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The electronic structure and stabilization energy of isolated defects and defect clusters in wustite

Fel „0 is studied by the first-principles local-density theory. The embedded-cluster model is used
to obtain linear combination of atomic orbitals expansions of one-electron properties in the discrete-
variational scheme. The stability of the 4:1 interstitial cluster relative to simple defects is verified,
and the tendency of 4:1 clusters to aggregate is explored. Open edge- and vertex-shared aggregates
which permit the close approach of charge-compensating Fe + ions are found to be energetically
favored.

I. INTRODUCTION

There are three known oxides of iron, with ideal com-
positions FeO (wustite), Fez03 (hematite), and Fe&Og
(magnetite). The lowest oxide, wustite, exists as a stable
phase only above 570'C and has a rock-salt structure.
Cumulative over the past two decades, starting with the
seminal work of Roth, ' diffraction studies have shown
that wustite has a cation-deficient nonstoichiometric
structure Fe& „0 (0.05 &x &0.15); this involves not just
x iron vacancies with 2x ferrous ions oxidized to the fer-
ric state, but also defect clusters in which some ferric ions
occupy interstitial tetrahedral sites. The x-ray diffraction
work of Koch and Cohen on quenched single crystals
clearly indicates a superlattice-generating cluster which is
cubic, and the presence of vacancies in nearest-neighbor
cation sites surrounding tetrahedral ions. Furthermore,
neutron diffraction intensity ratios as calculated by Cheet-
ham et al. allow the determination of the ratio of the
number of octahedral vacancies (m) to the number of
tetrahedral interstitials (n), r =min, which is now ac-
cepted to be 2.5—3.0 for wustite. r is believed to increase
with temperature and at lower defect concentrations, a
fact which suggests the dissociation of larger vacancy ag-
gregates into smaller "basic" clusters built from an inter-
stitial ferric ion surrounded by 4 cation vacancies, namely,
the 4:1 (m:n) cluster shown in Fig. 1. Lattice relaxations
in the form of static and dynamic displacements -0.2 A
of ions surrounding a defect are also detected. Diffraction
data has also been interpreted in terms of an ordered de-
fect phase having commensurate cubic superstructure
based on idealized wustite with lattice constant 5a.
Catlow and Fender have employed lattice-energy calcula-
tions based on the Born model to identity the 4:1 cluster

~ Tetrahedral FeQI

2-
O Octahedral 0
& Octahedral Fe II

Vacancy

FIG. 1. Schematic of the 4:1 defect cluster.

as the basic cluster and tend to believe that stable small
edge-sharing aggregates of the 4:I defect (e.g. , a 6:2 or 8:3
defect) give way energetically to more extended corner-
sharing aggregates (e.g. , a 16:5 spinel-like structure).
More recently, a quantum mechanical approach by An-
derson et al. using predominantly covalent normalized
ion energies yielded 13:5 and 16:7 defect clusters as hav-
ing the proper structure and composition to account for
the observed phases in wustite.

In the present effort, we have carried out a study of ab
initio binding energies of possible defect clusters in
Fe& „0, wherein we have attempted to answer questions
such as the following: (a) Is there a simplest or basic
stable defect in Fe& „0,and (b) if so, what is the mode of
aggregation of this basic defect to form larger defectsl
We employ the embedded- molecular-cluster model within
the framework of the Hartree-Fock-Slater (HFS) self-
consistent one-electron local-density theory using the
discrete-variational (DV) method with a linear combina-
tion of atomic orbital-molecular orbital (LCAO-MO)
basis to obtain the electronic structure, charge densities,
density of states, and potentials for the defects studied.
We then set up an algorithm for the calculation of the
cohesive energy in periodic solids and the internal energy
of formation of the prototypical defects studied. These
defects include a cation vacancy, an octahedral ferric ca-
tion, the series of simple defects 1:0, 2:0, 0:1, 1:1,2:1, 3:1,
4:1, and the series 6:2, 8:3, 7:2 (110),7:2 (111),8:2, and
13:4. Our aim is not so much to obtain the exact defect
structure that maximizes the binding, but rather to study
the mechanisms of growth and the competing energy
trends in the formation of simple and aggregate defects.

For some time now, the DV-HFS method has proved
itself capable of calculating the binding energy of mole-
cules and small clusters of atoms to desired precision. For
instance, Delley et al. have investigated the equilibrium
geometry, binding energy, and electronic structure of
small Cu clusters; Guo and Ellis have carried out self-
consistent cluster calculations for the binding energy of
positive muons in Cu. Our work then represents a natural
extension to the study of bulk solids, both perfect or with
periodicity-destroying vacancies, impurities, and distor-
tions. Any embedding scheme used to join molecular
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clusters to the host medium raises a number of points
beyond those considered for a free cluster. They involve
the choice and implementation of physically reasonable
embedding conditions and the construction of a model
Hamiltonian containing cluster-host and intracluster
Coulomb and exchange-correlation interactions. In total-
and binding-energy calculations, further questions need to
be answered; for instance, to what zero of energy does one
reference the eigenvalues and potential? How does one en-
sure a minimum energy configuration for a defect cluster?
Since the defect clusters come in varied shapes and sizes
and are embedded in a crystal potentiai that itself changes
in response to the defects, is it legitimate to incorporate
results from one cluster calculation in another?

II. THEORETICAL-COMPUTATIONAL PROCEDURE

z
+V„, (r) .

r —R

The sum of the second and third terms, the electronic
and nuclear contributions, constitute the Coulomb poten-
tial Vc(r), while the truly nonlocal Hartree-Fock (HF)
exchange-correlation operator V„, for spin o. is approxi-
mated by the so-called Xa potential dependent only on
the local electron density,

1/3

p (r) (2)V„, (r) =—

In the LCAO-MO method applied to solids, ' the wave
functions and eigenvalues of a cluster of atoms extracted
from the solid are calculated; the rest of the solid mani-
fests its presence by providing an electrostatic crystal field
and charge field in which the cluster is embedded. The
essential idea is to suppress surface or cluster-size effects
by making the peripheral atoms sense a potential similar
to that found in the bulk crystal. This is known to ac-
celerate the convergence of such properties as the charge
distribution and the density of states; not so other proper-
ties such as the magnetization that appear to depend criti-
cally on wave-function localization which is severely re-
stricted in small clusters. This method has proved to be
very conducive to the study of systems with low symme-
try or with defects for which the conventional band-
structure approach proves intractable or computationally
expensive. The potential field is simulated by construct-
ing a microcrystal surrounding the cluster consisting of
all atoms placed at their equilibrium lattice positions (or
in predetermined or desired positions when studying de-
fects), and employing a self-consistency procedure to gen-
erate a Coulomb and exchange-correlation potential field
in which the cluster is immersed. Typically, the micro-
crystal extends out to 17—20 a.u. from the center of the
cluster and includes 'about 250—300 of the surrounding
atoms.

