
PHYSICAL REVIEW B VOLUME 35, NUMBER 10 1 APRIL 1987

Properties of model-valence-Auctuation heavy-electron systems
in applied and molecular fields

D. L. Cox'
Physics Department, B019, University of California, San Diego, La Jolla, California 92093

(Received 20 June 1986)

Self-consistent large-orbital-degeneracy perturbation theory for the one-site Anderson model is
used to compute the occupancy and magnetization as a function of field and temperature for both
spin & and spin &. The magnetization curves are in good agreement with exact Bethe-ansatz and
high-field perturbation-theory results, although some systematic discrepancies are apparent between
the two different approaches. The most novel result for the magnetization is that the "superlinear"
behavior known for high-degeneracy impurities (and observed in YbCuA1) vanishes at precisely the
temperature where the zero-field magnetic susceptibility peaks. The one-impurity results are extend-
ed to the lattice via perturbation theory in the intersite interactions, after which simple molecular
field theory (excluding the possibilities of charge-density wave and superconducting phases) is applied
to obtain magnetic-ordering phase boundaries for the spin-& and spin-&5 models which are in gross
qualitative agreement with previous lattice calculations, including the so-called "Kondo necklace"
and "resonant level" models. In particular, the criterion that the intersite coupling exceed the
characteristic Kondo-effect energy scale is recovered. It is shown that the superlinear behavior ob-
tained for high-degeneracy leads, within molecular field theory, to novel tricritical behavior without
the inclusion of anisotropy terms. It is suggested that EuRh3B2 and YbCuA1 are likely candidates
for observing this behavior. Detailed appendices indicate the approximations necessary to obtain the
molecular field theory and thereby its limitations to finite temperatures away from the coherent re-
gime of the Anderson lattice.

I. INTRODUCTION

This paper is devoted to a study of the response of a
model valence-fluctuating heavy-electron site to applied
magnetic fields or to internal molecular fields. Calcula-
tions are performed with the degenerate Anderson model'
via the recently developed self-consistent large-orbital-
degeneracy perturbation theory. Particular attention is
paid to the high-degeneracy limit at finite field and tem-
perature, which only recently has been treated by the
Bethe-ansatz approach. '

The large-orbital-degeneracy perturbation theory has al-
lowed reliable calculations of static and dynamic proper-
ties of the degenerate Anderson model. " ' Previously,
the numerical renormalization group had yielded essen-
tially exact results for the magnetic susceptibility and
specific heat of the one-impurity spin- —,

' Kondo model'
and the magnetic susceptibility of the spin- —,

' Anderson
model. ' The Bethe ansatz has yielded exact calculations
of all static properties of the one-impurity Kondo' ' and
Coqblin-Schrieffer' ' models as well as both the nonde-
generate and degenerate ' Anderson models. Compar-
ison of the magnetic susceptibility and specific heat calcu-
lated within the degenerate Anderson model via the self-
consistent perturbation theory shows excellent agreement
with both renormalization-group and Bethe-ansatz re-
sults, ' even when the susceptibility and magnetization
curves for degeneracy 2 are compared (this paper). This

latter surprising applicability of large-Ng, d theory to spin
—,
' has been noted previously.

Another development which has arisen both empirically
and been suggested theoretically via large orbital degen-
eracy arguments is that the one-site model has consider-
able relevance for the lattice. Namely, alloying studies [of
which Ce„Lai „A12 (Ref. 24) and Ce„Lai „Pb3 (Ref. 25)
provide the most compelling examples] show that experi-
mental properties such as the specific heat, magnetic sus-
ceptibility and high-temperature resistivity scale almost
perfectly with the concentration of the valence-fluctuating,
heavy-electron sites all the way from the dilute to concen-
trated limits. Qualitative theoretical arguments have been
put forth which point out that large degeneracy
significantly enhances the characteristic Kondo effect en-
ergy relative to the (perturbative) estimates of the intersite
couplings. ' The formation of 4f bands does not ap-
pear to mitigate these conclusions for static properties, at
least within the simplest variational calculations, although
clearly transport properties must (in view of Bloch's
theorem) begin to be modified at some low-temperature
scale. ' In addition, there is some experimental evi-
dence for the breakdown of one-site behavior at very low-
temperature scales ( —1 K or less in the heavy-electron
systems) in even static properties which can plausibly be
attributed to coherent lattice effects. '

Valence-Auctuation and heavy-electron materials are
quite remarkable for the presence of high-mass fermi-
liquid behavior reflected in giant linear specific-heat
coefficients and zero temperature Pauli susceptibilities,

35 4561 1987 The American Physical Society



4562 D. L. COX 35

ranging from 10 to 1000 times normal metallic
values. ' ' As is now well known, some of these ma-
terials (CeCu2Si2, UPtq, and UBe&&) exhibit unusual su-

perconductivity with giant critical field slopes and specific
heat jumps, all consistent with the above picture of a
heavy Fermi liquid.

However, while this Fermi-liquid state is heavy, it is
usually only mildly enhanced in the sense of magnetic in-
teractions. Indeed, what is perhaps most surprising is the
absence of magnetic order in many of these materials
despite the presence of highly localized f electrons with
well-defined free-ion moments. Conventional wisdom
suggests that the strong spin and charge fluctuations in-

duced by hybridization with conduction electrons tend to
strongly favor a paramagnetic ground state.

Experimentally, those compounds which appear to pos-
sess valence-fluctuation and/or heavy-electron anomalies
for temperatures above some magnetic ordering fall
roughly into the following two classes. (i) Those which

appear to be grossly describable in terms of localized mo-
ments interacting via some exchange interaction [presum-
ably the Ruderman-Kittel-Kasuya- Yosida (RKKY)
conduction-electron mediated exchange]. Although these
systems may still possess anomalies which contrast with
normal magnetic rare-earth metals, a list of such materials
might include EuRh&Bz, ' CeAlz, ' Ce86 (below the
quadrupolar ordering temperature), and CePbq. (ii)

Those which show behaviors reminiscent of itinerant mag-
nets, namely, reduced moment ordering, mean-field-like
specific-heat jumps, and anomalous effective Curie mo-
ments near T, (for ferromagnetic ordering). CeIn3,
CeRh&B2, ' and UzZnI7, (Refs. 42 and 43) might fall
within this category. I note that while itinerant magne-
tism might look like an appropriate interpretation, neu-
tron scattering measurements show apparently well-

defined ordered structures residing on the rare-earth or
actinide sublattices in U2Zn, 7 (Ref. 43) and Celn~ (Ref.
44). Presumably, a clear discrimination between local and
itinerant behavior would require careful examination of
the magnetic form factor at long wavelengths.

This paper reports on an application of the molecular
field theory of magnetic ordering to the Anderson lattice
model for valence-fluctuation, heavy-electron materials in
the extreme local moment limit. The purpose of this
work is to simply study the competition between the Kon-
do effect which favors the paramagnetic state and intersite
exchange coupling which favors magnetic order. The pos-
sibility of competing charge-density-wave or supercon-
ducting states is not considered here. Within the simple
calculational framework used here, all effects are con-
trolled by the ratio of the molecular field exchange
strength A, to the characteristic Kondo effect energy TL.
For (i) X/TI ~~1, normal local moment ordering is ap-
proached; (ii) for A, /Tl «1, paramagnetic order ensues;
(iii) for A, /TL —1, magnetic ordering can occur, but is
characterized by reduced spontaneous (or staggered) mag-
netization, low transition temperature, and for ferromag-
netic order, enhanced effective Curie moments. Such be-
havior is reminiscent of itinerant magnetism.

