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Interface polaron in a strong magnetic field
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The method recently developed by Larsen is generalized to treat, in the limit of strong magnetic
field, the interface polaron in a semi-infinite polar crystal. Both the bulk longitudinal optical pho-
non and the surface optical phonon and their interactions with the magnetic field are included.
Cxround-state energy corrections up to the fourth-order perturbation are expressed as functions of
the magnetic field and a parameter characterizing the mean distance of the polaron from the inter-
face.

I. INTRODUCTION

There has been a considerable amount of work on the
surface or interface polaron in polar crystals in recent
years. ' The behavior of such polarons under the influ-
ence of an external magnetic field has also been investigat-
ed both experimentally "and theoretically. '

In the case of bulk samples, various methods have been
developed on the basis of polaron theories to treat the
magnetic field influence on the polaronic states. In the
absence of a magnetic field, Feynman's theory' yields ac-
curate approximation to the ground-state energy in both
two and three dimensions. Hellwarth and Platzman'
generalized this theory to the limit of weak field and low
temperature. The unitary transformation introduced by
Lee, Low, and Pines' was extended by Larsen to study
the low-lying states of polarons in weak fields. On the
other hand, Evrard, Kartheuser, and Devreese ' intro-
duced a Born-Oppenheimer type of approximation in
their treatment of polarons in strong magnetic field. By
means of a Green's-function technique, Lepine and
Matz have calculated in Fock approximation the
ground-state energy at zero temperature for arbitrary
electron-phonon coupling and arbitrary magnetic field.
Furthermore, Feynman's method has also been general-
ized by Peeters and Devreese to include arbitrary field at
arbitrary temperature. These authors have also calculated
on second-order perturbation the polaron energy in two
and three dimensions in the presence of an arbitrary mag-
netic field.

The method described in Ref. 23 has been applied to in-
vestigate the two-dimensional polaron in the liquid-
helium film' and in crystalline solids' ' under the influ-
ence of an external magnetic field. More recently, a novel
perturbation method has been proposed by Larsen' who
replaces sums over products of matrix elements and ener-

gy denominators by much simpler operator algebra. He
then calculates the ground-state energy in the strong-field
limit up to the sixth-order perturbation and to the fourth
order in arbitrary field.

The study of a polaron in an external magnetic field has
so far been limited to either three-dimensional bulk crystal
or two-dimensional approximation of heterostructure.
There does not seem to be sufficient attention to the sur-
face or interface polaron in a semi-infinite polar crystal.
In discussions of two-dimensional polaron, it is usually as-
sumed that the electron interacts with only one mode of
phonon, bulk longitudinal optical (LO) or surface optical
(SO) phonon. Perhaps this is because up to the present
time, experiments are only done on Ga Al~ As-GaAs-
Ga Al& As quantum wells of width a (50 A. It is
therefore of interest to investigate the properties of the in-
terface polaron in a magnetic field with both SO and LO
phonon included.

In this paper we consider in the strong-field limit the
interface polaron in a semi-infinite polar crystal. Larsen s
method is generalized to include SO phonon as well as LO
phonon. The z-component contribution is calculated by
variational method, and expressions for the ground-state
energy up to the fourth-order corrections are obtained.

Our result provides a way to calculate the mean dis-
tance of the polaron from the nonpolar-polar interface of
various dielectric constants. In the limit of large distance,
the SO-phonon contribution vanishes and our result
reduces to that of Ref. 16, while in the small-distance lim-
it, it approaches approximately to the result of Ref. 15.

II. THE HAMILTONIAN

We consider a semi-infinite polar crystal which occu-
pies the half space z ~0. The other half of the space is
filled by a nonpolar crystal, and the plane z =0 is the in-
terface between the two crystals. The electron moves in-
side the polar crystal but near the interface.

Assuming that a magnetic field B = (0,0,8M ) exists, the
motion of the electron, interacting with both the bulk LO
phonon and SO phonon, is described by the total Hamil-
tonian '
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which satisfy the commutation relations

[A, A ]=[8,B ]=1 and [A,B]=[A,B ]=0 .

The effect of these operators are that 2 lowers the quan-
tum number M of the z angular momentum and raises the
Landau quantum number n by one unit, while B raises
M by one unit without changing n.