The nonrelativistic one-electron Harniltonian in the
HFS model " of the self-consistent one-electron local-
density (LD) formalism can be written in Hartree atomic
units as

Molecular-orbital eigenfunctions ltj~(r) to the above
one-electron Hamiltonian are most

convenient'
expanded

in terms of a basis set of symmetry orbitals Igj(r) ),

t)j~~(r) are chosen to be those LCAO-MO centered on the
different cluster atom sites that transform as the Xth row
of the kth irreducible representation of the cluster point
group, i.e.,

PJ~(r) =g g R„j(r„)Yj~(r )ef~~ (4)

with r„=
f

r —r f. Here radial wave functions R„j(r„)
constitute a free atom or ion basis set with principal quan-
tum number n and orbital quantum number l and the
coefficients el~ can be calculated by group theoretical
means. ' Then the standard condition that the expecta-
tion value of the operator (H —E) be stationary with
respect to variations in CJ,. leads to a set of Rayleigh-Ritz
type secular equations compactly written in matrix form
as

and

Hj =g W(rk )jtj~ (rk)Hjtp~~(rk)
R

(6a)

S~ =g W(rk)p. ; (rk)pj(rk) .
R

(6b)

The sampling point set consists of an optimized gaussian
surface mesh' in conjunction with a Gauss-quadrature
radial grid' for the core region around each nucleus and a
diophantine distribution' in the interstitial region beyond
the spheres. By choosing the diophantine weight function
to be simply the local volume per point, i.e., the inverse of
the sampling point density, we cause our weighted sums
to converge towards Rayleigh-Ritz matrix elements in the
limit of an infinite number of points.

Solving secular Eq (5) for . the coefficients CJ~ yields
molecular-orbital (MO) eigenfunctions P(r) and their
eigenvalues c;. The lowest-energy MO's are filled succes-
sively with the cluster electrons up to a self-consistently
determined Fermi energy using Fermi-Dirac statistics.
The cluster charge density on the variational grid is ob-
tained by summing over all X MO's,

N
p""""(r)= g f; f f; (r)

f

',
where f; are the Fermi-Dirac occupation numbers. In
the so-called self-consistent-charge (SCC) approximation,
the charge density is projected onto the multicenter atom-
ic radial functions,

p""""(r)—=p' (r) =g g ~."j
f
R j(r

v n, l

(H —eS)C =0 .

In the discrete-variational method (DVM), ' the Hamil-
tonian matrix 0 and the orbital-overlap matrix S are
evaluated as weighted sums over a set of sampling points
rk with weight function W(rk), i.e.,
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The occupation numbers A„l for the atomic orbitals are
obtained by a diagonal-weighted Mulliken population
analysis of the charge density alternately a least-squares
fitting to p'""" is also possible. This yields the total
charge density

t

CT l

+ f p (r) E„, (r) V„,—(r) dr

pot(r)pcluster()+ext(

The Coulomb potential from each spherically symmetric
charge distribution is given by the one-dimensional in-
tegral

V,'(r) =4' —f p(r')r' dr'
I 0

The total nonspherical Coulomb potential is simply the
sum of all the spherically symmetric contributions from
all the atoms in the microcrystal, rewritten by means of a
generalized Ewald-type summation, ' using Gaussian
charge distributions around the nuclei, as a sum of two
rapidly convergent series,

V,
' (r)=

—k /4g

„X'X&
0 p i P

cos[k&.(r —r;l )]

V,'(r; ) —g;
erf(r;g)

Here ~;I is the coordinate of the ith atom in unit cell I,
carrying net charge Q;; g is the half-width of the Csauss-
ian, properly chosen to ensure rapid convergence of both
components and the k-vector sum over p extends out to a
k „determined by the precision to which the potential is
required. The first term in Eq. (11) which arises from a
smoothed-out charge distribution is considered a property
of the undistorted lattice and is left intact. Then by ma-
nipulating the neutralizing Gaussian charges piled around
the point nuclei, the presence of defects of any kind can
be treated simply as a correction to the second short-range
term in Eq. (11). This makes it possible for us to intro-
duce "virtual" atoms (essentially unoccupied basis orbi-
tals) at vacancy positions which provide for additional
variational freedom without much addition to computa-
tion time. Finally, electrons in the cluster sampling the
potential wells of atoms external to the cluster tend to
lower the energy of the valence orbitals as they try to oc-
cupy these wells. In reality, the cluster wave functions
must remain orthogonal to the occupied exterior atom
states. This repulsive effect is simulated in a simple
manner by truncating the deep potential wells around the
external atom nuclei at some radius R to some value V

typically chosen at about the Fermi energy.
The standard expression for the total energy in the

local-spin-density approximation' ' is the following:

where the exchange-correlation energy E„, (r) and the
exchange-correlation contribution to the chemical poten-
tial V„, (r) are related by

for the Kohn-Sham potential. In a free cluster, the in-
tegrals are evaluated by discrete summation of points ex-
tending over all space. In a solid system, the integrals
need to be computed over a suitably chosen representative
volume A0, perhaps corresponding to a unit cell or a
molecular formula unit. Since the cluster need not have
the same stoichiometry as the crystal, the eigenvalue sum
is rewritten as p, r dr, where

' ' —E"
g t t (13)

The reference state of the separated atoms must be treated
by spin-unrestricted density-functional formalism since
spin-dependent exchange energy is an important contribu-
tion in isolated-atom energies. It has been shown that for
a choice of a linear sampling operator, both E,[p] and
E,"'

[p] are stationary with respect to the density p and the
variational basis IP; I. So numerical noise is minimized
by computing the reference system energy over the same
volume with the same sampling grid with the atoms in the
same position but now assumed to be noninteracting.
Thus cohesive energy values, of the order of a few elec-
tron volts, are converged to better than 0.01 eV. In con-
sidering a defect structure in a crystal, there is no particu-
lar volume A0 corresponding to the defect cluster over
which to evaluate the discrete-integral terms in Eq. (13).
These integrals are now computed over all unit cells for
which the contributions to the binding energy of the de-
fect structure crystal differ from the contribution to the
binding energy of the idealized crystal. For the largest de-
fect clusters treated here, this involves all primitive cells
within about 2.5a from the cluster origin.

Typically, the total energy of atoms calculated via the
statistical total-energy functional E,[p], using the Kohn-

is a local "eigenvalue density" at point r, and also defines
a local kinetic-energy density and a local energy density at
point r.

Total energies calculated in this fashion typically are of
the order of 10 eV, and with the sampling schemes
chosen are not calculated accurately enough for direct
comparison of energy differences. However, it is possible
to extract a much more accurate binding energy with
respect to some reference system, say, the dissociated
solid,
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Sham local exchange potentials differs by about 1% from
the HF result, which is a strict upper bound to the total
energy. Further, the absolute error in total energy is a
rapidly increasing function of the atomic number. This is
due mostly to large errors in the deepest-lying core states
and is traced to the inaccurate treatment of the self-
interaction part of the exchange operator. Since we are
interested here in comparison of systems whose core states
are barely changed, this aspect of the problem is unimpor-
tant for valence electron derived properties and explains
why the accuracy of our computed cohesive energies
greatly exceeds the absolute accuracy of either the atomic
or the solid calculations. Lastly, for charged clusters, it is
useful to partition the sum of single-particle eigenvalues
into its contributions from the different atoms v in the
cluster by

p, r dr= p, r dr, (14)

where p",(r) is obtained from a diagonal-weighted Mul-
liken analysis of p, . Using this and Eqs. (12) and (13), we
can calculate the cohesion of a single atom or ion in the
crystal environment as well as average binding energies
per molecular unit.