Previous studies of the Kondo or Anderson lattice
models reached similar conclusions about the interplay of

the Kondo effect and intersite interactions. Doniach's
variational treatment of the related "Kondo necklace"
model showed a ground-state boundary between on-site
singlet behavior and antiferromagnetic order. While
subsequent calculations have apparently mitigated the
conclusions of this early work, the qualitative picture
which emerged is still used for conceptual descriptions of
magnetically ordered valence-fluctuation, heavy-electron
systems. Calculations for the two impurity Kondo and
Anderson models '" showed that if the intersite RKKY
coupling was less than the Kondo temperature, on-site
singlet formation would occur before any formation of ex-
tended local moments. Molecular-field calculations for
the noninteracting resonant level model often used to phe-
nomenologically parameterize the experimental data yield-
ed the same qualitative picture.

An additional feature of interest arises in regime (iii)
above. Namely, a novel kind of tricritical point appears
for orbital degeneracy higher than 3 which requires no an-
isotropy terms in the free energy. Such behavior is direct-
ly traceable to low-temperature "superlinear" behavior in
the magnetization, the relevance of which has been point-
ed out before in the context of the Anderson lattice model
and the formation of real and/or pseudogaps in the elec-
tronic density of states. Here the behavior is seen as an
intrinsic feature of the one-site model traceable to the "in-
elastic" nature of the "Kondo resonance" for high degen-
eracy. Despite the simplistic nature of these calculations,
there are encouraging reasons to believe that such a novel
tricritical effect might be observable in EuRh&B2 and Yb-
CuAl; these will be discussed in detail in the text.

It should be noted that the perturbation theory in the
intersite interactions does not include coherent
modifications (discussed in Refs. 28 —30) necessary for a
treatment of magnetic ordering close to the ground state
(which could include the possibility of spin-density-wave
formation). This point is elucidated in Appendix A.
Hence, conclusions reached here are restricted to ordering
temperatures above the ground state. No clear criterion is
derived here for distinguishing coherent, itinerant magne-
tism amongst heavy electrons from ordering closer con-
ceptually to that of a lattice of local moments.

The outline of the paper is as follows. Section II con-
tains a brief review of the degenerate Anderson model and
the self-consistent perturbation theory approach. Section
III presents the results for the temperature- and field-
dependent occupancies and magnetization for both the
spin- —,

' and spin- —,
' Anderson models. Section IV contains

a calculation of phase diagrams and other properties relat-
ed to magnetic ordering via the application of simple
molecular field theory to the one-site free energy. Section
V contains a summary and conclusions. Appendix A
contains a derivation of the molecular field theory of Sec.
IV by use of the functional integral formalism which
clearly illustrates the structure and limitations of the
theory. Appendix 8 contains a perturbative estimate of
the intersite coupling which illustrates why for the heavy-
electron systems in which the competition between the
Kondo effect and intersite coupling is expected to be most
acute that the normal RKKY interaction between mo-
ments is expected to be most relevant.
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II. MODEL AND METHOD

A. Degenerate Anderson model

The degenerate Anderson model Hamiltonian in the
U~ ao limit may be decomposed into four terms as fol-
lows:

H=H, +Hf+H, f+H, . (2.1)

The first term is simply that of the (noninteracting) con-
duction band given by

Hc = g ekckcrck~

kyar

(2.2)

In the calculations of this paper the conduction band is
taken to be half-filled with a simple Lorentzian density of
states profile N(e)=N(0)D /(e +D ). The pseudoatom-
ic f electron Hamiltonian is given by

operators f for the f ' states and pseudoboson operators
for the f state. For example,

i
0) ( m

i
becomes b f

A chemical potential term —A,(g f,„f +b b) is added
and at the end of all calculations to project to the physical
subspace in which the "charge" conjugate to A, is unity
(corresponding to the restriction of no double occupancy)
A, is taken to —oo.

With this prescription for the Hamiltonian and subse-
quent calculations, all relevant terms in perturbation
theory can be computed with standard Feynman-
Dyson —type diagrammatics augmented by a final projec-
tion to the physical subspace. The basic building blocks
of the perturbation theory are the pseudofermion and
pseudoboson spectral functions A (co, T ) and 8 (co, T )
which are defined by

A (cu, T)
lim d~e" ' T

~f g ef I
m ) ( m

I
+eo

I

o (2.3)

and

(2.7)

Here of course m indexes the Ng„z ——2j+ 1 degenerate f '

states, and
i
0) is the empty f orbital. Since only the

interconfigurational energy difference is relevant to the
physics, I henceforth set eo equal to zero. The hybridiza-
tion term H,f is given by

H,f ——Q, q~ (ck
~

0)(m
~

+H. c. ) . (2.4)
~m N

i(z —k)~ Tb gt d& B co T
QQ 77 Z —CO

(2.8)

In terms of these spectral functions, it can be shown that
the total partition function factors into a product ZcBZf
where Zcz is just the ordinary conduction-electron grand
partition function, and Zf is given by

Henceforth, I shall drop the k dependence of the hybridi-
zation and parametrize it in terms of the width

I =7rN(0)V

Zf(T)= f g A~(co, T)+B(co,T) 'e
m

(2.9)

The conduction operator ck above is the appropriately
symmetry-projected piece of the full Bloch-state
operator —e.g. , if I have a j= —,

' Ce orbital, then

ek~ = X f (3 m —o"~
&

~o
l
jm & I'3 — (&)&ka .

d
4~

Here, P= 1 /k~ T as usual. Note that Zf has the physical-
ly plausible form of generalized Boltzmann statics with
the f configurational spectra ordinarily represented by 6
functions broadened into continua by the hybridization
with conduction electrons.

One may define self-energies cr (co, T) and II(co, T) for
the pseudofermion and pseudoboson spectra according to

Finally, the Zeeman term H, is just given by

ggjpeb m
~

m)(m
~
+ gggpgb nkvd

(2.5)

(2.6)

and

(g~ A (n T)
=[z—ef —o(z, T)] '=g (z, T)

'lT Z —Q7

(2.10)

in an applied field h, . In subsequent calculations I shall
ignore the conduction-electron polarization implied by the
second term of (2.6) since it perturbatively small. '

B. Method

(2.1 1)

The self-consistent perturbation theory used here consists
in solving the coupled integral equations

The self-consistent perturbation theory has been re-
viewed elsewhere extensively (Refs. 2 —8), and so I shall
remind the reader of only the essential features here.
While many techniques have been used to derive the cen-
tral equations of the theory, the most transparent is prob-
ably the pseudoparticle approach of Barnes and Cole-
man. ' In this approach, all projection operators in the
Hamiltonian are replaced by products of pseudofermion

and

o(co+i', T)=—f 8(co', T)K(co co'+i', T)—I de

(2.12)

+ g, T)=—g f A ( ', T)K( +,& T)

dt's

F77

(2.13)
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Here g is a positive infinitesimal and the integral kernel
K(z, T) is given by

I(. (z, T ) = f d e
N(0) z —E

(2.14)

d~ p (co, T)
77 Z —CO

The spectral density is of course the particle addition
spectrum for positive frequency, and the particle removal
spectrum for negative frequency. At the level of approxi-
mation of Eqs. (2.12) and (2.13), the spectral function is
given by the formula

(2.15)

1

Z~g( T)pm ~~T)=

f(e) being (e~'+1)
The physical origin of Eqs. (2.12) and (2.13) is rather

clear; they are the simplest self-consistent processes corre-
sponding to, e.g. , destruction of a pseudoboson or f state
to create a f' particle, conduction-electron hole state
through hybridization. However, vertex corrections are
explicitly neglected in the equations and this omission
leads to some pathological behavior on low-temperature
and energy scales which will be discussed momentarily.