In terms of these operators, the total Hamiltonian (1)
can be rewritten as

The first two terms in (1) represent the electron kinetic en-

ergy in the xy plane; the third term is its kinetic energy in
z direction. The fourth term is the mirror-image potential
energy; the fifth and sixth terms are the longitudinal opti-
cal (LO) and surface optical (SO) phonon energy, respec-
tively. The last two terms stand for the interaction energy
between electron and the LO and SO phonons. The nota-
tion is as follows. p=(p„,py, p, ) is the electron momen-
tum, m is the band mass of the electron. The volume of
the polar crystal is V and the area of the interface is S.
eo(e ) is the static (optical) dielectric constant and the
subscript 1 (2) stands for polar (nonpolar) crystal. The
electron position vector is denoted by r=(p, z). The
operator a k creates a LO phonon with wave vector
k=(k~~, k, ), and bq creates a SO phonon with two-
dimensional wave vector q. The frequency of LO phonon
(SO phonon) is denoted by co/ (co, ). If we use coT for the
frequency of bulk transversal optical (TO) phonon, then
we have

H =Ho+He LQ+Hp sQ
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We take as our unperturbed Hamiltonian the sum of
the first six terms of (1) and consider the last two terms as
perturbation. Following Larsen' we define the strong-
field limit:

r ~s ~ QO r i~~rs~s ~O r

2 2
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and co, =p /2m =eBM/me is the cyclotron frequency of
the electron. It is clear from the definitions (4) that the
method works only for small a, or for weak coupling of
electron-phonon interactions. To describe the Landau lev-
els, the following harmonic-oscillator operators are intro-
duced.

Lq =exp (q„+iq»)A — (q„iq»)A—

Vfi . v'iri
Mq ——exp (q„—iq» )8 — (q„+iq )8

p " ' p

(Se)

(Sf)

In the following, we shall treat Hp as the unperturbed
Hamiltonian and H, LQ, H, sQ as small perturbations.
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III. PERTURBATION THEORY

In the limit of strong magnetic field, the unperturbed
eigenstates involve only n =0 levels of Landau states as
has been pointed out in Ref. 16. If the vacuum states of
the operators 3 and B are denoted by I

0) q and
I 0)//,

respectively, then the energy of the system can be calcu-
lated by using the effective Hamiltonian

where we have made use of the matrix elements
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The unperturbed eigenstates are denoted by

I
i/'/o) =4(z)

I
M)//

I
n/ "q &

where P(z) is the z component of the polaron wave func-
tion,

I ni„nq) is the phonon eigenstate in number repre-
sentation, and

I
M)//=(M!) ' (B )

I
0)//. In Wigner-

Brillouin perturbation scheme we expand the perturbation
energy in a power series of the small parameters o.'1k1 and
a, A, A straightforward calculation then yields the
second-order correction

(12)
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where the electron —LO-phonon coupling constant a1 is defined by

~1 ——me /

with the polaron wave number K1 given by

K1 =ACO1
2m

and the electron —SO-phonon coupling constant

a =me /e'A' K
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with

A K, /2m =%co, . (14b)

The function cli(t) is the probability integral defined by C/(t) =(2/v ir) e dx. Similarly, we find after tedious calcu-
0

lation the fourth-order correction
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where Ip(t) =Jp(e™/2t)is a cylindrical function of imagi-
nary argument, and Jp(t) is the Bessel function of order
zero.

function of an interface polaron when there is no mag-
netic field. Thus

y(z) =2/ ze (16)

IV. GROUND-STATE ENERGY

The perturbation energies calculated above still involve
integrals over z which must be evaluated before any fur-
ther calculation can be done. This is carried out by choos-
ing a trial wave function which is the z-component wave

I

where g is the variation parameter. We note that being in
the z direction the magnetic field has no direct influence
on the z component of electron wave function. However,
the interaction between the phonon field and electron cou-
ples also with the magnetic field. Hence the z-component
motion of the electron involves indirect effect of B.