Finally, comparison between theoretical results and
spectroscopic data is made possible by calculating the lo-
cal density of states (LDOS)

(15)

and the total density of states (DOS),

ygp /~D(c)= g 1„"t——g
(E—e~) +y

(16)

+ (2m —3n )Fe+++(0)

+(m n)Fe (oo ), — (17)

i.e., the presence of n-trivalent Fe ions in tetrahedral (t)
sites is accompanied by the creation of m cation vacancies
screened by 2m —3n octahedral (0) ferric ions and the ex-
pulsion of m —n Fe atoms. For example, in the case of
the 4:1 cluster, the equation would read

9Fe +(+0)~1Fe+ +(+t) +4 ~V, +F5e +++(
0) +3Fe ( oo ) .

(18)

We have chosen to write the ionic charges as (+ + ) or
( + + + ) instead of ( + 2) or ( + 3) to indicate self-
consistently determined spin and orbital occupation num-
bers and ionicities rather than the nominally predicted
chemical ionicities. Equation (18) is strictly balanced for

where f t z is the population contribution from atom v,
state (n, l) to the pth molecular orbital and g~ is the de-
generacy of level c~. The Lorentzian width parameter y,
chosen to be about 0.40 eV, provides the smoothing out of
the discrete level structure to simulate solid-state bands.

The formation of a defect cluster by removing Fe atoms
from a stoichiometric wustite lattice is best represented as

3(m —n)Fe++(0)~ nFe+++(t)+mV&,

charge, mass, and sites, an essential feature since the
minimum energy structure is one where the microcrystal
has zero overall charge.

In the integration scheme, roughly 600 points per atom
are used, split between a 30X 12 (radial X angular) Gauss-
quadrature grid out to 1.5 a.u. and diophantine points
beyond in the interstitial regions. However, for the large
27 atom clusters this number is reduced to 450 points per
atom (with a 24X 12 G-q grid), a step forced by the need
to keep computing space and time within manageable lim-
its. Ionic basis sets for Fe(+ 2), Fe(+ 3), and 0(—2),
compacted by a smooth potential well of depth 2.0 a.u.
out to 6.0 a.u. , are chosen. Orbitals 3d, 4s, 4p for Fe and
2s, 2p for 0 were chosen to provide a modest degree of
variational freedom. The lower-lying orbitals for each
atom form a part of the frozen or nonvariational core.
The contribution of the shift in core eigenvalues to the
one-electron eigenvalue sum is given to a good first ap-
proximation by pa r AV r dr, where p0 r is the core
charge density at r and b, V(r) is the change in potential
at r in going from a free atom to a solid. Vacancy sites
are provided with unoccupied 1s and 2p virtual orbitals,
compacted with the same potential well as above. The
microcrystal extends outwards, spherically or cylindrically
depending on the shape of the cluster, to include about
250—300 of the closest atoms and the pseudopotential
cutoff is fixed at 0.0 a.u. (relative to E~) out to a radius of
1.8 a.u. about each exterior crystal atom. The scaling fac-
tor in the Xe exchange potential is chosen to be a=0.70
in all our calculations, a value near the classical Kohn-
Sham derivation, and found to be nearly optimal in
molecular studies.

III. RESULTS AND DISCUSSION

A. Idealized wustite FeO

A spin-polarized numerical calculation with cx =0.70 on
the free Fe atom (3d, 4s ) gives the total energy as
—1261.57 a.u. (1 a.u. =27.21165 eV). The corresponding
numerical HF result is —1262.291 a.u. , i.e., the local den-
sity approximation is subject to relative errors in total en-
ergy of transition metals of the order of 10 . A similar
total-energy calculation for atomic 0 (2s, 2p ) yields
—74.3565 a.u. the HF result is —74.80936 a.u. %'e note
that in the original Xa scheme one would adjust n to
make the HF and LD energies equal. However, this ap-
proach leads to different cx values in different crystalline
regions and constitutes a poorly controlled approximation
for our purposes.

Given the rocksalt structure of a stoichiometric FeO
lattice, two very obvious choices to study its structural
properties are a neutral embedded 8-atom cluster Fe4O4
and a dense-packed 27-atom cluster Fe~06Fe&208, that in-
cludes all the atoms in the cubic unit cell. In Fig. 2 the
cohesive energy of FeO as calculated from the former is
plotted and its properties are tabulated in row 1 of Table
I. The lattice constant obtained is 8.21 a.u. which is
within 0.8% of the experimental value of 8.15 a.u. quoted
in Wyckoff. ' The cohesive energy is calculated to be
11.20 eV with respect to free atoms; the experimental
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FIG. 2. Cohesive energy in idealized FeO versus lattice
volume parameter.

value is 40.17 eV (Ref. 20) with respect to isolated gaseous
ions, or equivalently (40.17—24.08+6.57) eV=22.66 eV
with respect to isolated gaseous atoms after using the
second ionization potential for Fe and the electron affinity
for O. The smallness of our cohesive energy is clearly a
consequence of the very restricted basis set we use. A

diagonal-weighted Mulliken population analysis of the
charge density gives orbital occupation numbers and spin
for Fe(3d ', 4s, 4p; spin, 4.34p~) and O(2s ',
2p; spin, 0.11p~) that closely resemble the standard
chemical values for free ions. The d-s gap, i.e., the energy
difference from the top of the Fe 3d band to the next set
of orbitals (Fe 4s and minority spin Fe 3d) is 3.10 eV and
the chosen form of the crystal pseudopotential stabilizes
the Fermi level at —2.78 eV. The 4s levels are concen-
trated just above the Fermi energy, extending up to 2.0
eV.

Grenet et al. ' have reported well-resolved x-ray photo-
emission spectra (XPS) and ultraviolet photoemission
spectra (UPS) on a FeO single crystal showing 3 struc-
tures at 1.5, 4.3, and 7.8 eV which are deduced to be
mainly Fe 3d in character and a single peak at 6.0 eV cor-
responding to 2p O. Other XPS measurements on wustite
by Bagus et al. show the Fe 3d valence-band states
spread broadly over —10 eV and an O 2p band located at
5.5 eV. The photoelectron spin-polarization (ESP) mea-
surements by Alvarado, Erbudak, and Munz yield a Fe
3d band centered about 4.2 eV and spread over -7 eV

TABLE I. Study of defect-free FeO.

Cluster
description

Fe404

Cluster
symmetry

Td

No. valence
electrons in

cluster

56.0

No.
cluster
atoms

Fermi
level
(eV)

—2.78

d-s
gap
(eV)

3.10 Fe4
04

Self-consistent
ionicities

(spins)

1.90 (4.34)
—1.90 (0. 11)

Cohesive energy
per ion pair

(eV)

11.20

Fe2Fe4O204 84.0 12 —2.67 2.42 Fe2
Fe4
02
04

1.93 (4. 15)
1 ~ 85 (4.34)

—1.86 (0.10)
—1.89 (0.08)

11.45

Fe4Fe40404 D2 112.0 16 —2.34 2.41 Fe4(in) 1.90 (4. 15)
Fe4(out) 1.86 (4.35 )

0 (in) —1.86 (0.09)
04(out) —1.89 (0.07)

11.67

Fe iO& Fe404Fe~02 98.0 14 —2.61 1.87 Fel
Oi
Fe4
04
Fe2
02

1.97 (4.04)
—1.80 (0.11)

1.84 (4.31)
—1.88 (0.06)

1.91 (4.24)
—1.89 (0.09)

11.24

Fel Fe60206 Csv 105.9 15 —2.45 2.48 Fel
Fe,
02
06

2.00 (4.07)
1.88 (4.32)

