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A central mode of the quasi-one-dimensional hydrogen-bonded ferroelectric CsH,PO, (CDP) is
found in the paraelectric phase by hyper-Raman scattering, for the first time. From the tempera-
ture and polarization dependences of the spectra, the observed central mode is assigned to be a soft
mode which is related to the ferroelectric phase transition of CDP. From line-shape analysis, it is
concluded that the central mode is caused by the polarization fluctuation of PO, ions. Temperature
dependences of the static susceptibility and the relaxation time are obtained from the intensity and
the half-width of this central mode, respectively. Both temperature dependences are consistently ex-

plained by the quasi-one-dimensional Ising model.

I. INTRODUCTION

Caesium dihydrogen phosphate CsH,PO, (CDP) is well
known as a typical example of the hydrogen-bonded fer-
roelectrics.!=* The CDP is also known as one of a few
one-dimensional ferroelectrics. The ferroelectric phase
transition temperature 7, is around 150 K for CDP,
while it increases around 270 K for the deuterated one
(CsD,PO,). This large isotope effect is a common prop-
erty for the hydrogen-bonded compounds such as
KH,PO, (KDP). In order to elucidate the role of proton
tunneling for this isotope effect, the dynamics of phase
transition for the hydrogen-bonded ferroelectrics has been
studied so far by many researchers.*

However, because the precise mechanism of the phase
transition in CDP has not been revealed, two different as-
sertions seem to exist for the type of phase transition in
CDP, depending on the experiments. One is the
displacive-type mechanism coupled with the proton tun-
neling. This mechanism may qualitatively explain the
large isotope effect of the CDP, assuming the existence of
proton tunneling. On the contrary, the other is the ordi-
nary order-disorder-type mechanism of polarized PO,
ions. This mechanism can well explain the Raman spec-
tra of CDP.>~7

In paraelectric phase above T, the crystal structure of
CDP (Refs. 8—11) is monoclinic with space group P2,/m
(C3,) which has the centrosymmetry. A proton occupies
randomly one of the two equilibrium positions on a hy-
drogen bond which chains PO, ions one dimensionally
along b axis. In the ferroelectric phase below T, a pro-
ton occupies regularly one of the two positions accom-
panying displacements of the other heavy atoms. Then,
the space group of crystal structure becomes P2; (C %) in
which the centrosymmetry is lost, causing a spontaneous
polarization along the b axis.

Neutron scattering measurements'? suggest that intra-
chain correlations are strong compared with the inter-
chain correlations in CDP. From this point of view, the
dielectric properties of CDP have been considered on the
basis of a quasi-one-dimensional Ising system by many au-
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thors.2>»13—1® In connection with the relaxation process

of the polarizations, the dynamic dielectric properties near
the T, are studied.>!>~!" The results are also well ex-
plained by this model.

The soft mode in CDP, however, still has not been
found in both paraelectric and ferroelectric phases, al-
though the efforts to find a soft optic phonon in CDP
have been made using Raman,’~” infrared,® and neutron'?
measurements.

Recently, the hyper-Raman scattering measurement is
found to be a very useful tool to study the soft modes of
the paraelectric phase in displacive-type ferroelec-
trics,'® =22 because these soft modes are active for hyper-
Raman scattering as well as infrared absorption, while
they are inactive for ordinary Raman scattering only
when the crystal structure of the ferroelectrics has a cen-
trosymmetry in the paraelectric phase. On the other
hand, hyper-Raman scattering is also expected to be use-
ful for the study of soft modes for the case of order-
disorder-type ferroelectrics. As can be seen, the soft mode
of this type in the paraelectric phase should be active for
hyper-Raman scattering as well as infrared absorption.
Furthermore, the soft mode in order-disorder-type fer-
roelectrics will be observed as a central mode by hyper-
Raman scattering which is convenient to study the low-
energy excitation spectra.’> However, the study by means
of hyper-Raman scattering is insufficient for the order-
disorder-type ferroelectrics. The aim of this paper is to
study the soft mode related to the phase transition of
CDP by using the hyper-Raman scattering.

