt and inserting D, (0)=sint()Eo(1+r) we
recover Eq. (2.13) augmented by the term —I/e, in the
large parentheses, which removes the Iong-wavelength
singularity of Eq. (2.13). Since P', Eq. (A32), also
remains finite in the limit L ~ ao (there the z dependence
of D, can, of course, not be neglected), the somewhat arbi-
trary separation of P into P' and P is advantageous.
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