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Nonlinear electron-phonon dynamics: The appearance
of solitary excitations and localized modes
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The existence of solitary excitations is shown through a quantum-mechanical model consisting of
electronic two-level centers coupled to the lattice vibrations of the surrounding crystal. Simultane-
ously localized phonon modes appear in the region around these stable excitations. Within a time-
dependent projection-operator formalism coupled equations of motion for the solitary waves and the
phonons are derived.

I. INTRODUCTION

The transport properties of nonequilibrium acoustic
phonons in insulating crystals have been investigated ex-
tensively in the last few years. New experimental tech-
niques were developed which allow the time-resolved
detection of nonequilibrium phonon pulses. ' Vibronic
sideband spectroscopy as well as monochromatic phonon
creation and detection have been used successfully to
study the spectral and spatial dynamics of the phonons in
insulating crystals.

The most important interaction processes for nonequi-
librium acoustic phonons are the elastic impurity scatter-
ing processes leading to diffusive phonon propagation.
In addition phonon decay processes which are caused by
lattice anharmonicities give rise to a rapid decay of
high-frequency phonons into low-frequency modes. Both
interaction processes together are combined by Bron,
Levinson, and O' Connor into the model of quasidiffusive
phonon transport. '

The electron-phonon coupling, however, was not taken
into account in this model. On the other hand the impor-
tance of the electron-phonon interaction for the phonon
dynamics is demonstrated in an experiment of Engelhardt,
Happek, and Renk. By x-ray irradiation in a ruby crys-
tal they convert Cr + to Cr + ions which leads to a
strong decrease of the phonon lifetime. Therefore this ex-
periment is a direct indication of the influence of the
electron-phonon interaction on the transport properties of
nonequilibrium phonons. In their model of the "spectral
spatial" diffusion they assumed that Raman scattering
processes are the relevant interaction processes which
change the frequency distribution of a nonequilibrium
phonon pulse.

Alternatively the authors ' introduced a model which
only takes into account the interaction of phonons with
electronic scattering centers, represented by a distribution
of two-level centers.

Using a unitary transformation it was shown, that
"anharmonic" three phonon decay processes can be in-
duced by the electron-phonon coupling. Since in this
model the anharmonic processes are coupled with elec-
tronic transitions this special interaction gives rise to a

"quasiresonant" phonon transport behavior and therefore
differs qualitatively from the models of "quasidiffusion"
and "spectral spatial" diffusion.

In the calculations, ' however, it was assumed that the
phonons are not exactly in resonance with the electronic
transitions. In this contribution we mainly will concen-
trate on these resonant phonons and we will show that
they induce some important effects. In particular in the
following three topics will be discussed.

(i) The interaction of acoustic phonons with the elec-
tronic two level centers can lead to a coupled coherent
pulse propagation which is similar to the phenomenon of
self-induced transparency in nonlinear optics. This will
be shown in Secs. II and III. First the electron-phonon
Hamiltonian is rewritten by applying a unitary transfor-
mation which allows to separate the resonant and non-
resonant part of the interaction leading to coherent and
noncoherent motions. The Heisenberg equations for the
coherent system can be integrated and it turns out that the
electron phonon systems bear solitary wave solutions.

(ii) In Sec. IV the influence of the solitary excitation on
the residual phonon modes is calculated and it is shown
that the renormalization of the phonon spectrum leads to
localized phonon modes.

(iii) Finally, in Sec. V from the microscopic model, cou-
pled equations of motion for the phonon-soliton system
are derived.

These equations represent a generalization of the pho-
non Boltzmann equation derived recently.

II. MODEL HAMILTONIAN

The Hamiltonian of the coupled system of electronic
two-level centers and optical phonon modes has the fol-
lowing form (Pi= 1):

H =~ gtrm + g cokbkbk
m k

+tcg g [cr+bkexp(ikm)+o bkexp( —ikm)]. (2.1)
m k
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The two-level centers at the lattice sites m are described
by the quasispin operators cr' and cpm, which obey the
usual commutation relations of an SU(2) algebra

[am~am'] 2ambm, m' r

(2.2)+ Z — +[o.—,o ]=+o.-5
The Bose operators bt, ( bt, ) destroy (create) phonons with
wave vectors k and frequency cok where

[bt, bt ]=4,t . (2.3)

For simplicity the branch index is neglected. 6 is the en-
ergy splitting of the electronic levels and K the electron
phonon coupling constant.