II. EXPERIMENT

Single crystals of CDP were grown from an aqueous
solution by the slow evaporation method at about 20°C.3
The single crystals were cut into a rectangular shape in
which the direction of each face was parallel to each crys-
tallographic axis of ¢, a’, and b, where a’ is a pseudo-
orthorhombic axis. All faces of this crystal were polished
to give the optically flat surface. To define the polariza-
tion of hyper-Raman spectra, the orthogonal Cartesian
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coordinate system X-Y-Z was used where X, Y, and Z
axes were taken parallel to the crystal axes ¢, a’, and b,
respectively.

An acoustic Q-switched Nd-YAG laser (YAG denotes
yttrium aluminum garnet) was used as a light source. The
wavelength was 1.06 um and the peak power of the pulses
was about 20 kW at 1 kHz. The polarized laser beam
with a single mode was focused into the sample by a lens
of f=100 mm. The light scattered at right angles was
collected by a condenser lens through an analyzer. A
double-grating monochromator was used with a slit width
of 100 um, which gave a resolution of about 3.9 cm~!.
Since the intensity of the hyper-Raman scattering light
was very weak, a gated photon counting system was used
to reduce the dark count level of the photomultiplier by
about 1/10000. The remaining part of dark counts could
be reduced to almost zero by the utilization of dark counts
which were measured at an interval between two pulses of
laser beam.

In order to measure the temperature dependence of
spectra, a cryostat was used below 300 K and an electric
furnace was used above 320 K. The temperature of the
samples was kept constant within +0.1 K at the settled
temperature by using a computer.

III. RESULTS

Figure 1 shows the hyper-Raman spectra of CDP ob-
served at temperatures 226, 298, and 393 K in the right-
angle configuration X(ZZ)Y. The abscissa shows the fre-
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FIG. 1. The circles show the central mode in hyper-Raman

spectra of CDP in the X(ZZ)Y configuration. The solid curves

are the line shape of the Lorentzian convoluted by the slit func-
tion.
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FIG. 2. Temperature dependence of the integrated intensity
I, of the central mode in CDP.

quency shift from 2wy, where oy is the frequency of the
incident laser beam. The spectra show clearly the central
mode centered at 0 cm ™! with a linewidth wider than the
resolution of A=3.9 cm™!. Second-harmonic generation
(hyper-Rayleigh) scattering which is the nonlinear elastic
scattering is not seen in the spectra. If there were such a
scattering, the linewidth of the spectrum should be the
same as the resolution of 3.9 cm~!. However, such a nar-
row scattering line is not found in this figure. This result
is consistent with the fact that second-harmonic genera-
tion (SHG) of CDP is forbidden in the paraelectric phase
because of the centrosymmetric crystal structure of the
paraelectric phase of CDP.

In order to get the line shape of the spectra, we decon-
volute the spectra by a slit function. Then, we find that
the deconvoluted line shape is a Lorentzian. The convo-
luted Lorentzian line shape is in good accord with the ex-
perimental spectrum at each temperature, as shown by the
solid curves in Fig. 1.

Comparing the three spectra in Fig. 1, it is seen that the
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FIG. 3. Temperature dependence of T /I, (dots) which is
proportional to the inverse susceptibility 1/X(0). The solid
curve is the calculated temperature dependence of 1/X(0) which
is fitted to T /I, by the least-squares method using the quasi-
one-dimensional Ising model. The dashed curve is the calculat-
ed temperature dependence of 1/X(0), using the quasi-one-
dimensional transverse Ising model. The inset is the expansion
of the temperature dependence near 7.
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FIG. 4. Temperature dependence of the full half width T
(solid circles) of the Lorentzian which corresponds to 1/wcT.
The solid curve is the calculated temperature dependence of
1/mcr which is fitted to I by the least-squares method using the
quasi-one-dimensional Ising model. The dashed curve is the cal-
culated temperature dependence of 1/7c7, using the quasi-one-
dimensional transverse Ising model.