—1.90 (0.09)
—1.89 (0.08)

10.96

Oi06Fe2Fe6 104.1 —2.95 1.87 Oi
06
Feq
Fe6

—1.68 (0. 13)
—1 ~ 88 (0.08)

1.92 (4.29)
1.83 (4.23)

10.80

Fe l06FelpOg 0 189.90 27 —2.04 2.25 Fel
06
Fe&2

Og

1.87 ( —4.02)
—1.82 (0. 11)

1.87 (4.08)
—1.92 (0.08)

11.31
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and an 0 2p band centered at 7 eV. In short, there are
still points of dispute regarding the experimental data.
All the energy values above are quoted with respect to the
Fermi level. Typically, in 3d transition-metal oxides, the
3d metal electrons interact strongly with each other and
with the surrounding anions to give rise to a set of local-
ized states or narrow bands within the 0 2p-Fe 4s gap of
about 6 eV. Conventional band-structure calculations,
however, have had to be supplemented by semiempirical
energy level schemes based on atomistic crystal-field
theory (CFT) analysis in order to understand the positions
and intensities of these spectral bands. Our DOS, shown
in Fig. 3, displays a majority-spin Fe 3d valence band cen-
tered at —6.9 eV, an 0 2p band at —10.2 eV, a small Fe
3d concentration admixed with 2p at —9.6 eV, and some
O 2p density at —6.3 eV. Thus we have only two dom-
inant peak structures, Fe 3d at 4.1 eV and 0 2p at 7.4 eV
relative to the Fermi energy. These results are directly at-
tributable to the compressed nature of the ionic bases
chosen for Fe and 0, which leads to ionicities of +1.90
for Fe and 0; the transfer of almost 2 electrons from Fe
to 0 shows up in a ground-state calculation as an de-
pletion of occupied DOS structure from the 3d levels and
pushes the 0 2p levels to lower energies. In Fig. 3, the
discrete energy levels have been smoothed out to resemble

bands by means of a 0.40-eV full-width-at-half-maximum
Lorentzian function [Eqs. (15) and (16)];thus the calculat-
ed widths of the d and p levels from the cluster atoms are
uncertain by this amount. Further insight into the role of
basis sets and reduced coordination numbers on the DOS
is provided by the results of the 27-atom cluster.

The small size and symmetry of the 8-atom cluster —all
cations treated identically —prevent us from investigating
the antiferromagnetic nature of wustite (Neel temperature,
198 K). The 27-atom cluster Fe~06Fe&2Os is distinctive in
that it provides a central cation, fully coordinated to other
cluster atoms, the direction of whose spin can be the sub-
ject of a detailed superlattice calculation, wherein the
external crystal has alternate planes of cations with oppo-
site spins, or a simpler calculation in which the external
crystal potential is again generated via the results of the
8-atom cluster. Results from the latter calculation are
shown in row 7 of Table I. The central Fe cation has a
spin of —4.02, opposite in sign to the surrounding spins,
while the other occupation numbers closely follow the 8-
atom cluster results. The cohesive energy for this calcula-
tion is 11.31 eV; however, the energy difference between
the two spin directions for the central cation is less than
the precision to which the cohesive energy is calculated.
For such a cluster with different sets of cations and
anions in different environments, it is more instructive to
look at the density of states from each inequivalent set, as
shown in Fig. 4, rather than the cumulative DOS. Both
the central Fe and the 12 peripheral Fe which are fourfold
coordinated within the cluster exhibit a majority spin
DOS structure centered at 4.0 eV. The anion set IO8I
which is really equivalent to the anions in the Fe404 clus-
ter provides a 2p contribution to the DOS located at 7.6

(c)

(b)

D

A

ENERGY (e V)

FICx. 3. Total densities of states in idealized Fe0. Upper half
panel is spin g; lower panel is spin g. (a) Fe404 cluster; (b)
Fe06Fe~~O~ cluster.

ENERGY (e V)

FIG. 4. Partial densities of states in idealized FeO. (a)
Fe404.Fe 3d; (b) 0 2p; (c) Fe06Fe)208.- central Fe 3d; (d) O6
( ) and Og ( ———) 2p.



M. R. PRESS AND D. E. ELLIS 35

eV. However, the set IO6I which is closer to full coordi-
nation shows a deeper 2p band centered around 8.7 eV. If
we accept IFe, J and IO6I as the best representatives for
cations and anions in the system, then we can derive other
parameters of relevance in constructing a semiempirical
one-electron energy level diagram for FeO, as attempted
variously by Eastman and Freeouf, by Balberg and
Pinch and by Bagus et al. We find the following.

(a} b,cF (=10Dq) =0.90 eV for the initial state Fe++
and =1.20 eV for the final states, multiplet and crystal-
field-split levels of Fe+++. 10Dq is the crystal-field split-
ting of the t 2g and e~ one-electron orbitals due to their co-
valent mixing and electrostatic interaction with the
ligands. Although not known experimentally for FeO,
10Dq is 1.3 eV for Fe++ in aqeous solution; for the final
state, Alvarado's analysis of the ESP spectra yields
1.70+0. 1 ev for 10Dq. Thus our calculated values fall
short of the experimental results by about 30%. Bagus
et aI. obtain 0.81 eV for the initial state and 1.1 eV for
the final states from ab initio self-consistent field (SCF}
and configuration-interaction wave functions for a
(Fe06)' cluster simulating FeO, values that are close to
what we obtain. It appears then that both HF and the
local-density approximation consistently underestimate
the relaxation effects that would accurately describe the
crystal-field splitting.

(b) Ad, ——2.25 eV is the energy difference from the last
occupied d level to the 4s band of Fe. From Balberg and
Pinch, the optical transition corresponding to Ad, is asso-
ciated with the absorption edge measured at 2.0 eV.

(c) Az, ——6. 1 eV is the energy separation between the 0
2p and the Fe 4s bands, commonly estimated at 5.6 eV.

(d) b,,„, the exchange splitting between spin-up and
spin-down orbitals of the same cation, is 4.5 eV.

Considering the obvious limitations of the small ionic
basis set in describing the DOS of FeO, we have also car-
ried out control calculations on the embedded 8- and 27-
atom clusters using neutral atomic basis for both Fe and
O, compacted with the same potential well as for the ionic
bases. As expected with neutral bases, large overlap be-
tween states centered on neighboring atoms gives sizable
occupations for the more diffuse states; also the transfer
of charge from Fe to 0 as measured by volume-integrated
charges or by Mulliken population analysis decreases
sharply. Thus from the Fe404 cluster, the orbital occupa-
tions for Fe (3d ', 4s, 4p ', ionicity equal to
+ 0.64, spin equal to 4.30p~) and 0 (2s ', 2p, ionici-

ty equal to —0.64, spin equal to 0.20pz) from the 8-atom
cluster are more symptomatic of covalent bonding. This
is in contrast to the very small value of 0.05 previously es-
timated for the covalency, ' indicating very little ligand
character for the d-shell orbitals.