While the pseudoparticle spectra are of some interest in
their own right and do obviously contribute to the parti-
tion function, they are in no way directly observable.
Only two particle correlation functions of the pseudoparti-
cle spectra give rise to measurable properties. The ones
which shall directly concern us here are the 4f spectral
density and the magnetic susceptibility. The spectral den-
sity p (co, T) is defined in terms of the "full f Green's
function" G (z ) given by

G (z) = —f dre"'(T[
f

0) (m
[
(r)]

[
m ) (0

[
)

ber and polarization linear in the impurity number: there
also arise terms involving the polarization of the conduc-
tion electrons about the impurity. However, these terms
are small in the extreme Kondo limit of interest in this pa-
per ' and thus Eqs. (2.17) and (2.18) are the expressions
of interest for evaluating the field-dependent occupancies
and polarization.

The other physical response function of interest is the
susceptibility. The full dynamical susceptibility PD (z, T)
is given, in the spirit of Eqs. (2.12—(2. 14) above, by

XD(z, T)=
Z4g( T)

&&+ m' f e ~"3 (co, T)
77

(2. 19)

The resulting expression for the static susceptibility is
given by

X(T)=
Z4J (T)

&&pm f e ~ A (co, T)Reg (co, T) .
7T

(2.20)

As per Eqs. (2.17) and (2.18) the above equation neglects
effects due to polarization of the conduction electrons
about the impurity site, which is valid in the extreme
Kondo limit. At low temperature, the static susceptibility
tends to a limiting constant value. I can define a ternpera-
ture scale TL after Rasul and Hewson' by the formula

(g,pa ~'i V+1)
3k T (2.21)

+ A (co', T)B(co'—co, T)] .

(2.16)

and it of course is true that TI is essentially the Kondo
temperature, namely,

From Eq. (2.16) two useful sum rules immediately follow.
First, the 4f occupancy n~(T) is given by

TL -D
~/e~/

vr fe~[
exp

cog,d I
(2.22)

n~(T)= g f f(co)p (co, T)
7T

gf e ~ 3 (coT). (2.17)

Secondly, the 4f polarization (the magnetization reduced
by the high-field saturation value) Mo(T, H ) is given by

Mo(T, h)= —, g m f f(m)p (co, T,h)
J

1 d co p~
'Z (Th) ~ e Am (co, T, )h.

4I ~ m jj

(2. 18)

These are not the only contributions to the electron num-

The expression on the right-hand side of the above equa-
tion is precisely the quantity To utilized in our previous
work. ' For the purposes of computing the quantities of
this paper, TL is a more suitable energy scale, and more-
over a well-defined prescription exists for identifying it for
all values of Ng, „. To defined as the peak position of the
"Kondo" resonance for T~O in our previous work, has a
problematic definition for Xg,d ——2 for which the reso-
nance is pulled off the fermi level only to the extent that
the occupancy n~(T) differs from unity.

However, while TL is a natural quantity, for spin —,
' the

more commonly encountered quantity is Tz, the energy
scale identified from renormalized high-temperature per-
turbation theory. ' I have used both Tl and Tz use for
reporting spin- —,

' results. The relation between TI and
Tz, first obtained by Wilson, ' and later elucidated in the
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context of Bethe-ansatz solutions by Andrei and Lowen-
stein and Rasul and Hewson, ' is that
TL(j= —,')=2.438Tx(j= —,'). I apologize to the reader for
the plethora of energy scales; comfort may be taken in the
fact that the "Wilson numbers" relating TI and Tz are
pure numbers depending only upon the degeneracy.

III. NUMERICAL RESULTS
FOR OCCUPANCY AND POLARIZATION

Numerical details

The solution of the integra1 equations was performed
iteratively, with the pseudofermion spectra placed on
separate logarithmic meshes extending from —30D to the
peak of the fermion spectral function, and from the peak
of the fermion spectral function to 30D. Similarly, the
two pseudoboson meshes ran from —30D to the peak of
the pseudoboson spectral function and from the peak of
the pseudoboson spectral function to 30D. A total of 83
mesh points were used for each spectra. On a VAX-
11/780 computer, a typical self-consistent evaluation of
pseudoboson and pseudofermion spectra for a given set of
model parameters, at one value of temperature and mag-
netic field took about 4 cpu minutes for degeneracy 2, and
12 cpu minutes for degeneracy 6.

While the meshes described above were adequate for
computing the moments which feed into calculations of
the occupancy and magnetization, they were not
su%ciently accurate to convolute for the calculation of
spectra, except at zero frequency. A corollary is that they
did not allow precise calculations to very low tempera-
tures as were obtainable with the much larger meshes
used in previous works. For example, for the j=—', calcu-
lation, the lowest obtainable temperature with 603 points
was about, 'o of TI, while for 83 points severe numerical
instabilities began to set below about 0.18TI . Because the
lowest Zeeman level tends to a delta function in the high
field limit, I also had difhculty pushing the calculations to
very high fields.

The sum rules for the spectral functions (that they in-
tegrate to umty) were checked always, and typically these
relations held to a tenth of a percent or so. In the case of
the spin- —,

' run, additional checks were provided at zero
field by comparing to susceptibilities and occupancies
computed with more precise 603 point meshes. The
agreement was good to about 2%. Another comparison
for calibration purposes is made clear in Fig. 1, where the
limited calculation of X(T) for spin —, is compared with
the exact results obtained by numerical renormalization-
group and Bethe-ansatz calculations. This illustrates the
surprising result that this nominal large degeneracy calcu-
lation works quite well for spin —,', as has been noted be-
fore 22' 2 3

Parameter choices were motivated by the desire to
reach the universal regime where Tz/D is small so that
conduction-band polarization eAects are small. However,
the parameters were also chosen so as to give a large
enough T& so that numerical results in the non-trivial re-
gime below Tz were obtainable. Moreover, the hybridiza-
tion widths I were chosen to be consistent with the nor-
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FIG. 1. Reduced susceptibility vs temperature for j= &. T is

measured in units of T~ defined in Eq. (2.20). Note the good
agreement of the circles calculated from self-consistent large de-
generacy theory and the exact Bethe-ansatz results (Ref. 82) not-
ed previously for large N, „d theories (Refs. 22 and 23j.

malization of the large degeneracy limit; namely Xg,dr is
held constant while Ãg, d is increased. For a11 calculations
reported here, ef ———0. 152D and Kg,dI =0.0954D. The
values of the Kondo energy scale are Tx(j= —,')=4. 37
X10 D and Tl (j=—,')=3.28)&10 D

B. Occupancy

The occupancies of the various Zeeman levels as a func-
tion of applied field at the lowest calculated temperatures
are plotted in Figs. 3 (j=—,') and 4 (j=—', ).

Clearly, the total j=—,
' occupancy varies rather little as

a function of field despite the strong field dependence of
the individual Zeeman level occupancies. There are two
reasons for this. First the Kondo resonance for spin —,

' is
very close to a particle-hole symmetric shape as can be
reckoned from the Friedel sum rule which puts the reso-
nance right on the Fermi level for unit occupancy and de-
generacy 2. Hence, this would tend to freeze the occu-
pancy. The other reason is that the charge fluctuations
present in this asymmetric Anderson Hamiltonian which
break particle-hole symmetry are expected to be reduced
dramatically only on energy scales of order I where the
deep f level near ef begins to Zeeman split. As I is some
2 orders of magnitude above Tz for these calculations
here, we cannot expect to see any reasonable change in
nf(T, h) for the low fields presented in Fig. 3. Note also
that the contribution to nf(T, h ) from charge fluctuations
is expected to be of order I /

~
7ref

~

which is about 0. 1 for
these parameters. Thus, for a starting occupancy of 0.86,
there is little room for variation of nf(T) as a function of
field.