peak intensity of the central mode increases and its half
width becomes narrow as the temperature decreases. In
order to know the temperature dependence of the total in-
tensity, we measure the intensity of the central mode us-
ing a wide slit width, which corresponds to the resolution
of about 60 cm™!, at temperatures from 100 to 400 K.
The results are shown in Fig. 2. As seen from Fig. 2, the
total intensity I, increases gradually with decreasing tem-
peratures. When the temperature becomes about 158 K,
the total intensity increases rapidly and becomes almost
constant below 157 K. Since the change of total intensity
is too fast to be followed at a temperature range from 158
to 157 K, it is difficult to determine the order of this
phase transition in CDP. The phase transition tempera-
ture T,, however, is found to be about 157 K from the
temperature dependence of I.

Figure 3 shows the temperature dependence of T /I, in
the paraelectric phase of CDP. From this figure, we can
see that T /I, becomes almost zero when the temperature
is close to T,~157 K. Figure 4 shows the temperature
dependence of the full half width ' of the Lorentzian
which is obtained from the central mode by the deconvo-
lution. It also approaches zero as the temperature goes to
T.. However, the half width of the Lorentzian below 220
K could not be obtained, because of the low resolution of
the spectrometer of the system. In CDP, the spectral
resolution was limited to about 3.9 cm ! by the low inten-
sity of the hyper-Raman scattering.

IV. DISCUSSIONS

As seen from Figs. 3 and 4, the intensity of the central
mode diverges and the half width approaches zero, as the
temperature approaches T,. Furthermore, the central
mode obtained by the configuration X(ZZ)Y (Ref. 24) has
the same symmetry A, as that of soft mode in CDP,
which is derived by a group-theoretical consideration for
the paraeletric phase.> From these experimental facts, it
is confirmed that this central mode is a soft mode in
CDP.
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By the symmetry consideration,””?* it is known that

the soft mode related to the phase transition of CDP has
the symmetry of A4, in paraelectric phase and has the
symmetry of A4 in ferroelectric phase. This means that
the soft mode will be active for the infrared and the neu-
tron measurements in both paraelectric and ferroelectric
phases while it is active for the Raman measurement only
in the ferroelectric phase. However, in infrared,® neu-
tron,'? and Raman®~’ measurements, the soft optic mode
has not yet been found. These facts suggest that the phase
transition of CDP is not the ordinary displacive type.

As in the case of KDP, two possibilities of the phase
transition mechanism are considered in CDP to under-
stand the central mode obtained in this experiment. One
mechanism is a displacive type, where the soft mode can
be seen in the spectra as a damped harmonic oscillator in
a very-low-frequency region. The other mechanism is an
ordinary order-disorder type, which corresponds to the
polarization fluctuation of PO, ions, where the soft mode
can be seen as a central peak. Then, a line-shape analysis
of the obtained central mode is necessary to determine the
phase transition type of CDP.

A. Line-shape analysis

First, we discuss the line shape of the central mode in
order to clarify the phase transition mechanism in CDP.
The intensity I(w) of hyper-Raman scattering is given by
I(w)~n(w)ImX(w) for the anti-Stokes component and
[n(w)+1]ImX(w) for the Stokes component, where n(w)
is the Bose-Einstein factor. This relation is also known
for the intensity of ordinary Raman scattering spectra.
From this relation, it is found that the line shape of I(w)
is always derived from the frequency dependence of the
imaginary part of susceptibility X(w). In the low-
frequency region (#iw <<kT), I(w) can be well approxi-
mated as I(w) ~(kT /#iw) ImX(w).