In the following we will divide the phonon spectrum
into two parts, namely into phonons which are energeti-
cally in resonance with the electronic two-level systems
and into phonons which are off resonance. In order to de-
fine the region of resonance we assume the energy split-
ting 6 to have a small distribution within a range 2g:

O
—g&a&ao+

where

H = g (bo~+QLBz+Bt )+5+ +tot, bt, bt,

+ g g KI cosa[cr+bqexp(ikm)+o bqexp( —ikm)]
m k

+ sina[BL+br, exp(ikm )

+BLbr, exp( i k—m )][, (2.6)

where

h=Acos cz, 5= —,QL os a,
Qz ————,

' b + ( —,b, +QL, )cos a+ ~sin(2a) .

The symbol —has been dropped in the operator expres-
sions BL, o.—.The resonance phonons and the electronic
two-level systems are now decoupled except for an in-
direct interaction between these subsystems via the non-
resonant phonons [last term in (2.6)].

For the discussion of the dynamic behavior of the total
system it is convenient to perform a second unitary
transformation of the form

H=e He (2.7)
2g «60 .

Thus resonant phonons are phonons whose energies cok lie
in the energy region of A. We now can define a special
kind of course-graining operator C

where in close analogy to the model of quasiresonant pho-
non transport S is chosen in such a form that it eliminates
the first-order terms in the interaction part of Eq. (2.6),
e.g., we claim

kz

C bt ——g bte" =BL(m),
I =ko

(2.4)

where C selects from the whole phonon spectrum just
the small part of resonant phonons with wave vectors

ko &k &k) .

According to (2.4) this group of phonons is represented by
a single collective mode BL(m), which still contains m as
a parameter.

In order to make the separation of the resonant and
nonresonant phonon modes more explicit we perform a
unitary transformation to the variables cr—,BI- which is
defined as

[Ho S]+Ht =0 .

This relation is satisfied for '

0
S = i lim f— dt exp( —e

~

t
~
+iHot)

@~0+

XHt (t =0)exp( iHot)—
where Ho and HI are given by

Ho= ~g(+~+&L.Bt+. BL. )+&+ g~t bt br
m k

Ht ——g g ~[ cosa[cr+bt, exp(ikm)+H. c.]
m k

+ sina[BL+bt, exp(ikm )+H. c.] I .

(2.8)

(2.9)

(2.10)

0+ =o +cosa+B L (m) sina,

BL+, (m) = —cr+sina+B L (m) cosa,

0 =o cosa+B I (m) sina,

BL(m) = —0 sina+BL (m) cosa .

Choosing

I 2Ka =—arctan
2

(2.5)

(2.5a)

As a result we get

S= ggx.
k m

[tr b~exp(ikm) —H. c.]
COk —5

+ [BL+bt,exp(ikm) —H. c.]
COk —5

(2.11)
Since cot, &A, QL and assuming the electron-phonon cou-
pling to be weak we may expand (2.7) in a power series
and obtain up to third order in ~ using Eq. (2.11):

the interaction terms between the BL and o. can be elim-
inated. QI is the mean frequency of the resonance pho-
nons, QL ——6=60. The transformed Hamiltonian reaches
the form

H =Ho+ ,
' [Ht, S]+—, [[H—t,S],S]+

=H) +H2+H3,
where
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K
H~ ——g (b o~ +f)I Bl. Bz )+5+ g g g exp[ik (m —m

&
)](cr+cosa+BL+sina)(cr cosa+BL sina),

m k m m& ~k +L
2

Hz ———,
' gggg (5 a' cos a s—in a)[bk bkexp[i(km —k~m&)]+H. c. I+ gcukbkbk,

k m k& m~ ~k& k
(2.12)

K
H3 —

3 g g g g g Io~bkexp(ikm)(cos a)5, 5
k k~ m m& m2 (~k&

+3(sin a —cr' cos a5 )(o+ cosa+BI+sina)bkexp[ik (m2 —m
&
)+ikm]]

3

I cr+bk exp(ik )m)(cos a)5 5
k k, , (~k ~)(~k,

+3(sin a —o' cos a5 )(cr+ cosa +BLsi na) bkexp[ik, m +ik(m2 —m)]I

3

+ —,
' g g gg (cos a) o+bk bk bk exp[im (k&+k2 —k)]

(~k, ~)(~k, ~)
3

+ o b~k, bk, bkexp[im (k +k2 —k~)] +H.c.
(COk —b, )(COk, —b )

In (2.12) we divided H into three parts, H&, H2, H3
which will be investigated in the following sections from
different viewpoints. In the next section we show that
when using H& to derive equations of motion for thea,BL we obtain solitonlike excitations. The influence of
the soliton solutions on the phonon part H2 is studied in
Sec. IV. Finally, in Sec. V the coupled electron-phonon
dynamics is treated by means of a time-dependent projec-
tion operator technique.