When the energy distribution curve from the 27-atom
cluster is deconvoluted into its contributions from indi-
vidual atomic orbitals, (see Ref. 24), we see that the main
2p peak from the IO6I set is centered around 6.5 eV, the
3d spectrum from the central Fe is spread more broadly
up to —7.5 eV below the Fermi level with a peak at 3.8
eV and smaller d-p hybrid structures are located at 1.5
and 3.0 eV. This picture, then, is more consistent with
the DOS observed by Grenet et al. except for the spillover

of 0 2p to higher energies. The other similarly calculated
parameters for this basis set are the following: AcF ——0.88
eV, Ad, ——0.55 eV, and 6&, ——0.55 eV. Finally, we have a
result for the 27-atom cluster embedded using a magnetic
unit cell, twice the size of the standard chemical cell,
wherein the arrangement of cation spins in adjacent (111)
planes is antiparallel. The dominant feature of the cumu-
lative DOS is the complete symmetry in energy between
the spin-up and spin-down cation sites.

The cohesive energy of the lattice is a particular proper-
ty which seems to be insensitive to charge analysis, ionici-
ties, and basis sets chosen. In Table I, we summarize the
cohesive energy results for the idealized wustite lattice us-
ing several different embedded clusters. For example, the
12- and 16-atom clusters are formed by stacking adjacent
pairs of FeO molecules atop each other; the 15-atom clus-
ters are composed of a pair of 8-atom clusters adjoined
along the (111) direction and sharing either a Fe or an 0
atom; adjoining the same along the (110) direction gives
the 14-atom cluster. Each of these clusters is a reference
cluster in the idealized lattice for a defect structure de-
rived from it. The inequivalent atom sites in these clus-
ters are specified separately to facilitate visualizing the
formation of defects by the removal of different sets of
cations. These and all further calculations are carried out
at the equilibrium lattice constant a =8.15 a.u. with the
embedding potential from the crystal atoms external to
the cluster generated from the self-consistent charges and
spins obtained from the 8-atom cluster results, i.e., the
"divalent" ions have a net charge of + 1.90 instead of
+2.0; this accounts for the fractional value of the total
number of electrons in the noneutral clusters. In this
sense we sacrifice full crystal periodicity to gain a more
detailed look at the different inequivalent sites in the clus-
ters. This is a legitimate procedure since it (a) eliminates
the cruder process of averaging the potential over all sites,
(b) fixes the crystal potential from a unit cell at a set
value, and (c) most closely parallels the treatment of in-
equivalencies in the derived defect structures for which
they serve as reference ideal lattice calculations.

From Table I, the only recognizable trend in the charge
densities, ionicities, and spin found for different cluster
sites is that cations closer to the center and anions around
the periphery of clusters are slightly more charged, by
about 0.10e. The individual orbital occupation numbers
and spins are only very little different from the values ob-
tained from the 8-atom cluster and have not been present-
ed. The Fermi level shows a small dispersion around
—2.60 eV; the d-s gap is now spread from 1.87—2.48 eV
as orbitals from different cluster atoms of the same kind
sample different environments and broaden the energy
bands. For the sake of comparison, the cohesive energies
quoted are an average over the atoms in the embedded
cluster. For the neutral clusters, they increase slightly in
the sequence from 8- to 16-atom clusters, from
11.20—11.67 eV, indicating that the extreme atoms on the
larger stack clusters do not see the full crystal potential
due to the finite size of the microcrystal. The compara-
tively lower values for the averaged binding energies of
the non-neutral 15-atom clusters (10.96 and 10.80 eV) are
mostly an indication of the limitations of our eigenvalue-
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partitioning scheme as well as a result of the clusters
unusual shape. Indeed the only relevant quantity for our
future reference is the total cohesive energy of the entire
embedded cluster. On the other hand, it is precisely the
subtle differences in the reference system that enable us to
obtain a consistent picture of the binding in defects.

B. Isolated and simple defects

In the first two rows of Table II, we summarize results
from embedded 27-atom cluster calculations of the
ground-state energies and charge densities of an isolated
cation vacancy and for a ferric cation at a normal octahe-
dral site in FeO. Thus it requires 22. 17 eV to remove an
Fe++ ion from its lattice site to infinity, while the energy
cost of replacing a regular octahedral (octa) Fe++ by an
octahedral Fe+++ is 26.43 eV. These values are with
reference to free atoms and an ideal lattice, treated quasi-
perfectly as explained above, i.e., the reference ideal FeO
lattice calculation is the 27-atom result from Table I.

In the absence of a ferrous cation, about 0.40 electrons
from the 2p orbitals of the neighboring [0&) relax into
the vacated region raising the Fermi energy to 5.33 eV
and pushing 0 2p higher and closer to the Fermi energy
with broadened DOS structures at 6.3 and 3.0 eV. How-
ever, the outer (Osj anions relax compensatingly and
their 2p levels are now centered about 8.5 eV. This indi-
cates the value of a 27-atom cluster in energy calculations
in comparison with a highly charged 7-atom cluster
(FeOq) which in trial runs was found inadequate for
calculating energy differences since the characteristic
length of interaction in the above defect formation is
larger than the size of the cluster. This mechanism—
raised Fermi energy and destabilized anions around a ca-
tion vacancy —is a signature feature common to all vacan-
cies in the system. Indeed the effect is more pronounced
as the number of cluster vacancies adjoining the anion
grows. The reverse effect is seen in the presence of an oc-
tahedral Fe+++. The extra attraction lowers the Fermi
level to —6.36 eV, and pulls the 2p levels from the adja-
cent anions down to about —10 eV. The 3d (Fe+++) lev-
els are now around 4.6 eV and the unoccupied Fe 4s levels
are well above the Fermi level so that the d-s gap is en-
larged to 9.6 eV. There is no substantial change in the 0
2p and Fe 3d levels and occupations of the outer atoms.

We shall use the above results for individual defects to
study simple aggregates containing vacancies, octahedral
Fe+++ and tetrahedral cations, as outlined in the
remainder of Table II. Since neighboring defects are be-
lieved to be at least 2.5a apart, it is reasonable to treat
each defect structure as isolated in an otherwise perfect
lattice. The octahedral Fe+++ ions that screen the defect
and provide for the neutrality of the microcrystal as per
Eq. (17), are not a part of the variational cluster; they are
placed at cation sites immediately adjacent to the cluster
chosen, as rigid sources of the crystal potential represent-
ed via the results of column 2 from Table II so that their
contributions to the total energy and net binding energy
are exactly known. This procedure is preferable to ex-
panding the variational clusters to include the next shell
of ions (e.g., from 8-atom sites to 32-atom site clusters

which are the next smallest clusters possible), a procedure
that becomes intractable for the larger defects. Chou
et a/. have used such large clusters in a x-ray absorption
near-edge spectroscopy (XANES) study of wustite; they
find the next shell of atoms to be already very bulklike
and self-consistent convergence a tedious process.