Assuming the order-disorder-type phase transition for
CDP, the susceptibility X(w) in the frequency region of
the central mode is given as X(w)=X(0)/(1—iw7) by us-
ing a Debye model. Then, the frequency dependence of
I(w) can be written as follows:

kT 0)—T

I(w) —_—
@ #i 1+ (w7)?

(1
This equation shows that the line shape of I(w) is
Lorentzian except for the temperature factor.

On the contrary, for the displacive-type phase transition
with the damped harmonic oscillator, the susceptibility
X(w) is given by X(w)=X(0)w(2)/(co(2,——w2—iF0w), where
wy is the frequency of the damped oscillator and [y is the
damping constant. In this case, the line shape of I(w) is
given as follows:

wéro
(0§—0?)?+(0ly)?
The largest difference between Egs. (1) and (2) is that
the denominator of Eq. (1) has a second power of frequen-
cy shift while that of Eq. (2) has a fourth power of fre-

quency shift. However, since the frequency dependence of
I(w) in the latter case can be reduced to a Lorentzian type

1(w)~k—ﬁT—X(0) @)
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FIG. 5. Plot of I(w)w? in which I(w) is the intensity sym-
metrized by the Stokes and anti-Stokes scattering spectra mea-
sured at 239 K.

in the low-frequency region, the frequency dependence of
I(w) is very similar in both Egs. (1) and (2) around the
peak frequency region. Therefore, it is not easy to recog-
nize which equation can well reproduce the experimental
spectra by the comparison of the line shapes.

On the contrary, in the tail of the spectra in the high-
frequency region, the difference between two line shapes is
remarkable. If the line shape is given by a Lorentzian,
I(w)w? increases monotonously from the frequency shift
=0 cm™! with increasing » and reaches a constant at
the high-frequency region. On the other hand, if the line
shape is given by a damped harmonic oscillator, I(w)w?
increases with increasing @ and shows the maximum at
g, and then decreases with increasing ». Thereupon, we
try to plot I(w)w? using the experimental spectra. The re-
sults are plotted in Fig. 5. As seen in Fig. 5, I(w)w? in-
creases with the increase of |w | and shows a constant in
the frequency region above |w| =35 cm~!. Therefore, it
is considered that the line shape of the central mode in
CDP is a Lorentzian within these experimental errors.
From the line-shape analysis of the spectra described
above, it is concluded that the mechanism of phase transi-
tion in CDP is an order-disorder type. In this case, the
central mode is considered to be caused by the polariza-
tion fluctuation of PO, ions.

The line-shape analysis described above seems to be
very useful to elucidate the origin of hyperquasielastic
light scattering. This line-shape analysis is also success-
fully applied to the hyperquasielastic light scattering spec-
tra of liquids.?® Hyper-Raman scattering measurement is
believed to be a new experimental method to obtain an ex-
act line shape of quasielastic light scattering spectra.

B. Static susceptibility

Next, we discuss the temperature dependence of the
static susceptibility of CDP based on the order-disorder-
type phase transition mechanism.

Since the total intensity I is given by the integration of
Eq. (1) over the whole frequency region, the following re-
lation is derived:

Iy

X(0)~7(7 . (3)
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Consequently, the ordinate T /I, in Fig. 3 should be pro-
portional to 1/X(0). Equation (3) is also a well-known re-
lation for ordinary Raman scattering.

The Hamiltonian for the quasi-one-dimension Ising
model in an external electric field E;; has the form?’

H=-3

1
J)1Si+1,jSij+ 7 lemnSijSi+m,j +n
ij m,n

+uS;E; ] ,

where J)| and J, are the interchain intrachain coupling
constants, respectively, and S;; =t 1 is the spin variable at
the site / in the jth chain. m,n indicates the relative posi-
tion of the interacting spins. u is the effective microscop-
ic dipole moment. By using the mean-field approxima-
tion, the following equation:>"28

S—: T
exp( —2/3.1" )—BJJ,

is obtained for T > T, where N is the number of spins in
unit volume and B=1/kT.