III. COHERENT PHONGN MOTION:
SOLITARY EXCITATIONS

i 0=—[O,H],. a
Bt

(3.2)

( )
+ ~ (i)" O'T(k')

0 &I Bk'
+

~m ~

k=k ™
(3.3)

where 0 are the phonon and electron operators (I= 1).
In the explicit derivation of the equations of motion we

assume m to be a continuous variable and therefore we
may expand all nonlocal operator products in analogy to a
procedure used earlier by Haken and Schenzle

In this section we derive coupled equations of motion
for the electronic two-level systems and the resonant pho-
non mode BL starting from

where

T(m —m
&

) =—g T (k')exp[ ik'(m —m —
& )] .

N k
(3.4)

H& ——5+ g [b, +L (m)]o'm+L+ g (QL +L)BL+B

+ g Q [T(m —m))o+o. +H.c.]

N is the number of atoms in the chain. Keeping only
terms np to first order in (3.3) we obtain the following set
of coupled equations

m m&

+ g [A (m)cr+BL+H. c.],
where

2

T(m —m
~ ) = g cos aexp[ik (m —m, )],

(3.1)

+()BL +—i B L
——Ql BL + iu zh +A ( m )cr

0p7l

BBL
i BI = —QLBI —iu—~h

—A (m)o
Bm

i (BL BL )=A—(m—)(o BL —H. c.),a + +
at

(3.5a)

(3.5b)

(3.5c)

A (m) = g T(m —m
&
)tana, (a a )+iA (m)(o~BI+ —H. c.), (3.5d)

elm
m&

K
cos a.2

k ~k

~ + — + . Bo +—io. =ho. +i
Bm

0 T(k)

aI

The Heisenberg equations of motion read Eo~ 2cr' BL+A (m—), — (3.5e)
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ici =ho —i e' +Eo +2a' BLA (m),a~ aT(k)
am ak

(3.5f)

C2 ——0.
Finally, combining (3.9), (3.10), and (3.8) we derive a non-
linear equation of motion for BL in the form

and

E =2T(0)gb, gL,
where we used the abbreviations A,

2

A (m)

aBL+ aBL

a7 ' a7
A, —(BL+BL) +BL+, BL, .

(3.1 1)

clT(k)
Va= aa

=Ver ~

Vph =

This equation for the phonon part of the pulse is formally
equivalent to the photon pulse equation in the case of
self-induced transparency obtained by Haken and Schen-
zle. ' Following these authors with the ansatz

v, ~
and vph are the electron and phonon velocities, respec-

tively.
Since we are interested in pulselike solutions we assume

that the spatial and time variables appear in the phonon
and electron variables only in the form

V7=m —Vt .

v is the velocity common for the phonon and electron
+ +

pulse. This leads us to an ansatz for Bt-, o~ of the form

BL —BL e +jp

one obtains for the field amplitude the solution

2 03
BL ——

a ~cosh[2y(r —ro)]+a2

with

2

(3.12)

cr~ (t) =exp(+i ht)ct +(m —ut)-,

Bt (m, t) =exp(+i Qt)B+ (m —ut) .-
(3.6)

(cr+o ) =2iA (o'——,
' )(BL+o. —H. c. ) .

a7

In (3.7) cr ' is defined as

(3.7)

C7 =0 +
Starting from (3.5d) and integrating over r we get

cr+o = —(o') ~a'~C), (3.8)

where the operators o. , BL are treated as C numbers. '

C, is a constant of integration. From (3.5a) and (3.5b) we
obtain with (3.6)

With Eq. (3.6) one obtains from Eqs. (3.5) equations of
motion for the slowly varying "envelope functions, "
o(m ut), B—(m —ut). Neglecting in (3.5) the spatial
derivatives and multiplying (3.5e) by o and (3.5f) by cr

and adding both equations together we end up with

'Y =
~

——,(&—E —b, )

a3 ——2y, a2 ——2a4,2

a~ ——(a4+41' )', a4 —[A ~ —,'k T(k)(Sl E g)]

This result describes the coherent motion of a solitary ex-
citation built up by an electron and a phonon pulse which
interact resonantly.