The calculated binding energies are quoted with respect
to the energies of the component isolated defects and
comparison between defects of different shapes and sizes
is made possible via the binding energy per net number of
vacancies. Thus the aggregate of a cation vacancy with a
pair of Fe+++ ions is bound by 0.27 eV relative to a lone
vacancy while two vacancies when brought together repel
each other by 1.43 eV. Since the clusters used for these
two calculations are very different, it is not clear whether
the two results deserve direct comparison. For the com-
pensated defect, the orbital populations and DOS struc-
tures relative to the Fermi energy change very little; the
increase in binding comes from the lowering of the Fermi
energy (to 0.06 eV) and the one-electron energies. For the
2:0 defect, the oxygens in the cluster adjacent to the two
vacancies are left unbound and their dangling bonds are
mainly responsible for the overall repulsion. However, in-
troducing a ferric cation at a tetrahedral site bounded by
these two vacancies increases the binding to 1.74 eV. The
central cation provides a strong bonding center for all
four oxygens in the cluster and more than compensates
for the decrease in octahedral Fe+++ around the cluster
from 4 to l. Interestingly, with a net charge of 2.29 (and
net spin 3.87), with its main 3d energy levels just 1.0 eV
below the Fermi energy and its 4s levels located -7.0 eV
above the Fermi energy, the tetrahedral cation is clearly a
different species from a conventional ferrous or ferric oc-
tahedral cation. It is obvious from this trend that the
presence of interstitial cations stabilizes the formation of
defect structures to a greater degree than any combination
of cation vacancies and octahedral Fe+++. This is con-
sistent with the findings of previous semiempirical
theories ' and the extensive experimental data from crys-
tallographic ' and electron microscopy studies.

An alternative approach to obtaining an energetically
favorable defect structure is to start with a cation jammed
into a tetrahedral site of a stoichiometric FeO lattice (a
0:1 defect) and to remove, one-by-one, the nearest-
neighbor octahedral cations surrounding the tetrahedral
site, as outlined in Table II. In row 5, we see that the
presence of a Fe+++ ion at such an interstitial site is op-
posed by an energy barrier of 11.2 eV. To make the cal-
culation more realistic, the distance to the nearest-
neighbor cations is relaxed by 0.27 to 3.81 a.u. , which is
the halfway point between an ion coordinated octahedral-
ly (4.07 a.u. ) and one coordinated tetrahedrally (3.53 a.u. )

in FeO. Even when the distance is increased to 4.07 a.u. ,
the barrier drops to just 8.7 eV. However, the removal of
two of the surrounding octahedral cations (i.e., the 2:1 de-
fect) sharply increases the binding to 1.74 eV, even
without relaxing the coordination distance to the other
two cations. With the removal of a further octahedral ca-
tion, (the 3:1 defect), the binding energy for the defect in-
creases to 3.97 eV. Finally, in the 4:1 defect, with no ca-
tions present in the nearest-neighbor sites around the
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tetrahedral Fe+++, the binding energy for the defect clus-
ter is dramatically enhanced to 8.15 or 2.71 eV per net va-
cancy. Figure 5(a) is a plot of the binding energy of these
defects versus the number of valence electrons in the de-
fect cluster. Since the slope of the graph does not level
out, one is tempted to search for more complicated defects
using the same 9-site cluster format. It is clear that re-
moving further cations from the next shell of ions to form
more extended defects would have an effect on the bind-
ing energies some order of magnitude less than considered
above; this is not a worthwhile avenue to pursue. The
answer lies, as we shall see, in placing the ferric cations in
adjoining tetrahedral sites so as to minimize their repul-
sion.

The successive removal of Fe++ in the sequence of de-
fect clusters from 0:1 through 2:1 to 3:1 to 4:1 is accom-
panied by several distinct trends that provide some insight
into the increase in cluster binding. The Fermi energy
plotted in Fig. 5(b) as a function of the number of elec-
trons in the cluster, rises almost linearly in response to the
competition between the growing number of vacancies
(m) and the growing number of octahedral ferric cations
(2m —3n), albeit in the next shell. The charge on the
tetrahedral cation increases monotonously from 1.56 to
2.85 for the 4:1 defect; simultaneously the net spin in-
creases from 3.02 to 4.57. Since the 4s and 4p levels of
the central Fe are virtually unoccupied, this is due mainly
to the loss of minority spin 3d electrons. Other than
specifying the total number of electrons in the defect clus-
ter to ensure neutrality for the microcrystal, there are no
restrictions imposed on these calculations. Thus the trend
towards trivalency ( —3d ) of the central cation is a
natural outcome of the system's movement towards an
energy-minimum configuration. In Figs. 6 and 7, we
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VALENCE CHARGE ON DEFECT CLUSTERS

FIG. 5. Variation of properties under stepwise assembly of
4:1 defect cluster: (a) binding energy; (b) Fermi energy.

(c) (e)

I

0

A

(b)

compare the density of states obtained for the 2:0, 2:1, and
4:1 defects. The common features of the DOS for the
central cation shows the occupied 3d levels just —1.0 eV
below the Fermi energy and a smaller d-p hybrid struc-
ture around 6—7 eV, which becomes more prominent as
the Fe++ are removed due to bonding with the octahedral
O anions. Thus it is conceivable that a 5 to 10% defect
concentration x in a Fe& „0crystal would manifest itself
as the shallow x-ray photoelectron spectra (XPS) peak at
1.5 eV observed by Grenet et al. ' and also contribute to
the 0 2p spectrum near 6.0 eV. The 3d levels from the
octahedral Fe++, if any, shift progressively higher from
4.0 to 2.6 eV for the 3:1 cluster, its utility as a bonding
center being undermined. Further, as the octahedral
Fe++ are removed, the oxygen anions in the cluster are no
longer equivalent and the 9-site cluster exhibits as low a
symmetry as C3„and C2, . Typically, as the number of
cluster vacancies surrounding anions increases from 1 to 2
to 3, their 2p levels broaden and shift towards lower bind-
ing, from -7.0 eV through -4.0 to 2.0 eV relative to the
Fermi energy. If we had chosen larger clusters to study
these defects, specifically by including the next shell of
atoms with the octahedral Fe+++, the shifts in the DOS
spectrum would not be so exaggerated, the errors due to
the nonvariational treatment of the octahedral Fe+++
would be partially eliminated and the configuration
changes in binding energy would be reduced. However, it
is unlikely that such larger clusters would affect the trend
of results obtained here.

Another confirmation that the transition to trivalency
of the interstitial cation is not a spurious effect is provid-
ed by studying a 4:1 defect with a Fe++ cation at its
center; this is done simply by adding one electron (0.95e
to be exact) to the cluster and adjusting the number of oc-
tahedral Fe+++ around the cluster for neutrality. The
binding energy of such a cluster drops to 5.84 or 1.95 eV

per net vacancy. It is obvious from the orbital popula-
tions that while anions have full 2p bands and are stable,
the central Fe would rather lose its minority spin charge
and tend towards being trivalent. On the other hand, the

ENERGY (e V)

FIG. 6. Comparison of partial densities of states in defect
clusters: (a) 2:0 Fe 3d; (b) 02 2p ( ), 02 2p ( ———); (c)
2:1 Fe(t) 3d ( ), Fe(O) 3d ( ———); (d) 02 2p ( ), 02
2p ( ———); (e) 4:1 Fe( t) 3d; (f) 0 2p.
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removal of one electron from the 4:1 cluster leaves the
central cation in its trivalent state (3d ', ionicity=2. 95)
and is drawn mainly from the 0 2p levels (0 2p ', ioni-
city= —1.59); the result is nonbinding by 3.78 eV. In
Fig. 8, the binding energy of the 4:1 cluster is plotted as a
continuous function of its valence charge. Points 2 and 4
on the curve, which correspond to an excess or deficit of
half an electron around the trivalency point that cannot be
neutralized by an integral number of octahedral Fe+++
ions, are obtained by simulating the absence and/or pres-
ence of the half-electron by a uniform neutralizing charge
spread over the surface of a sphere of a radius 6.5 a.u.
Certainly, the 4:1 defect with a Fe+++ cation is closest to
the minimum point on the curve. It is safe to conclude
from these results that the 4:1 (Fe+++) defect would
dominate over other simple defect structures in wustite.