Since, using all of the experimental data above T, the
parameter fitting in Eq. (4) was not successful by the
least-squares method, only the experimental data above
T, +20 K were used to determine the parameters J|; and
J;. Then, we can determine the values of the parameters
so that the greater part of the experimental results I,/T
can be reproduced by the temperature dependence of X(0)
calculated by this equation. The calculated temperature
dependence of 1/X(0) is shown by a solid curve in Fig. 3.
In this figure, it is seen that experimental values 7 /I,
agree well with the calculated values 1/X(0). The
evaluated values of fitting parameters J; and J, are
shown in Table I.

The temperature dependence of T /I, in the vicinity of
T, could not be reproduced by using Eq. (4). Since, in the
vicinity of T,, values of T /I, always exceed 1/X(0) as
shown by the inset in Fig. 3, it is considered that this de-
viation is not caused due to extra SHG, such as a defect-
induced SHG. The reason for this deviation from the
quasi-one-dimensional Ising model is not clear at present.
However, this deviation has already been pointed out by a
few workers. 2413

Static dielectric constant €y of CDP has been discussed
so far by many workers>>13=1!¢ yusing the quasi-one-
dimensional Ising model. The reported experimental re-

4)

TABLE I. Values of parameters Jj|, J;, and 7 used for the
calculation by the quasi-one-dimensional Ising model, and
values of parameters J), J,, and Q used for the calculation by
the quasi-one-dimensional transverse Ising model.

Present work  Ref. 3 Ref. 14 Present work
Jy (K) 273x10 234 266 302+24
J, (K) 6.0£0.5 6.78 6.0 9.3+6.7
70 (8) 5.7x 10~ 1.9% 1071 6.7x10~1
Q (K) 135+38
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FIG. 6. Comparison between the inverse static dielectric con-
stant 1/€p and T /I, obtained by hyper-Raman scattering. The
circles show T /I,. The solid curve represents the temperature
dependence of 1/¢, reported by Deguchi et al. (Ref. 14). The
dashed curve represents the temperature dependence of 1/¢y re-
ported by Kanda et al. (Ref. 3), where values of 1/¢, are indi-
cated using a reduced scale 0.62.

sults, however, are subtly different from each other and
the parameters evaluated by the quasi-one-dimensional Is-
ing model are also different from each other. Kanda et
al.’® reported that the temperature dependence of ¢, is well
explained by the quasi-one-dimensional Ising model. On
the contrary, Blinc et al.? asserted that the temperature
dependence of €p can be reproduced by the quasi-one-
dimensional Ising model only in a high-temperature re-
gion while, in the vicinity of T, the temperature depen-
dence of ¢ is reproduced better by the three-dimensional
Ising model. From the behavior of this temperature
dependence in €, they asserted that the three-dimensional
correlation was dominant in a temperature region below
T, plus 3 K. On the other hand, Deguchi et al.'* reported
that the temperature dependence of the static dielectric
constants in the vicinity of T, can be described by neither
the quasi-one-dimensional Ising model nor the three-
dimensional Ising model.

Now, €, and X(0) are considered to be almost numeri-
cally equal because €, has a large value in the case of
CDP. Therefore, the temperature dependence of €, can be
compared with the temperature dependence of the hyper-
Raman scattering intensity directly. Figure 6 shows the
comparison between 1/€, (Refs. 3 and 14) and T/I,,
which is obtained by hyper-Raman scattering. In this fig-
ure, it is found that the values of 7 /I, measured in this
experiment show the temperature dependence close to that
of the 1/¢, reported by Deguchi et al.'* The evaluated
values of parameters J)| and J, are in good accord with
those reported by Deguchi et al.