The total occupancy of the j=—', level shows far more
field dependence than that of j=—,

' because the Friedel
sum rule constraint now forces the resonance to reside
away from the Fermi level near ZL with width of order

TL/6 so as to satisfy 5(EF,. ;) approximately equal to
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1/Ng, d
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TABLE II. Comparison of polarization obtained by Bethe-
ansatz and large-Ng„d approach for N„d ——6. Bethe-ansatz re-
sults for the Coqblin-SchrieA'er model are taken from Ref. 10.
As per Table I, the accuracy with which these results are to be
compared is at about the 7% level ~ Clearly, as for Table I,
agreement is good apart from systematic over estimation by the
large-N„d approach at high values of h /T.
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gpBh/TL

0 8 I.0 I.2

0.021
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0.87
1.11
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0.41
0.63
0.63
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0.07
0.18
0.43
0.61
0.61
0.59

FIG. 6. Polarization vs field for j= &. Note the appearance
of an infIection point in contrast to the curves of Fig. 5; for more
details, see Fig. 7. Again the low-temperature curves appear to
be approaching the low-temperature Bethe-ansatz result (Ref.
19). See also Table II.

TABLE I. Comparison of polarization obtained by Bethe-
ansatz and large-Ng„d approaches for Ng, d ——2. The Bethe-ansatz
results (for the spin-& Kondo model) are taken from Ref. 16,
Fig. 16. The large Ng, d results have been read off the curves of
Fig. 5. As these themselves are interpolated curves, I place an
upper bound of 5% on combined graphical sighting-interpolation
errors. Figure 2 suggests that there is at most a 2% numerical
error from the utilization of a coarse mesh. Hence, one should
consider discrepancies between Bethe ansatz and large Ng, d re-
sults as very significant from the level of 7% and higher. Clear-
ly, the agreement is reasonably good, although systematic overes-
timates are clear for high h/T. I cannot rule out the possibility
that this is numerical in origin, since convergence of high field
numerics is more delicate.

gogh /kg Tg ——1.19
gogh /kg T

0.016
0.05
0.16
0.52
1.63

Mo(T h)
1/Ngrd

0.01
0.02
0.05
0.10
0.18

Mp(T, h )

Bethe ansatz

0.01
0.02
0.05
0.10
0.16

gpss h /kg T~ ——2.38
gogh/kg T

0.03
0.10
0.33
1.04
3.31

Mp(T, h )

1/Ng, d

0.01
0.03
0.09
0.21
0.32

Mp(T, h )

Bethe ansatz

0.01
0.03
0.09
0.20
0.27

lines, and the zero-temperature high-field perturbation
theory results as dotted lines. The lowest-temperature
curves appear to be saturating to the exact results which
offers further evidence of the success of the self-consistent
large degeneracy approach for calculating properties of
the Anderson model. Tables I and II contain comparison
of finite temperature calculations between the large-Xg, d

gpgh /kg TL ——0.5

gp~h /k& T

0.052
0.17
0.52
1.85
2.17
2.78

2.5Mp(h, T)
1/Ng, d

0.16
0.38
0.91
1.38
1.44
1.50

2.5Mp(h T)
Bethe ansatz

0.14
0.40
0.93
1.32
1.36
1.39

approach and Bethe-ansatz approach. As can be seen, the
agreement is good though the self-consistent approach ap-
pears to overestimate the exact values for high h/T. This
is as likely to be a numerical artifact as a real one, since
the high field numerics is difficult to stabilize.

The finite-temperature magnetization curves for the
j=—,

' model have been computed before by the Bethe-
ansatz approach and so our curves do little more than
establish their tractibility within this approach. The be-
havior as a function of field and temperature is purely
monotonic. Of greater interest are the curves for j=—', ,
for which clear nonmonotonicity as a function of field and
temperature is evident. While the nonmonotonicity is
somewhat difficult to see in Fig. 6, it is readily evident in
Figs. 1 and 7, the latter of which, in a sense, plots a mea-
sure of the finite-field susceptibility.

The peak in X(T,O) and the "superlinear" polarization
have a common origin in the fact that the Kondo reso-
nance resides away from the Fermi level for high degen-
eracy. The susceptibility, after all, serves as a rather
coarse-grain spectroscopy of the electronic density of
states. Hence, until the magnetic field becomes compara-
ble to the resonance position ( —TL ), the lowest Zeeman
level does not begin to dominate. The inflection point in
Mo(T, h) vanishes at precisely the temperature where the
static susceptibility is maximum. Topologically, this is
plausible, since the simplest possibility given a maximum
of g(T, h) in the (T,h) plane along both axes is that there
be a monotonic interpolation between the two. Thus at
fixed T, one would not expect to encounter a maximum
beyond the point where X(T,O) is peaked. The nonmono-
tonicity is marginal at Xg,d ——3 as pointed out first by
Rasul and Hewson, ' and elucidated in the mean-field
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treatment of Read and Newns. The nonmonotonicity
has been observed in some compounds, most notably
YbCuA1, ' although it should be noted that crystal-field
effects can also produce significant nonmonotonicity in
X( T, h ). Within the simple molecular field model
presented in the next section it is shown that the particu-
lar nonmonotonicity pointed out here can have interesting
consequences for magnetic ordering.

O. I

005-
o

o

ro
O.O

I

0.05-

IV. MOLECULAR FIELD THEORY O. I

O. I 0.2 0.5 0.4 0, 5 0.6 0,7 0.8

A. Molecular field model and calculation of phase diagrams

In this section I present a simple molecular field theory
for the Anderson lattice model. The basic ideas for the
calculations presented here are as follows.

(i) The free energy of the Anderson lattice can be
rigorously written in a way which allows expansion in
powers of the intersite interaction. The zeroth-order free
energy in this expansion is an incoherent array of
Kondo-Anderson impurities. Hence, this zeroth-order
picture is precisely that taken in the "Kondo-volume col-
lapse" calculations 6o

(ii) Of the remaining intersite terms, there are those
which correspond to multisite (three and higher) exchange
processes between the f electrons and those which corre-
spond to simple two-site RKKY charge and spin interac-
tions between sites. The former give the coherent
modifications to the two particle pseudofermion Green's
functions. I shall consider only the simplest intersite ex-
change interaction between 4f moments

(iii) The intersite exchange is then treated within the
molecular field approximation, and thus the model free
energy used here has the form (per site) for ferromagnetic
RKKY coupling (A. ~ 0)

F( T, M ) = —kii InZ/( T, A,M ) + —,
' jA,M (4.1)

where j is the Hund's rule ground angular momentum of
the moment bearing configuration, M is the polarization
(normalized to unity at saturation), and Z& is the single-
site Anderson model partition function at temperature T
and effective magnetic field A,M. In Eq. (4.1), polarization
of the conduction band is neglected, which is valid to or-
der 1 bandwidth. ' Generalization of (4. 1) to antiferro-
magnetic order is straightforward as it is in the case of
pure local moments. With the molecular field defined as
per Eq. (4.1), the local moment paramagnetic Curie-
Weiss temperature is (j+ 1)A, /3 in the absence of any hy-
bridization.

(iv) Finally, extremization of (4. 1) with respect to M
yields the molecular field equation

M=MD(T, XM), (4.2)

where Mo is the single site polarization derived from ZI.
Solution of (4.2) yields values of the spontaneous polariza-
tion and critical temperatures.

In Fig. 8, contours of constant polarization are plotted
in the k-T plane for 2V~,d ——2. The critical boundary is
defined by M=0. A. is measured in units of TL. For

FIG. 7. Deviation of one-site polarization from linearity for

j= &. The important feature here is that as T approaches T„ the
temperature where g(T) peaks, the low-field curvature of the po-
larization approaches zero, becoming positive for T & T,
=0.28TL. This behavior is expected to occur for j & 1. The
zero-temperature result is the Bethe-ansatz curve (Ref. 19).