At this stage, it is instructive to analyze the sources of

(c)

ENERGY (e V)

FIG. 7. Comparison of total densities of states in defect clus-
ters: (a) 2:0; (b) 2:1; (c) 4:1.

y 0-
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VALENCE CHARGE ON
0:1 DEFECT CLUSTER

FIG. 8. Binding energy of the 4:1 defect as a function of the
cluster valence charge.

systematic and random errors to check the limits of relia-
bility of our results. Self-consistency is pursued until the
Fermi energy and the eigenvalues are converged to within
0.001 eV; the discrepancy between parametrized input and
output potential vectors is considerably less than 0.001.
Using the 0:1 and 4:1 clusters as representatives, we find
that the binding energy is converged to within 0.02 eV
with regards to the gauss-quadrature grid and to within
0.50 eV with respect to the diophantine mesh in the inter-
stitial region. These values are simply obtained by dou-
bling the density of points in the 6-q grid and tripling the
sampling density of the diophantine scheme separately,
the errors being expectedly larger for the 0:1 cluster. Re-
placing the Mulliken analysis by a least-squares fit to the
charge density reduces the divalent ionicities by about
0.20 but otherwise leaves the major trends of results unaf-
fected. Extending the basis to include further virtual orbi-
tals for both Fe and 0 is known to enhance the binding;
however, its effect is overwhelmed by the integration er-
rors for the sampling densities we presently use. The
frozen-core approximation overestimates the core shift
contribution to the cohesive energy by 0.42 eV for the
Fe4O4 cluster and by proportionately less as Fe++ ions
are removed. This leaves us with two critical model limi-
tations discussed below. In reality, when the distribution
of octahedral Fe+++ around a given defect cluster is not
symmetric, it disturbs the equivalency of cluster atomic
sites for which the potential and charge densities are aver-
aged so that it is not always possible to find the configura-
tion that minimizes the energy. This is especially true for
the aggregates of the 4:I defect for which the possible
placement permutations are larger. The essential criteria
followed in arranging these Fe+++ ions are the following:
(a) simple symmetry of arrangement, (b) preferred prox-
imity to center of clusters, and (c) preferred filling of sites
with highest number of nearest-neighbor vacancies. In
this sense the lattice binding energy results presented here
are not exhaustive since all possible configurations for a
m:n defect have not been tested. We estimate from limit-
ed experimentation [see comments on the 7:2 (110) cluster
below] that the spread in binding energies due to this
would not exceed +0.20 eV per net vacancy. An alternate
scheme, wherein the charge neutralizing the defect cluster
is now spread over the surface of a sphere of radius equal
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to the average distance of the Fe+++ octahedral ions
from the center of the cluster (which is 6.5 a.u. for the 9-
site cluster format), although unrealistic, yields reliable
binding energies and is used in instances where the num-
ber of required octahedral Fe+++ is negative (e.g., 0:1
and 1:1 defects) or fractional. The second major limita-
tion is the small size of the "minimal" clusters which pre-
cludes any relaxation effects in the shell of the octahedral
Fe+++ in the crystal.

C. Larger clusters

4:1 8:2

6:2 (~ K)
8:3

We now turn our attention to aggregates of the basic
4:1 defect. The only two ways by which this defect can
grow in size are by edge sharing of vacancies (e.g. , 6:2 and
8:3 defects) or by corner-sharing of vacancies (7:2, 8:2,
and 13:4 defects studied here). The clusters used to study
these defects have been diagrammed in Fig. 9. The treat-
ment of these defect clusters is identical to that used for
the ones treated above, the results are displayed in Table
III and compared with previous calculations of the lattice
defect internal binding energies by Catlow and Fender
and by Anderson and co-workers. By stacking 4:1 de-
fects atop each other, the additional tetrahedral bonding
centers lower the Fermi energy from —2.94 eV (4:1) to
—5.77 eV (8:3). This is an expected repeat of what we
found in going from the 2:0 to the 2:1 defect and contrasts
with the rise in Fermi energy as the number of octahedral
vacancies around a tetrahedral cation increases. The d-s
gap for the tetrahedral Fe+++ is again sharply widened
to 8.4 eV. The charge on the centermost Fe+++ in the
8:3 cluster is now just 2.27; i.e., it is squeezed into regain-
ing some of the minority spin 3d charge and tends to
behave rather like a divalent cation; its 3d levels peak at
2.0 eV (which is between -4.0 eV for Fe++ and —1.0 eV
for Fe+++) with smaller structures at 4.75 eV, 6.0 eV,
and 7.7 eV due to bonding with the 2p levels from the sur-
rounding 0 atoms. The effect is less noticeable on the
outer ferric cations which behave more conventionally like

those found at the center of the 4:1 cluster. The 2p levels
from the 0 atoms follow the same trends in the presence
of cluster vacancies discovered previously with an added
dimension: the inner oxygen are more strongly bound to
the central Fe+++ (DOS at 6.0 eV) than to the outer two
Fe+++ (DOS at —2.3 eV). The overall effect is that the
binding energy per net vacancy decreases monotonously
from 2.72 eV (4:1) to 1.23 eV (8:3); note that the net bind-
ing for the 6:2 defect exceeds that for the 4:1 defect by
1.26 eV. Thus edge sharing of 4:1 clusters does not ap-
pear to be energetically favorable.

The repulsion between the tetrahedral cations can be re-
duced and minimized by adjoining the 4:1 clusters along
the (110) and (111)directions which yields the pair of 7:2
defects and the 8:2 defect. Of these three, it is the 7:2
(110) defect which exhibits the largest binding, 3.94 eV
per vacancy. Indeed all of them are considerably more
stable than the component 4:1 defects by between 0.5 and
1.22 eV per net vacancy.

For the 4:1 and its aggregate defects, we also carried
out self-consistent calculations with the cluster bond
lengths expanded to 4.40 a.u. from 4.07 a.u. , an 8%%uo in-
crease commensurate with the relaxations in lattice posi-
tions suggested by Koch and Cohen and Cheetham et al.
When compared with results for the unrelaxed lattice, we
find very little change in the orbital occupation numbers
and spin populations (less than 0.05 change in ionic
charge) and in the DOS structure relative to the Fermi
level. The Fermi energy itself drops in proportion to the
number of bond lengths changed for all clusters by about
0.08—0.12 a.u. and the d-s gap for the tetrahedral Fe+++
is narrowed by about 0.50 eV. The binding energy in-
creases in every case without disturbing any trends found
for the unrelaxed clusters. The smaller increases in bind-
ing for the 7:2 defects are due to only the cluster sites be-
ing relaxed while nearby sites in the crystal in the same
shall of atoms are left unchanged. Further, there is evi-
dence to show that the next shell of atoms relaxes inward-
ly„with so many coordinate variables finding an op-
timum Fe+++—0 bond length is not a practical pur-
suit.

Koch and Cohen (KC) obtained the best fit to their x-
ray diffraction data by using a relaxed 13:4 cluster. Our
self-consistent calculation of the KC cluster, with just the
cluster atom positions relaxed by 8%, shows a rather
small binding energy per net vacancy of just 1 ~ 1 eV. This
defect cluster then is apparently not a serious contender as
a favorable configuration and its popular use may be put
under question.