From this we conclude that a coherent phonon field can
lead to solitary pulse propagation when interacting
resonantly with an electronic medium. This phenomenon
may be observed in phonon scattering or time-of-flight ex-
periments in the form of very slowly decaying phonon
modes. For an application we may think of insulating
crystals such as A1203 (Cr +), where defect ions interact
resonantly with phonons. '

IV. LOCALIZED PHONON MODES

' a. = —iA a. (3.9a)

and

=&Acr+,
a7

(3.9b)

o'=k BL, BL, +C2, (3.10)

where C2 is a second constant of integration. Again we
put

~1.
Vph

We insert (3.9) into (3.8). Without loss of generality the
integration constant C& is chosen to be zero.

As we discussed in the previous sections, when separat-
ing the phonon system into "nonresonant" and "resonant"
modes, the interaction of the resonant phonons with the
electronic two-level centers led to a solitary wave propaga-
tion. In this section we will see in which way the non-
resonant phonons are influenced by the solitary wave solu-
tion. Similar to the case of one-dimensional chains, where
it can be shown that around the soliton or polaron solu-
tions localized phonon modes are created, we will demon-
strate in the following that in our model the existence of
the solitary solution (4.2) also will lead to a localization of
the nonresonant phonons (4.1) as soon as the soliton is
built up.

We start from the (nonresonant) phonon part of the
Hamiltonian (2.12):
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H2 g ~kbkbk bp
——g fi kbk )

k
(4.5)

K+ —,
' g g g g —~' bkbk,

k& k m m& ~k&

&&exp(ikm ik—&m & )+ H. c.

(4.1)

where the unitary matrix f„k transforms the operators bk
to new operators b„ for which H2 is diagonal. Inserting
the transformation into (4.4) one obtains an equation for
the unknown coefficients f„k

r

2

o Osech (k —k&) f„k =Eg„k .
6—~ 4y 4y

o'(r) =o.osech[2y(r ro—)] . (4.2)

For simplicity in (4.1) we have put a=0, because the first
unitary transformation (2.5) only acts on the resonant
phonons and the electronic system.

We can introduce the soliton solution via o.' . Since for
finite soliton velocities a»&a2, we can neglect a2 in
(3.12) and we get together with (3.10):

f„k=
7T

sinh k
4y

cosh k
4y

As an ansatz for f„,we choose

(4.6)

(4.7)

The identities

g exp[im (k —k~ )]=6k k

g exp[ik (m —m, )]=6
k

lead from (4.1) using (4.2) to a new Hamiltonian

H2 ——H2+H2 ) (4.3)

where p is an integer.
For even (odd) values of p the function f&k has even

(odd) parity:

f„, k=( —1)"f„,k . (4.8)

Converting the sum into an integral, the diagonalization
of (4.6) is reduced to the problem of calculating the eigen-
values E& and eigenfunctions f&(k) of the integral equa-
tion'

d K2

H2 g~k kbk+ gbk k-
k 6—co

2

Hp ——g g bkbk o 'sOech (k —k
~ )

k k) ~—~ 4y

(4.3a)

+ H. c. (4.3b)

where the diagonal H2 and the nondiagonal H2 part read sg„(k)= I dk, K(k, k, )f„(k,),
where the integral kernel K(k, k') is defined as

(4.9)

2

K(k, k, )=sech (k —k&) o 0 . (4.10)
4y 4y

By inspection we find that the ansatz solves the integral
equation for both even and odd parities of f„k. The
eigenvalues are given by

For simplicity in (4.3) we have neglected the dispersion of
the nonresonant phonon modes

COk ~CO .

K —z 7T 1
p —,p=1)2) ~ . . ) oo—co 4y p

and the corresponding eigenfunctions are

(4.1 1)

Physically this means, that our calculations do not take
account of the whole phonon spectrum; we only calculate
the effect of phonon localization for one single mode.
This, however, changes neither the general validity of the
argumentation nor the basic effects of the localization
behavior.