Using (16) we find from (12) and (15)
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Therefore the ground-state energy of the system is

Eg(g) =Eo+ AE, (20)

where E0 is the unperturbed energy. Since the unper-
turbed eigenstates involve only the lowest Landau levels
with n =0 in the strong-field limit, we have

X f dlii Jp(2Rkii lii /p )

Eo=&folHo
I

Po&= ~~ + —0'+
2m 4e„&(e &+e„z)

(21)

(18d)

To obtain the ground-state energy correction to the order
(aiki) or (a, X, ), we first expand the denominator in
(17a), and then combine with (17b). This gives

aE, (g)/ag=o (22)

be gp. We find finally the ground-state energy of interface
polaron in the strong magnetic field limit

The parameter g is determined by minimizing Eg. Let the
solution to the equation
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Up to the order of e,k„ this leads to the same result as
Eq. (14) of Ref. 15 in the strong-field limit. When go~0,
on the other hand, the SO-mode contribution diminishes
and we find

Consequently, the SO phonon has little influence on the
polaronic states in this case.

The numerical value of go depends mainly upon the
materials on both sides, especially the dielectric constants.
It also depends on the applied magnetic field. As go~ oc,
we can show from (18) and (23) that
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which, as is expected, is identical to Larsen's result. ' In
general Eq. (23) applies to any mean distance of the pola-
ron from the interface.

It is noted that the method is valid only in the limit
a;A, ;~0. This requires that

The first term in (23) is the Landau level energy of the
electron in strong magnetic field. The second term is the
kinetic energy corresponding to z-component motion of
the electron. The third term represents the image poten-
tial energy, and the last five terms are the interactions be-
tween the electron, magnetic field, and phonon fields.
AE& and AE3 are the coupling energies of the electron
with the magnetic field and LO phonon; AEz and AE4
represent interactions with the magnetic field and SO
phonon. Finally, AE& is the interaction energy of the
electron coupled with the magnetic field and both modes
of phonon fields.

V. RESULTS AND DISCUSSIONS

Equation (22) can only be solved numerically for the
value of go. Our numerical study reveals that when
E p & E ) or when the image potential appears repulsive
to an electron in medium I, go determined by (20) is a
small number. Since go is inversely proportional to the
mean distance of the polaron from the interface, it is un-
likely to find the electron near the interface for e

1
a; «

coc

1/2
mcco;

IBM

1/2

i=l, s . (26)

Therefore we must limit our discussion to weak-coupling
polarons. As an example, we consider the Ti02/GaAs in-
terface. The parameters are taken from Ref. 26. These
include Ac@~

——36.7 meV, fico, =35.2 meV o, r
——0.0681,

0.'s =0 113, m =0.0657me &o] =12 83 ~ ] = 10.9, and
e z

—78. We have computed the energy corrections for
magnetic fields in the range (2—50) X 10 G, and the re-
sults are given in Table I ~ It is found that, at least in this
range, go is a very slowly varying function of the field
BM, and decreases with increasing BM. The energy
correction due to SO-phonon contribution amounts only
to less than 9&o of that due to LO-phonon contribution.
This is because for the parameters or the materials we
have chosen, the calculated go corresponds to a mean dis-
tance of about 700 A. Thus the polaron is formed rather
deep in the bulk, and as a consequence the LO phonon
predominates in the interaction. When the magnetic field
is not so strong, however, the situation may be entirely

TABLE I. Corrections to the ground-state energy of the interface polaron in GaAs. All energies are
in units of meV.

~M
(10' Gj

2
4
6
8
10
20
30
40
50

0

(cm ')

2.35+10'
2.35 && 10'
2.30& 10
2.30X 10
2.25 X. 10'
2.2 && 10'
2. 1 X 10'
2.05 X 10'
2.0~ 10'

EEI

—2.1108
—3.0331
—3.7446
—4.3424
—4.8685
—6.9359
—8.5248
—9.8640

—11.0406

AEp

—0.1991
—0.2015
—0.1972
—0.1983
—0.1942
—0.1906
—0.1822
—0.1779
—0.1739

AE3

0.0113
0.0225
0.0338
0.0450
0.0561
0.1128
0.1740
0.2448
0.3271

0.000 56
0.000 57
0.000 55
0.000 56
0.000 53
0.000 51
0.000 47
0.000 45
0.000 43

AE5

0.0234
0.0340
0.0410
0.0479
0.0526
0.0735
0.0863
0.0976
0.1067
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different. Work is being carried out for the case of arbi-
trary field and arbitrary coupling constant.

Furthermore, it is also seen from this calculation that
the fourth-order corrections raise the ground-state energy.
Thus the inclusion of SO phonon does not change the
conclusion of Ref. 16 that the binding is weakened by the
fourth-order correction.
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