7:2
CT 1Q)

+—Lo-

7:2
&111%

FIG. 9. Pictorial representation of some aggregates of the 4:1
defect.

IV. CONCLUDING DISCUSSION

There is widespread acceptance both from diffraction
data and from microscopy studies' ' that vacancy
clusters dominate in Fe& „O; the dominant cluster and
the functional dependence of the related vacancy-to-
interstitial ratio r with temperature and concentration x
are still subject to debate. The most ordered phase of
wustite P", exhibits a cubic superstructure of clusters
whose separation is 2.5a in two planes and are offset by
0.5a in the third direction. Lattice imaging techniques in
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electron microscopy have narrowed the estimate of the
number of vacancies per cluster to around 5. Any number
of stable condensates of the 4:1 defect, formed via edge-
or corner-sharing and commensurate with P" are conceiv-
able. However, only those with m:n ratios between 2 and
4 are known to form; in this phase a m:n ratio would
correspond to a defect concentration of
x =(m n)/4—(2.5) . It is clear from the experimental
literature that r is not at present a useful quantity in
determining the dominant cluster(s) in wustite; the al-
lowed values of r, given the experimental uncertainty,
span the range of predicted values based upon the multi-
tude of clusters proposed. Besides, it is also conceivable
that long-range ordering under some conditions can cail
for a number of distinct cluster types to coexist in equili-
brium.

Calculations of defect processes using static lattice
methods within various approximations have long existed
and accurate values for the defect formation enthalpies,
activation energies, cluster binding energies, and so on,
have been obtained for many systems. A fine recent re-
view of these methods is provided by Catlow and Mack-
rodt. ' Since experimental measurements are carried out
at constant pressure and usually at high temperatures, it is
more practical to augment internal energy calculations,
such as ours, with methods to calculate the equally impor-
tant entropies of formation and migration of defects, of
which there are now three adequate methods in the litera-
ture. The estimate of the free energy of defect forma-
tion ' could then be used to adjudicate the choice of
clusters as parameter fits to the x-ray diffraction data,
and a host of measured quantities, e.g. , conductivity, ther-
mopower, Seebeck coefficients, Mossbauer spectra, etc.
In view of the previous comments, it is not the purpose of
the present study to exhaust the manifold of possible
representative defect clusters; although the technology is
manifestly present, it would serve little purpose. Present-

ly, though, while the accuracy of the values of the lattice
energies calculated here are unknown, the relative energies
and trends do form the basis for interpretation. We thus
restrict ourselves to elucidating the energetics that
emerge.

Considering the absolute minimal basis employed on
the anions, we have modeled a nearly inert anion sublat-
tice, with little ability to relax electronically; one must not
be misled by the extreme jumps in the DOS structures
from the 0 2p orbitals, a definite cluster size effect. The
primary electronic delocalizations are provided by the ion-
ic orbitals on the Fe species, both octahedrai and
tetrahedral; even then very little charge is seen to relax
into the vacancies. It appears therefore that it is the ionic
nature of the basis set chosen that allows a reasonable pic-
ture of the interaction energies in defect clusters to emerge
in spite of the very reduced number of valence orbitals.
As it is, the differences in binding energy of the defect
clusters obtained in our work are much larger than the
previous theoretical results ' ' on similar defects as seen
from Table III.

Comparison of a 1:1 and a 2:1 defect indicates that the
Fermi energy increase of 1.90 eV in the latter case reduces
the contribution from the sum of one-electron eigenvalues
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towards the binding energy by approximately 6.3 eV.
This energy gain, along with the electrostatic repulsion
due to two extra octahedral Fe+++ is more than over-
come by the reduction in the electrostatic opposition to a
Fe+++ at a tetrahedral site; the net result is that the 2:1
defect is more stable by 3.24 eV. In going from a 2:0 to a
2:1 defect, both the Fermi energy and the one-electron
eigenvalue sum are depressed towards greater binding en-
ergies, by 7.46 and —15.7 eV, respectively. They thereby
assist with the reduction in electrostatic repulsion due to
three fewer octahedral Fe+++ and the presence of an ad-
ditional tetrahedral Fe species; the net result is that the
2:1 defect is better bound by 4.59 eV. This is a major
difference between the defect stabilization afforded by the
octahedral and tetrahedral Fe+++ ions and raises the in-
teresting possibility of bringing octahedral Fe+++ ions
"closer to the action, " i.e., placing them in the same shell
as the Fe++ that are ejected. This is precisely what hap-
pens in the condensates of the 4:1 defect in which efficient
use of vacancies and Fe+++ leads to considerably in-
creased binding energies. For the 7:2 and 8:2 clusters,
some of the octahedral Fe+++ reside in the same
nearest-neighbor shell as the residual vacancy holes; the
energy lowering due to their attractive potential outweighs
the repulsion between the interstitial ions. Such a proxi-
mal arrangement is not possible for the 6:2, 8:3, and 13:4
clusters; the octahedral Fe+++ are at least one shell re-
moved and despite the attempt of the tetrahedral Fe to re-
lax to "mixed ferro-ferric" status, the cluster binding en-
ergy per vacancy decreases with increasing size. In this
scenario clusters made up of adjoining incomplete tetrahe-
dra have a viable chance of being energetically competi-
tive only with judiciously placed proximal octahedral
Fe+++. This is not a utilitarian conclusion since it opens
up an entire class of possible defect clusters not derived as
conglomerates of the 4:1 defect. Even the unexpected sta-
bility ordering of the 7:2 and 8:2 clusters may with a little
thought be partly understood in terms of this broad cri-
terion.

We carried out three tests on the 7:2 (110) defect with
the 8 octahedral Fe+++ in different sites (actually from

simple symmetry considerations only 3 of the 8 Fe+++
need to be shifted around). Our results for the binding en-
ergy varied from 3.89—4.11 eV per net vacancy, a spread
which represents the highest end of the influence of ap-
proximations to our results, and is still less than the
difference between defect binding energies to be com-
pared. Thus the 7:2 (110) defect does exceed the 7:2 (111)
defect in stability. The 4:1 clusters with a Fe+++ and a
Fe++ at their center differ only on two counts: the 0.95
additional electronic charge and the extra octahedral
Fe+++ for the latter cluster. Part of this difference in
binding for these two cases is the result of changing from
one incomplete basis set to another for the central Fe.

In summary, self-consistent calculations of the internal
lattice defect energies of prototypical defect clusters in
nonstoichiometric Fe& „O are presented using the embed-
ded cluster approximation within the Hartree-Fock-Slater
Xe formalism. The energetics show that a tetrahedral
"ferric" species in the interstitial site stabilizes a defect
structure to a greater degree than any combination of va-
cancies and octahedral Fe+ . Definite trends in the
valence DOS, the Fermi energy and the cluster binding
energies indicate that the 4:1 cluster dominates over all
other simple combinational clusters with a single
tetrahedral Fe+ . Of the larger aggregates of the 4:1 de-
fect studied, the 7:2 (110) cluster exhibits maximum sta-
bility. An analysis of the individual contributions to the
formation energy reveals that the proximity of the average
charge-compensating configuration of octahedral Fe+
around the defect cluster is a fair indicator of the relative
stability of a defect. Lastly, the XPS structure near the
Fermi energy is shown to come from the 3d levels of Fe+
in the tetrahedral sites.
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