With this simplification H2 and H2 commute

1fpk (~ )I/2

4y

77
sinh k

4y

4y
+

cosh k
4y

(4.12)

[Hp, H2 ]=0 .

The eigenvalues of Hph are known and we are left with
the problem of solving the eigenvalue equation

bk k o. osech (k —k&) +H. c.
k k, '~ —~ 4y 4y

= g e„b„b„. (4.4)
P

This can be done by applying a 1inear canonical transfor-
mation:

N& is a normalization factor.
With this result the phonon Hamiltonian H " of Eq.

(4.3) can be written in the diagonalized form

H2 ——g co„b„b„, (4.13)

, 1
COp =CO- AT ()6—co 4y p

(4.14)

where the frequencies of the phonon modes bz are defined
as
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From (4.12) one sees that in the presence of a solitary ex-
citation of the form (4.2) the energy spectrum of the non-
resonant phonons is changed. The energy of phonons,
which are lower in energy than the resonant phonons, is
decreased, whereas the energy of phonons, which are
higher in energy than the resonant phonons, is increased.
In this way an energy gap around the resonance energy is
built up, which leads to an enhanced stability of the soli-
ton.

When one considers the eigenfunctions of these shifted
phonon modes in real space one sees that they become lo-
calized. For the first four modes (@=1, . . . , 4), which
can be written in the form

(4.15)

where x =na (a is the lattice constant, n =1,2, . . . , I.),
one obtains

1 Xf~ (x)= tanh
(2~% )'" 1+ 77 1

4ya cosh(yx /a)
(4.15a)

2r
(2m% )'2(x) = 7T 1 7T+

4y& cosh'(x/a) 4y&

2
2

cosh'(yx /a )

1

cosh(yx/a)
(4.15b)

3(x)= 4y
2

tanh( yx /a) +
cosh (yx/a) 4y&

1 —— 6
cosh (yx/a)

(4.15c)

3

f ( ) y
(2~~, )'~2 4ya cosh (yx /a)

2 tanh (yx/a)
cosh (yx/a)

+
4ya

4
1

cosh(yx /a)
2

cosh (yx/a)
6 + 18 tanh (yx/a)

cosh5(yx/a) cosh (yx/a)
(4.15d)

Because the arguments of the trigonometric functions are
the same as those in our soliton solution (3.12), the pho-
non modes are localized around the center of the soliton.

V. MASTER EQUATIONS

H =Hp+Hy, (5.1)

In the previous two sections we sho~ed the existence of
solitary-wave solutions in the model Hamiltonian (2.12).
Due to the localized soliton solution the spectrum of the
nonresonant phonons was renormalized.

The scattering terms between the solitary excitation and
the nonresonant localized phonon modes given in H3 [Eq.
(2.12)], however, have not yet been considered. This in-
teraction influences the dynamics of the unperturbed soli-
ton as well as the spectral and spatial distribution of the
phonon modes.

In the following we shall discuss the most general situa-
tion where the phonon and electron lifetimes vary on the
same time scales. In this case one cannot eliminate one of
the subsystems adiabatically. Instead, equations of
motion of both coupled systems have to be derived.

This can be done using time-dependent projection
operators. ' ' Therefore we separate the Hamiltonian
(2.12) into two parts

Ho=Ho +HI (5.2)

Here only the electronic part of the soliton system couples
to the nonresonant phonons. From this it follows that we
can describe the phonon soliton dynamics in terms of a
statistical operator p which only depends on the electronic
and nonresonant phonon degrees of freedom. The statisti-
cal operator p can be split into a relevant and irrelevant
part~ pr~ pi

Consequently the scattering processes in (2.12), where
only one nonresonant phonon is involved, e.g.,

~~&ki+ +

can be neglected, because of energy conservation.
Then we end up with the Hamiltonian

HI ——g g g g [a(m, k), k2, k3)o+bj,
, bk, bk +H.'c.],

m k) k2 k3

(5.3)

where

1~( m, k „k2,k3 )

2 (~ cosa)
exp[im (kq+k3 —k

~ )] .

where Hp describes the unperturbed soliton and phonon
systems P=pr+PI- (5.4)
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Assuming that the relevant part p, factorizes into a pure
phonon pph and pure electron p, operator

pr =pphpe ~ (5.5)

p, (t) =P (t)p(t),

P(t) =p, (t)D&h+p&h(t)D, —p, (t)pzh(t)D, D&h .