T=0, (j+1)k,/3TI ——1 is the boundary to the left of
which magnetic ordering cannot occur. This result is
analagous to the Stoner criterion for itinerant magnets
since 1/TL is roughly the quasiparticle density of states at
the Fermi level. As (j+1)k!3TI~1+@,both transition
temperature and spontaneous magnetization vanish as
e' . For high A/TL, M(T=O) and 3T, /(j +1)A, ap-
proach unity, although only like —1 —3/ink, in either
case.

At this stage it is worth noting that previous calcula-
tions along these lines have been performed with Mo in (2)
modeled by that of a fermion resonant level straddling the
fermi level with Ng, d

——2. ' The Lorentzian resonance
possesses width I assumed to be of order TI . For small
A, /I, the results presented here are qualitatively identical
to those of the previous studies; quantitative discrepancies
persist for all A, , and in particular, the logarithmic behav-
ior valid for large A. /TL cannot come out of the resonant
level model. There is also a nontrivial resonance narrow-
ing effect which is missed in the simple resonance model.
The previous studies went beyond this current one in the
consideration of more sophisticated magnetically ordered
structures upon inclusion of anisotropy, which in the in-
terest of simplicity, have been neglected here.

Next, consider the high-degeneracy case, specifically,
j=—', . There is a pronounced difference between this case
and the spin- —,

' problem. In accordance with the Friedel
sum rule, the Kondo resonance peaks off the fermi level
for degeneracies greater than 2. The excitation to the
moment bearing configuration is thus inelastic and highly
damped. The clearest manifestations of this effect in sin-
gle site properties are (i) finite temperature maxima in the
static susceptibility and linear specific heat coefficient, '
(ii) a non-Lorentzian line shape in the dynamic spin exci-
tation spectrum, ' ' ' (iii) and an intlection point in the
magnetization as a function of field (i.e. , a nonzero max-
imum in the differential susceptibility)' As illustrated in
Fig. 7, the magnetization inAection goes away as the tem-
perature is raised, vanishing precisely at the temperature
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I.O

0.8-
j = I/2

M =0.0

0.6

0.4

I,O 2,0 5.0 I 0.0 20.0

(j+I)4/5 TL

50.0 100.0

T, where X( T) peaks.
The magnetization infIection has immediate conse-

quences for the molecular field theory, as evidenced in the
constant polarization plots for j= —,

' shown in Fig. 9. For
low enough values of A. , there are three solutions to (4.2)

I.O

0,8- j =5/2

0.6-
+

0.4- Tricritic
Point

FICx. 8. Contours of constant saturation polarization for the
spin- & Anderson lattice within molecular field theory. The
molecular field constant A, is defined so that XM=gp~h, ]. T,
and M(0) vanish as [(j+1)(k/3TL —1)]' ' for (j+1)k/3TL
tending to unity, and the saturation to local moment behavior
[3T,/(j+1)k= 1 and M(0)=1] occurs logarithmically. Note
that M can represent the staggered polarization for nearest-
neighbor antiferromagnetic coupling.

B. Additional theoretical details

Before discussing possible experimental implications of
this study, it is worth noting some further results.

(i) In the ferromagnetic case, the effective Curie mo-
ment p ( T, ) defined by

p (T, )= lim, 3X(T)( T T,)—
T~ Tc

(4.3)

has anomalous behavior as seen in Fig. 10. For j= —,
' and

T, !Tl tending to zero, p, s./p (T, ) vanishes linearly with
T„while it overshoots the local moment limit of 1 for
T /T~ -0.1, finally settling to unity for T, &&TL. Simi-c I.

~ 5 2lar behavior is seen for j=—,', except that p vanishes at
the critical point T, ~

(ii) Volume effects can modify T, significantly. It is rel-
atively easy to see how T, will change with pressure.
Define X(T)=37(T)lp, fr. Denote the pressure (relative to

l.75

below T„ two of which are stable. A Maxwell construc-
tion must then be used to determine the shape of the mag-
netization curve as a function of field and to determine
which state (polarized or paramagnetic) has the lowest
free energy in the absence of field. The first-order phase
boundary between magnetic and paramagnetic states in
zero applied field appears as the dashed line in Fig. 9.
For A, & 0, applied field can stabilize the magnetic state for
X&jp,z/371, where 7z is the differential susceptibility at
the inAection point. This criterion defines the phase
boundary between the applied field "metamagnetic" state
and the zero-field paramagnetic tate.

Hence, the topology of the magnetization in the field-
temperature plane for high degeneracy generates a tricriti-
cal point within this simple molecular field calculation.
Otherwise, the discussion of M and T, as a function of
k/TL goes through as in the spin- —,

' case.

0.2-

0.0
0.7

.+M
i I l

0.8 0.9 I .0 2.0 5.0 IO

I.5-

l.25

(j+I) P /5TL

FICx. 9. Contours of constant polarization for the j=& Kon-
do lattice within the molecular field approximation. As for
j=&, the approach to local moment behavior is logarithmic;
however, factors of the inverse degeneracy increase the rapidity
of this saturation. The new feature of these curves is the ex-
istence of a discontinuous drop of M to zero along the dashed
line. For ferromagnetic coupling, this defines the metamagnetic
ferromagnetic phase boundary. The dotted-dashed
metamagnetic-paramagnetic boundary (to the left of which field
induced first-order polarization jumps are no longer possible) is
determined from the slope of the one-site polarization at the
inflection point. Since the zero-field first-order line joins to a line
of second-order transitions at T„ this is to be identified with a
tricritical point in the T,A. plane. The lowest possible M(O)
value is approximately equal to 0.65. Such tricritical behavior is

expected to occur for all j & 1 (see Fig. 7).

+ 0
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FIG. 10. Inverse Curie-Weiss law moment vs temperature.
The moment is determined from lim ~ ~g 3( T—T, )X( T )

C

=p (T, ). This vanishes linearly in T, for T, ~O and j=&, and
linearly in T, —T, for T, ~T, for j=&. The overshoot of local
moment behavior is due to the logarithmic behavior of 7( T) for
high T, e.g. , to leading logarithmic behavior for j= &,
p2ff/p 2( T, ) = 1+[ln(2. 4T/TI. ) ] ' when T» TL .
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ambient pressure) by P, the bulk modulus by'B, and the
ambient volume Vp. Introduce Griineisen parameters
rz(T) (for X) and ri (for A, ) according to the general
definition

8 lnO
8lnV

Then near ambient pressure, the equation for T, is

(4.4)

~&(T. )=I+ (re.+'rr(T, )l
BVp

(4.5)

Immediately, one can solve for the initial change of T,
with pressure which is given by

r~+rx(T, )

dP BVO
I
Blnr(T)/BlnT

I I
(4.6)

Note that X(T)=X(0)f(T/TL ), where f(x) is a universal
function. Introducing the Gruneisen parameter y T, then
it is clear that

a negative slope (suppression of T, ) at low T. If rs is
positive (as it may well be for Yb compounds) then one
expects T, enhancement at low T and T, suppression at
high T.

(iii) As pointed out previously in terms of the resonant
level model, the specific heat may still possess a sizeable
linear term in the presence of ordering. Within that work
and the current one, the linear coefficient at T=O is sim-

ply that of the single site in the presence of a magnetic
field equal to the exchange field. Physically, the Zeeman
split Kondo resonances still will have some spectral
weight at the Fermi level. Hence, one need not interpret
residual linear specific-heat terms in terms of itinerant
magnetism with a partially gapped Fermi surface, as had
been the case, for example, with U2Zn&7.