C. Relaxation time

Here, we discussed the temperature dependence of re-
laxation time 7 of CDP based on the order-disorder-type
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phase transition mechanism. As shown in Fig. 1, the fre-
quency dependence of the central mode is reproduced by a
single Lorentzian at each temperature. This fact means
that the distribution of relaxation times is not found in
the central mode observed by hyper-Raman scattering.
From the Cole-Cole plot of complex dielectric con-
stants,>!7 it is also shown that the distribution of relaxa-
tion time is hardly observed in frequency region from 1 to
10* MHz.

Using the quasi-one-dimensional Ising model,?’ the
temperature dependence of relaxation time 7 is given by

T~71okT exp(2BJ)X(0) , (5)

where 7 is the relaxation time in the absence of the in-
teraction between the dipoles. To estimate the value of 7
using Eq. (5), we use the values of parameters J; and J,
which are determined in Sec. IV B. Assuming that 7¢ is a
constant parameter independent of the temperature, the
observed temperature dependence of I' is well reproduced
by the solid curve in Fig. 4, where the solid curve is the
temperature dependence of '=1/#7c7 calculated by Eq.
(5). The value of 7, used in this calculation is 5.7 10~ '*
sec.

The inverse kinetic coefficient 7/X(0) is shown in Fig.
7. The open circles are the values obtained by this experi-
ment, which show an almost constant value in this tem-
perature range. The solid curve is the calculated values
7/X(0) using the following relation:

r
m:fokTexp(ZBJ|| ). (6)
In Fig. 7, it seems that the experimental results are also
well reproduced by the calculated curve, though the calcu-
lated one shows little temperature dependence. Thus,
from the discussions above, it is found that the tempera-
ture dependence of the inverse kinetic coefficient is also
understood by the quasi-one-dimensional Ising model.
However, there remains a problem since 7, has no tem-
perature dependence in this experiment. Detailed experi-
mental studies of the temperature dependence of 7, seem
to be few up to now. Assuming that the relaxation of po-
larization is caused by a thermally activated process, the
temperature dependence of 7y can be easily derived as fol-
lows: %30

T/x(0) (arb.units)

N

00 300 400
Temperature (K)

FIG. 7. Open circles show the temperature dependence of the
inverse kinetic coefficient 7/X(0). Solid curve is 7/X(0) calcu-
lated by the quasi-one-dimensional Ising model.
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AU

T | (N

T0 exp

T kT

where AU is an activation energy. This model also gives
the short side limit of about 10~ !2 sec to 7,. The evaluat-
ed value of 7y (5.7 10~ sec) in CDP, however, is short-
er than this limit. Furthermore, if 7, has the temperature
dependence of Eq. (7), the relaxation times calculated by
Eq. (5) cannot reproduce the temperature dependence of
the experimental results of the relaxation time of CDP.

For KDP crystal which is a hydrogen-bonded crystal
similar to CDP, a constant value of 7, of about 10~ 13 sec
is used to explain the temperature dependence of the cen-
tral mode which is observed by Raman scattering.’!3?
This fact is supported by Brillouin scattering of KDP.*3
On the contrary, in the case of NaNO,,?° which is a typi-
cal example of order-disorder-type ferroelectrics, it is well
known that 7, shows a temperature dependence which
obeys Eq. (7). So far as we described above, a constant
value of 74 is found only in the hydrogen-bonded fer-
roelectrics. However, it is not clear whether the constant
To is a characteristic property of hydrogen-bonded fer-
roelectrics. Because there is a little study about the tem-
perature dependence of 74, hyper-Raman scattering must
be carried out over a wide temperature range in order-
disorder-type ferroelectrics other than CDP.