(5.6)

(5.7)

D, and Dph are projection operators for the electronic and
phonon subsystem as, e.g., introduced by Grabert and
Weidlich. '

With Eqs. (5.4)—(5.7), two coupled master equations
for p& and p, can be derived. Using the Born-Markov ap-
proximation, one obtains in the interaction picture

p h
——— ds exp( —I s)

o

XTr, [Wt(t)WI(t —s)p, (t)pzh(t)], (5.8)

p, can be obtained by applying a time-dependent projec-
tion operator P(t) to the statistical operator p

X Tr~h[pzh(t)bk q/2bk+—q/2] ~ (5.10)

where n is the lattice site and k the wave vector of the
phonon. As an ansatz for the cV-particle Wigner func-
tions, we neglect phonon-phonon correlations and write

dependent one-particle Wigner functions was derived us-
ing the Argyres-Kelley formalism. The electronic two-
level centers were treated a heat bath.

In the model presented in this paper the electronic sys-
tem has its own dynamic behavior and therefore can no
longer play the role of a reservoir. It represents the
dynamics of the solitary excitations. In this sense Eq.
(5.9) is a generalization of the phonon transport equations
presented earlier. '

The excitations in the phonon system can be described
by one-particle Wigner functions (fi= 1 ):

f (n, k, t) = f dq exp(inq)
1

8n

p, = — ds exp( —I"s)
0

X Tr,h[Wt(t)~1(t —s)p. (t)p,h(t) l . (5.9)

X
F(n„. . . , n~, k, , . . . , k~)= Q f(n;, k;, t) . (5.11)

In Eqs. (5.8) and (5.9), Wt is the Liouville operator
~t = [Ht ] and

( &, =Tr (p, . ) .

The influence of thermal reservoirs is treated phenomeno-
logically by introducing the damping constant I .

The master equations (5.8) and (5.9) are two symmetri-
cal equations for pph and p, . This can be seen by chang-
ing the index e~ph. Therefore they are a direct generali-
zation of the master equation in the Argyres-Kelley pro-
jection operator formalism which describes the dynamics
of one dynamical system coupled to a heat bath. ' This
close analogy turns out to be quite useful when deriving
from (5.8) and (5.9) equations of motion for electronic and
phonon expectation values, because the calculations are
similar to the one done earlier in our model of
"quasiresonant phonon propagation" ' to which we refer.
There a phonon Boltzmann equation for space- and k-

&, (~+&W0 (5.13)

which is described by the soliton solutions derived in Sec.
III. Therefore the coupled master equations represent the
dynamics of a soliton interacting with the nonresonant
phonons bk.

From Eqs. (5.8) and (5.9), equations of motion for the
relevant electron and phonon operators can be derived.
Using Eqs. (5.10)—(5.12), the continuum approximation of
Sec. III and the properties of the coherent soliton states,

(~+~. &
= (~+ & ( o

we obtain from Eqs. (5.8) and (5.9)

The nonresonant phonons are described by a set of occu-
pation number states

~ bk q/2bk+q/2 —&+0~ ~bk & ~bk &

The electron system, however has a coherent motion, i.e.,

Bt
(o' &

= —g g g W(k„k, k, )f (m, k, , t)f (m, k2, t)f (m, k3, t) —Q Q W(kz, k3)f (m, k~, t)f (m, k3, t),
kI k~ k3 k~ k3

(5.14)

+Uk f(m, k, t)= —g g W(k;k), k2)((o' &
—(o' & )

Bt Bm

X If(m, k, t)[1+f (m, k~, t)][1+f (m, k2, t)] —[1+f (m, k, t)]f(m, k, , t)f (m, k2, t) )

—g +2W(k),'k2, k)((o' &
—(o '

& )

kl k2

X If (m, k, t)f (m, k2, t)[1+f (m, k~, t)]—[1+f(m, k, t)][1+f (m, k2, t)]f(m, k, , t) ] .
(S.15)

vk is the phonon group velocity.
The transition probabilities read
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W(k;k), kp) = W(k;k2, k, )

16 cos a
9 r

1 1 1

(~k/ ~) ( /k2 ~)(~k ~) (~k2 ~) (~k) ~)(~k ~) (~k( ~) (tt/k2

(5.16)

and

16 ~ cosa
W(k/, k2) = W(k2, k) ) =

(COk —6) (COk —6)
(5.17)