(iv) The specific heat within the mean-field theory
shows interesting behavior as the tricritical point (for large
degeneracy) is approached from above. Within Landau
theory it is easy to show that the specific-heat jump at T,
is given by

i) lnf(T/TL )
rx(T)= rT, 1—+

0 lnT
(4.7)

Specializing to spin —,
' I note that

T ((TL

1— T))TL
ln (gT/TL )

(4.&)

8 lnT,
BP BVp I ri. I

—
I rr, I

ln (i)T, /TL )

1 Tc

2czB Vp
(4.9)

If rg is negative (as for Ce compounds), Eqs. (4.9) lead
one to expect a positive slope (enhanced T, ) at high T and

where a, a, and g are positive pure numbers of order uni-
ty. Thus, for sufficiently high temperatures, the behavior
of the intersite exchange dominates the pressure depen-
dence, while for sufficiently low temperatures the behavior
of the susceptibility dominates. Note that yT and y& are

both related to the change of the etfective (Coqblin-
Schrieffer) exchange integral. If one assumes that the
volume dependence of each parameter enters through the
volume dependence of g =

I
N(0)Jcs

I
=Ns, dI /nIef.

then y&=2y~, and yTL =yg/g. Further, yg =yz —y«.
In Ce compounds, the value of the f-level position is little
sensitive to compression while the hybridization can
have dramatic sensitivity. For the purposes of under-
standing the y-Ce to a-Ce volume collapse in terms of the
Anderson model, yT was taken to be of order —40 or
so. On the other hand, in the Yb compounds there are
theoretical and experimental reasons to believe that y,
dominates which would make yg positive. The limiting
forms (high and low temperature) for the pressure deriva-
tive of T, are

3J
2(j+1)b~(T, )

where b4(T) is the coeflicient of the quartic term (in the
polarization) of the free energy. Since X(T, ) is a max-
imum and since b4( T) vanishes linearly at T„ then
hC~ —(T, —T, ) and thus the jump vanishes linearly on
approaching T, . Obviously, the relevance of such behav-
ior may be mitigated in any more sophisticated treatment
which goes beyond molecular field theory.

(v) While it inay seem troubling that one is making a
transition to a paramagnetic state and thus a more "disor-
dered" state, in fact the entropy of this paramagnetic
phase is diminishing since the Kondo state is a singlet,
and thus there is no paradox.

C. Possible experimental relevance

The most interesting aspect of this work is perhaps the
prediction of novel tricritical behavior for high-degeneracy
systems. This behavior depends primarily upon the pres-
ence of the inAection point in the magnetization curve
present for Ng, d) 3, and thus may be a feature which
transcends the simple assumptions made in these calcula-
tions.

It is not outside the realm of possibility that via alloy-
ing (chemical pressure) or application of physical pressure
that magnetic ordering might be introduced in YbCuA1
where such an inAection point has been seen. This
reasoning is based on the analysis of the pressure depen-
dence of T, in Sec. IV B and the thought that pressure de-
creases TL for Yb, assuming that the 4f ' configuration is
nominally stable, and that the Wigner-Seitz radius is
larger than 2 Bohr radii. However, a problem is that
the requirement of a relatively low Kondo temperature
will tend to drive the system into a region where crystal-
field energies become comparable to or larger than the
Kondo temperature, and thus the ground state wiH be
characterized by a lower-degeneracy Anderson model
which will likely not possess tricritical behavior.

Therefore perhaps the most encouraging possibilities are



35 PROPERTIES OF MODEL-VALENCE-FLUCTUATION HEAVY-. . . 4571

magnetically ordered Eu compounds, particularly
EuRh 382, which orders ferromagnetically. The
reason is that the moment bearing configuration for Eu is
the 4f which has pure spin j=—,

' ground state. Not only
is high degeneracy guaranteed when the Kondo tempera-
ture is high, but also as the Kondo temperature is lowered
since crystal-field splittings are miniscule in such pure
spin cases (the crystal field coupling through the orbital
degrees of freedom).

If this picture is at all relevant for EuRh3Bz it would
appear to possess a low Kondo temperature on the basis
of its high ordering temperature and nearly full saturation
moment, and thus it would seem to be a natural choice
for alloying experiments or pressure work. The experi-
mental requirement is that the Kondo temperature be
driven up in this case. If isostructural CeRh382 (Ref. 41)
can serve as a guide, alloying Ru on the Rh sites or apply-
ing direct pressure should do the job. In that case al-
though the analysis of the previous section suggests T,
will likely go up with the application of pressure, one can
nevertheless expect a significant reduction of the low tem-
perature saturation moment due to the tendency to
suppress magnetism at low temperatures. If on the other
hand, Eu behaves like Yb, and yg is positive, then one
needs to alloy to provide "negative pressure" so as to
suppress the low-temperature magnetism. A possible
complication with the alloying experiment is that
EuRu38z does not form.

V. SUMMARY

In summary, I have applied the self-consistent large or-
bital degeneracy theory for the degenerate Anderson mod-
el to calculations of the magnetization and occupancy as
functions of magnetic field and temperature. The magne-
tization results agree well with exact Bethe-ansatz results,
although there are some systematic discrepancies detect-
able. A simple application of the results is made within
molecular field theory for the Anderson lattice, which is
expected to be valid in the extreme Kondo regime provid-
ed the itinerant character of the f electrons is small and
there are no multisite Kondo effects. Within this simple
molecular field theory, no magnetic order is possible if the
intersite interaction is smaller than the characteristic Kon-
do energy scale, and any ordering will show reduced mo-
ment strength reminiscent of itinerant magnetism. For
high orbital degeneracy (Xs,d & 3), novel tricritical behav-
ior sets due to the intrinsic feature that the Kondo reso-
nance sits away from the Fermi level. I propose that such
behavior might be observable in allowing or pressure ex-
periments on EuRh382 and YbCuAl. Since the calcula-
tions exclude coherent modifications of the heavy-electron
state requisite for a discussion of charge density wave, su-
perconducting, spin density waves, or any other collective
phenomena specific to a periodic electron gas, no discus-
sion of these phenomena is possible within the theory
presented here.
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APPENDIX A

In this appendix, formal justification is given for the
molecular field equations (4.1) and (4.2). The derivation
clearly demonstrates the restricted regime for which one
might expect the equation to be applicable. The restric-
tions are summarized as follows. (1) One must be in the
extreme Kondo regime (TL/I «1) so that (a) chemical
potential effects due to the f electrons are weak, (b)
well-defined local moments exist at high temperature, and
(c) the strongly energy-dependent terms in the simplest
perturbative estimate of the effective intersite interaction
function are small. (2) One must neglect n-site exchange
processes between f moments with n & 2. These processes
will be seen to feed into the coherent modification of the
two-site exchange processes. (3) One must neglect repeat-
ed scattering of two-site exchange processes (and thereby
the possibility of multisite Kondo effects ' ). Within the
approximations specified by (1)—(3), one further neglects
the dynamics of the simplest two-site exchange processes.
As this corresponds to treating the normal RKKY in-
teractions as static, it is probably a reasonable approxima-
tion. The extent to which the normal RKKY interactions
dominate the perturbatively evaluated two-site interaction
is the subject of Appendix B.