D. Analysis by quasi-one-dimensional transverse
Ising model

Recently, a quasi-one-dimensional transverse Ising
model is applied to the phase transition of CDP.3*~3¢ In
this model, the role of the proton tunneling is taken into
account in the phase transition mechanism. The Hamil-
tonian is given by

x X 1 X QoX
H=—3 1S5 1S5+ 7 2 JimnSiSi s mj+n
i,j m,n

+QS;

»

where (2 is the tunneling energy. In CDP, the ratio of the
proton tunneling energy to the intrachain interaction ener-
gy is very small (f=2Q/J) <<1). In this case, the
theoretical calculation using this model gives a central-
peak-type behavior in X(w).>*73¢  Therefore, it is
worthwhile to try the analysis of the central mode ob-
served by hyper-Raman scattering by using this model.
By this model, static susceptibility X(0) and relaxation
time 7 are given by the following equations:*®

X1p(0)
X0)=——""——,
2 1—J,X,p(0) ®
TiD
=17 X150 ®
where

T,=N-! S cos(nka)+ cos[(n —1)ka]
2 [142f cos(ka)+f2]'7?
Ep=3J)[142f cos(ka)+f?]'?,

tanh(5BE) ,
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k=+2mm/Na, m=0,1,...,N/2,

[1— exp(—BQT )1+ T, —ToT,)

X 1p(0)=
in(0) QTo(1—T,+T,T,) ’
and
2 172
__ fp(0) 1+2(T1~T0+T1T_,)
S fTo

Here, a is the distance between neighboring spins. Ac-
cording to the same way described in Sec. IV B, the values
of parameters J I|» J1, and € are determined by the least-
squares method so that the temperature dependences of
1/X(0) and 1/mc7 calculated by Egs. (8) and (9) can be
reproduced by the experimental results 7 /I, and " over
the temperature range above T, plus 20 K. The values of
the parameters determined are given in the last column in
Table I. The evaluated values of 1/X(0) and I'=1/7cT
are shown as dashed curves in Figs. 3 and 4. Both results
seem to be very similar to the results of the ordinary
quasi-one-dimensional Ising model. It is surprising that
two kinds of Ising models used here give almost the same
results for CDP though the physical mechanism included
in the two models is quite different from each other.
However, the deviation of the calculated X(0) from the ex-
perimental data in the vicinity of T, could not be im-
proved by this quasi-one-dimensional transverse Ising
model.

The frequency dependence of X(w) by this model**3’ is
exactly given by a continued fraction representation of w
which is derived by Plascak et al.3® following Mori’s for-
malism. In this case, the tail of the line shape in the
high-frequency region may decay faster than that of the
Lorentzian. This is contrary to the experimental fact that
the line shape of the spectra shows clearly a Lorentzian.
Therefore, we believe that the tunneling effect of the pro-
ton is not essential for the central mode of CDP observed
by hyper-Raman scattering.

V. CONCLUSION

A central mode of the quasi-one-dimensional
hydrogen-bonded ferroelectric CsH,PO, is found by
hyper-Raman scattering. From the temperature and the
polarization dependences of the spectra, the central mode
is confirmed to be a soft mode of CDP. The line shape of
this mode is determined to be a single Lorentzian type
within these experimental errors. The mechanism for the
phase transition is well explained by a relaxational Debye
model for the order-disorder type, rather than a
displacive-type model coupled with the proton tunneling.
Hyper-Raman scattering intensity of the central mode is
found to be related to the static susceptibility X(0). The
half width of the central mode is also related to the relax-
ation time 7. The temperature dependence of X(0) is well
explained by the quasi-one-dimensional Ising model. The
temperature dependence of 7 is also well explained by the
quasi-one-dimensional Ising model with a constant 7.
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However, two problems remain. First, X(0) are deviated
from the values calculated by the quasi-one-dimensional
Ising model in the vicinity of T.. Second, we must con-
sider the physical meaning of the constant 79 which has a
short value. Since in the hyper-Raman spectra the soft
mode will be obtained as a central mode in the order-
disorder-type ferroelectrics, we believe that the hyper-
Raman measurement is very useful to study the order-
disorder-type ferroelectric as well as the displacive-type

one in which the soft mode will be obtained as a soft optic
phonon.
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