Since we have assumed that the electronic two-level centers are identical the coupling parameters are consequently identi-
cal and therefore independent of m. By calculating the transition probabilities we used the simplification

1 1

r+i (b+Cok —Cok —COk ) r
2 3

In the derivation of Eqs. (5.16) and (5.17) we used Eq. (3.8).
As we have mentioned, the phonon transport equation (5.15) is a generalization of the Boltzmann equation derived ear-

lier, where the time dependence of the electronic system is described by cr' . We want to note that through the interac-
tion (5.3) in the collision term of the transport equation (5.15) phonon-phonon correlations in the Wigner functions are
initiated leading to an anharmonic phonon decay.

The electronic master equation can be rewritten as

&
(o')= (0' &,

dt rm, t

where ~ ' is a space- and time-dependent relaxation time:

1 = g g g W(k&, k2, k3)f (m, k&, t)f (m, kz, t)f (m, k3, t)+ g g W(kz, k3)f (m, kz, t)f (m, k3 t)

(5.18)

(5.19)

(cr' ), =(o' )Oexp[ —t jr(m, t)] . (5.20)

The shape of the soliton pulse decays due to the "anhar-
monic interaction" (5.3) with the nonresonant phonons.

Since the nonequilibrium phonon distributions are only
weakly occupied for low temperatures (f «1), we see
from Eqs. (5.16) and (5.19) that

1 ((I" .
r(m, t)

(5.21)

This means that the soliton pulse (cr' ) decays on a much
slower time scale than the phonon-phonon scattering pro-
cesses in Eq. (5.15) take place.

Therefore in Eq. (5.15), (o' ) is nearly constant. Con-
sequently, in this case the results obtained in the model of
"quasiresonant phonon propagation" are still valid also
in the presence of solitary excitations. The resonant
modes decay much slower than the nonresonant modes.

However, as seen in the present calculations the elec-
tronic decay leads to a decrease in the scattering rates,
which can be seen by inserting (5.20) in (5.15). The transi-
tion probabilities in (5.15) becomes renormalized by the
factor —(cr' )Oe

'~ . In this way the time scales at
which the electronic and phonon systems move are shifted
toward each other. Therefore the electronic system can
no longer be treated as a heat bath as in the model of
"quasiresonant phonon transport" where the electronic
system was time and space independent, which means

r~ oo in (5.20).
In the derivation of Eqs. (5.14) and (5.15) we implicitly

assumed the soliton velocity to be constant. To go beyond
this approximation one has to treat the dynamics of the
resonant phonons more explicitly, which leads to addi-
tional master equations for the resonant-phonon system.

VI. CONCLUSIONS

In this article we presented a microscopic model which
describes the interaction of electronic two-level systems
and phonons. The phonon spectrum exhibits both, pho-
nons which are in resonance with the two-level systems
and nonresonant ones. This is a generalization of the
model of "quasiresonant phonon transport" introduced
earlier. ' The coupled motion of resonant phonons and
electronic two-level centers is treated in the frame of
Heisenberg equations of motion and the possibility of soli-
tary wave solutions is shown. It turns out that the ex-
istence of solitons in the resonant subsystems leads to lo-
calization behavior of the nonresonant modes of the pho-
non spectrum.

In addition the phonon transport equations derived re-
cently ' are generalized to include a dynamic behavior of
the electronic system. The phonon transport equation
turns out to be a generalized Boltzmann equation, whereas
the electronic transport equation describes the motion of a
solitary excitation interacting with the nonresonant pho-
nons.
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In conclusion we want to note that we treated the
dynamical behavior of the resonant and nonresonant pho-
nons separately. The formation of a solitary wave is
caused by the interaction between the electronic two-level
centers and the resonant phonon mode. Therefore this
phonon mode builds up a propagating state and in this
sense is "dynamically unbounded. "'

In the molecular crystal model this argument of Hol-
stein and co-workers leads them to transform to a "soliton
centroid coordinate. " Around the soliton solution they
assume small fluctuations, which they identify as local-

ized phonon modes. In this article we outlined a totally
different procedure which starting from a microscopic
Hamiltonian leads to a closed and natural description of
the solitary excitations and their interaction with the pho-
nons.
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