The plan of this appendix is as follows. First I assume
a path integral of appropriate form and show how the
mean-field equation follows from it. Then I show how
such a path integral follows from the Anderson lattice
model when one imposes the above restrictions. I special-
ize to spin —, for clarity; the generalization to higher spin
is straightforward but technically very messy. Moreover,
the high-spin case with realistic treatment of the hybridi-
zation will have a very complicated RKKY interaction. '

The path integral which gives rise to (4.1) and (4.2) is
expressed in terms of the Lagrangian

X ( 7 ) +f( r ) +Xb ( r ) ++fg (—r ) ++ff ( r ) (A 1)

with

+f(r)= gfii. (r) +ef P ~R fR «»87
(A2a)

(A2b)

Xf (r) —g f dr'f „".(r)b„(r)U. (0, r r)b,* (r' )fR (7 )—
Ra

(A2c)
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Xff(r) = —$ $ I(R—R')S„,.Serif R„(r)
R&R' pvpA,

(A2d)

1'—E1 +P
The path-integral representation of the partition function
Z(T) is then

In the above, ~ is a "thermal time" running from 0 to
/3= 1/kii T, and the [fR,fR } are anticommuting
(Grassmann) variables antiperiodic on [0,/3] which corre-
spond to the pseudofermion variables, the [ b R, b R } are
commuting variables periodic on [0,i3] which represent
the pseudoboson fields, p is the fermion chemical poten-
tial, S is a spin- —, matrix, A, R is the pseudoparticle chemi-
cal potential at site R, and the interaction function v(R, r)
is related to the conduction-electron propagator via
[to=(2n+1)n/i3, n an integer]

V l(R ) y i(kR co~)— (A3)
13N,

and Newns.
Note that in contrast to Read and Newns, who aug-

mented the constraint by integrating over the pseudoparti-
cle chemical potential (which amounts to an inverse
discrete Laplace transform of the pseudopotential grand
canonical partition function to the canonical space with
fixed g = 1), I have done the projection by the same
method utilized in the self-consistent approach. The
separate methods give the same results, of course, if the A,

integrals are done exactly.
Note that apart from the chemical potential effects tacit

in (A4) and the interaction term Xff (r), (A4) is no
different than a product of one-site partition functions. In
the extreme Kondo limit, the f occupancy is basically
pinned to unity, independent of p according to the friedel
sum rule, so the one-site physics will not be substantial-
ly modified.

The molecular field equation is derived as follows. (i)
Rewrite the interaction term as

Z(T)=Z (T) Q f exp —f dr/(r)
R R 0 ("R=0

(A4)

Xff(r)=Q I(R—R')[[SR(r)+SR(r)]
R~R'

—SR(r) —SR (r) }, (A6)

where ZCB(T) is the normal conduction-band partition
function, (R ——e is the pseudoparticle fugacity at site R,
and the symbol f is shorthand for the standard path-

integral notation, i.e.,

R o
Ro.a Ro D~ RD~ R (A5)

The above expression for the path integral corresponds to
that for a Wick rotated Lagrangian at finite temperature.
For more details, see Ramond, Sherrington, and Read

where SR(r) =S„,fR„(r)fR (r). Note that the self-
interaction terms so introduced may be subsequently
dropped since they vanish in the physical subspace with
unit pseudocharge at each site. Note also that based on
experience with Hamiltonians, one might expect a one-
body shift to arise out of (A6), but since the Grassmann
fields square to zero, there is no idempotence as is true of
fermion operators. (ii) For each bond introduce a magne-
tization field M(R —R', r) via the Hubbard-Stratanovich
identity

exp[ —,'I(R —R')[SR(r)+SR (r)]'}

DM R—R' exp —2I R—R' M R—R'~ +M R—R' ~ . SR ~ +SR 7. . A7

(iii) Assume a preferred direction z and neglect transverse
fluctuations. Make the static, uniform approximation for
a spontaneous magnetization M. Then one simply in-
cludes a molecular field shift to the pseudofermion levels

f(r)= —$ AMcrf R (r)fR (r)
R

(A8)

with

k=2 g I(R) . IA9)

(iv) Evaluate the resulting free energy and extremize with
respect to M. The resulting free energy is precisely that
of Eq. (4.1) for spin —,', and clearly the same extremization
condition (4.2) applies as well.

Having demonstrated how (4.1) follows from an ap-
propriate path integral, I now show how (A4) can follow
from the degenerate Anderson lattice model. The strategy
is to write the lattice partition function in terms of the

pseudoparticle variables, and then to integrate out the bo-
son variables. This will give an effective action for the fer-
mion variables which contains both on-site and intersite
corrections. The intersite corrections may be explicitly
separated and perturbatively expanded giving a result
reminiscent of the linked cluster theorem. Truncating at
the two-site level with neglect of the dynamics of the in-
teraction function and of self-energy corrections to the
pseudoboson propagators contained therein results in a
partition function of the form (A4) provided one reintro-
duces boson variables for the on-site terms. What these
approximations omit are (i) coherence eff'ects which arise
in two-particle fermion propagators from all possible
conduction-electron self-energy insertions, (ii) the possibil-
ity of multisite Kondo effects by ignoring the dynamics of
the two-site interactions, and (iii) the inclusion of "anoma-
lous" RKKY terms due to the Kondo effect when boson
self-energy corrections are ignored. Of these omissions, (i)
and (ii) are serious, at least at low enough temperature
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scales, while (iii) is apparently not so serious, as indicated
in Appendix B. I now proceed with the formal details.

Upon integration of conduction variables, the
Anderson-lattice partition function ZAL has the general
structure of (A4) with the Lagrangian X replaced by

CL) n'+ VmlCT I

Ri ~ n 1
R p (dnp c7

n2 &n —Vml

nZ CC) n'- Vm2

&~L(r) =&(r) &gg—(r)+Xgg(r),
with

&yb(r)= g f «fR (~)bR(~)u (R R', —r r')—
R~R', cr

XbR (r )fR'~(r ) .

(A 10)

(Al 1)

Ri~n)0 '
/

/

R&~»- vm2 ~

+ )/4 +

In order to proceed further it is convenient to switch from
the time domain to the frequency domain. The appropri-
ate variable transformations are

fR (r)= g fR (co„)e

u (R,r)= g u (R,co„)e

bR(r)= g bR(v )e

(A12a)

(A12b)

(A12c)

(A13)

Upon interating out the boson variables in (Al 1) then
one obtains

ZAL( T) =Zca( T)

a
X g I expI —[X&—TrlnD0

R ~OR

Here, of course, co„=(2n +1)irlf3; v =2mirlP
With these replacements into (Al 1), I denote the result-

ing Lagrangians in the frequency domain with an over-
tilde, e.g. , XI is just the integral over X&(r) along the
imaginary time axis, viz. ,

+y=I3 g fR~(~ )fR (~ )( —™+ey ~R p) . —
naR

I

R
(

CL)
)

- CL)

I

0 R 4)I 0&' 0 RlCt))+V
I I I

Rp0 QJ + vga gR&V~ 0 QJ + v

I

0 R~dp- v —+— 0 R2 CL)P
I

R~ CL1P —CLl - V

(b)

FIG. 11. Diagrammatics for the Anderson lattice partition
function. (a) Perturbative expansion of the intersite logarithm
[Eq. (A14)]. The dashed line represents a pseudofermion
Grassmann variable; the wavy line the one-site pseudoboson
propagator matrix [Eq. (A15)]; the solid line an intersite conduc-
tion propagator [Eq. (A12b)]. The nth order term in the expan-
sion represents n-site pseudofermion exchange, and there is a
corresponding weight factor of 1/n out front. Note that the
pseudoboson propagator actually contains an infinite series of
on-site retarded pseudofermion interactions in its self-energy. (b)
Contribution to the two-particle pseudofermion propagator from
three-site exchange. The intermediate fermion Lines are closed
to make a self-energy insertion to the conduction-electron lines.
The sum of all such possible insertions with proper accounting of
site exclusion gives the coherent modification of the conduction
propagators (Ref. 83) and hence of the RKKY interaction. At
present, there is no reliable estimate of the efFect of this coherent
modification upon the RKKY interaction.

+ Tr ln( 1 D0iri ) ] j J &„,—

(A14)
Tr= g 5RR,6

RR'mm '
(A17)

(D0)mm'RR' ~RR' ~mm'(ivm + ~R)

—g fR~(co„+v )u (O, co„)

XfRa(~ nvm ) (A15)

the intersite boson self-energy matrix

(rl )mm'RR' ( 1 |ERR ) g fR~(~„+vm )uo (R—R', ~„)

XfR' (CO„—V ) (A16)

and the trace Tr denoting

with JI signifying the integration over the pseudo-
fermion variables only, with the on-site boson propagator
matrix

Note that X~ —Trln(D0) is precisely the exponent one
would have for an incoherent produce of one-site partition
functions with the 6 fields traced over. Hence, to begin to
put (A14) in the form (A4), I reintroduce b variables at
each site to the left of the intersite term.

Next, I expand the intersite term in (A14) in powers of
the intersite self-energy. In view of the site restriction fac-
tor in (A16), only the even terms survive the expansion.
The even terms are readily interpretable in terms of mul-
tisite pseudofermion interactions as indicated in Fig. 11(a).
I truncate the expansion at the two-site level. Aside from
removing the complication of exchange involving three
and more sites, which to my knowledge have demonstr-
able importance so far only in solid He (Ref. 75) and
have only recently been detected in a magnetic material
(Ref. 76), the more serious omission is of the coherent
modification of the RKKY interaction between two sites.
This statement is clarified by examining Fig. 11(b), where
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a two-particle pseudofermion propagator is shown with a
single conduction-electron self-energy insertion obtained
by closing one set of fermion legs on the three-site dia-
gram of Fig. 11(a). At this point, I have no way to gauge

the importance of such effects.
It remains to examine the structure of the two-site in-

teraction function. The contribution to the Lagrangian of
(A14) is Xff equal to

2 g I(Vm l&Vm2&~n l&~n2)f Rlo (~n 1+ Vm 1 )fR2a'(~ 2nVm2)fR2~ (~2)fRla'(~ l )

n, m R)~R2 ~o'

with n, ~ in the first sum being shorthand for summing over all internal frequencies, and with
I(Vm l~ Vm2~~n 1~~n2)

(A18)

= —g [Bo(COnl —COn, COnl —COn, Rl)DO(COn2 —Cgn —VmliCun2 —Con —Vm2, R2)u~(Rl2, COn )un (R2l, Con +Vm, )], (A19)
nn'

where R, 2
———R2l ——Rl —R2. Note that (A18) may be

broken up into intersite charge and spin interactions. I
shall drop the charge interactions as those are not of in-

terest here.
The reduction of (A18) and (A19) to the usual RKKY

interaction follows in two steps. (a) Neglect the fermi-
on contributions (self-energy) to Do, i.e., approximate

6„,
Do(m l, m2, R) =

~vm]+~R
(A20)

(b) Since in practice, the pseudofermion Green's function
will be peaked about ef —A, z, then the relevant frequencies
i co„] and i co„z are ef —kz, and ef —Xz, , respectively.

Thus, one can replace, e.g.,

CO, CO

BO(co„l
—co, ci7„l —co,R)

Ef

Hence, a simplified form for I is obtained which is

(Vm1t Vm 2r~n lr~n2 )

(A21)

J', (e)— (~ )cs i(k —k') (Rl —RP) f
l Vm 1 ~k ~k'

(A22)

where J„=V /e& is the Schrieffer-Wolff exchange in-

tegral, and f(e) = I /(e '+ 1). Since only maximal fre-
quency transfers of order TL are expected to be relevant,
and since I will vary for frequencies on the order of the
conduction bandwidth, I will drop the remaining frequen-
cy dependence. Then Fourier transforming the remaining
terms back to the time domain will result in an effective
Lagrangian precisely of the form (Al).

What is omitted by this last set of approximations?
First, the self-energy corrections will give rise to anoma-
lous contributions to the RKKY interaction. I argue in
Appendix B on a perturbative basis that these terms are
less relevant than the usual RKKY term. Second, once
the molecular field approximation is made, any chance of
obtaining two-site Kondo effects is lost. The molecular
field approximation corresponds to a particular way of
decoupling the two-particle pseudofermion Green's func-
tions which omits the higher-order dynamics that are sup-
posed to give rise to two-site Kondo effects.

In summary, then, in this appendix I have shown that a
Lagrangian of the appropriate form (Al) can be generated

from the Anderson lattice provided one imposes restric-
tions (1)—(3) outlined at the beginning of this appendix.
The restrictions taken together with the molecular field
approximation eliminate the consideration of coherent
modification of the RKKY interaction, three-site and
higher exchange processes, boson self-energy effects on the
two-site exchange process (a minor point), and the possi-
bility of two-site Kondo effects.

ReD(ef —ek ) =— a.(~TL /21 )
+

where a is a factor of order unity. Substituting (B2) into
(B1) and evaluating the resulting integrals gives

R) Qj) 0 I

R, ~, -cu IR(~, +v o.

I I

Rp (oper R~(up-(u -v R~(up-v tT

FIG. 12. Two pseudoferrnion propagator intersite self-energy
diagram. The simplest intersite contribution to the two pseudof-
ermion propagator self-energy is interpreted as the RKKY in-

teraction between the pseudofermions. Note here that the wavy
line represents the pseudoboson propagator given by Eq. (2.11).

APPENDIX B

In this appendix I present a perturbative evaluation of
the two-site RKKY interaction between Kondo impuri-
ties. The relevant diagram is shown in Fig. 12. I shall
consider two impurities located at the origin and R. I
shall take the static limit and evaluate the energies of the
pseudofermion legs at ef —A, o and ef —A,z. Denoting this
limiting value of the interaction function by Io(R), I find

4

Ip(R) =2
2 g e [ReD(6'f —E'g )] (Bl)

N,

where the pseudoboson propagator D(v) is defined in Eq.
(2.11).

It is reasonable to approximate ReD(ef —ek ) by a two-
pole form, one contribution coming from the slow charge
fluctuations peaked about ef, and one from the rapid spin
fluctuations peaked near TL. Roughly, at T=0 K,
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4a.TL ATL
Ip(R) = D—[N(0)J„]Fp(kFR )+ [N(0)J„]Fi(kFR )+ F~(kFR )

2D

where J„ is given below (A20) in Appendix A and the range functions are given by

cos(2kFR )

Fp(kFR) 3 i kF «R
(kFR )

(83)

(84a)

D
Fi (kFR ) Fp(kFR )

4a TL

Up
=g» «R

ATL

——Si(2R /g» ) cos(2kFR ) —Ci(ZR /g» ) sin(2kFR )

(kFR )
kF «R « g»

where Si(x) and Ci(x) are the sine and cosine integral functions, vF is the Fermi velocity of the normal conduction
states, g» is the so-called "Kondo coherence length, " and finally

D
Fp(kFR ) = Fp(kFR ), g» «R2' TL

sin(2kFR )
kF ' «R « g» .

(kFR )
(84c)

Noting that N(0)J„ is perturbatively small, and therefore that TL /D —exp[ —l/
i
N(0)J„~ ] is even smaller, I can

collect terms and see that

Ip(R) = D I [N(0—)J„]+—,
'

I Fp(kFR ), g'» «R
2

2
D[N(0)J—„]Fp(kFR)+ [N(0)J„]F,(kFR), kF '«R «g» .

2D
(85)

Clearly, the anomalous terms arising from (84b) and

(84c) dominate the interaction only for R »g». Since

TL ~0 is usually the relevant limit for considerations of
magnetic order, and since (a) g»~ ca in that limit and (b)

any mean-free-path eft'ects at finite temperatures will tend
to cut o6' the range functions at the mean free path l

which will likely be much smaller than g» at any reason-

able temperature, I conclude that the normal RKKY in-

teractions (proportional to J„above) are the most crucial
in determining magnetic order.

I note that while other workers have obtained the same
results for the anomalous terms, ' I am unaware of
any who have clearly pointed out the dominance of the
regular RKKY terms in this fashion. Lee and Rasul
and Hewson were the first to use the breakup of the
pseudoboson propagator within large-&g, d theory accord-
ing to the form (82). Ishii has reached similar con-
clusions using perturbation theory in U/~t, where U is
the Coulomb repulsion between up- and down-spin elec-
trons. "
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