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Excitonic trions in a low magnetic field
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We study the influence of a uniform magnetic field on the excitonic trion and compute the
ground-state energy using a 34-term variational wave function in the low-field limit. We show that
there appear additional Landau levels which allow one to distinguish the trions from other neutral
complexes.

I. INTRODUCTION II. HAMILTONIAN

Some years ago, Lampert' suggested the possible ex-
istence of a great variety of excitonic complexes. Among
them, the excitonic trions X and X2+, which result
from the binding of an exciton with a free electron or a
free hole, have not been much explored. ' Nevertheless,
their stable binding has been proven by means of varia-
tional calculations for all values of the electron-to-hole
effective-mass ratio cr, although their binding energies are
low in general. Experimental evidence of these "charged
excitons" has been reported only in a few materials. '

This may be due to the difficulty in distinguishing the ex-
citonic trions from other excitonic complexes, because the
transitions lines are often expected to appear in the same
spectral region.

The aim of the present paper is to show that under the
influence of an external magnetic field the excitonic trions
exhibit some distinctive properties which cannot be ob-
served in the case of other neutral and mobile quasiparti-
cles (excitons, biexcitons, etc.). Indeed, due to its charge,
the momentum of the transverse motion (i.e., in a plane
perpendicular to the field) of the center of mass is not a
constant of motion and there appear additional Landau
energy levels as in the case of free charged particles. '

However, the influence of the magnetic field on the rela-
tive motion results in Zeeman and quadratic diamagnetic
shifts which are observed in all complexes. ' ' To our
knowledge, no study of the influence of a magnetic field
on the energy of the excitonic trions has been reported up
to now.

In the following section we study the constants of
motion of the Hamiltonian. We show that after perform-
ing a unitary transformation it exhibits an oscillator term
which corresponds to the transverse motion of the center
of mass. In Sec. III, we outline our method to determine
the energy of the ground state. In particular, we show
how, in the low-field limit, the relative motion may be
separated from the transverse motion of the center of
mass. In Sec. IV, we give the details of the variational
calculation of the energy using a 34-term trial wave func-
tion.
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m,
' and mq' are the effective masses of the electrons and

the hole, and V~ stands for the Coulomb potential
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where e is an appropriate dielectric constant taking into
account possible polarization effects.

The Hamiltonian (2.1) may be transformed with use of
the center-of-mass and relative coordinates:

m (I'i+12)+mi, Ii,
Ro ——

2m +mh
(2.3)

giving

H =Ho+HI +H2, (2.4)

with

We discuss explicitly the negative excitonic trion X
(e,e, h) consisting of two electrons (1 and 2) and a hole h,
which is quite analogous to the positive excitonic trion
X2+ ( e, h, h ) by interchanging the electrons and the holes.
We assume that the effective-mass approximation is valid
and that the constant energy surfaces in the reciprocal
space are spherical. By using the Lorentz gauge
A; = —,A X r; = —,

' A ( —y;,x;,0) relating the vector poten-
tials A; (i =e,e,h) to a uniform constant magnetic field
A directed along the z axis, and neglecting the spins as
well as the electron-hole exchange interaction, the Hamil-
tonian of the system is given by
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Mp ——2m, +mI*, , o.=m,*/m~* . (2.5) +(r, R, Rp) = U4(r, R,Yp), (2.7)

wave function + by eliminating the coordinates Xp and
Zp of the center of mass:

e 21+o=Pp —— A(R)+ A(Rp)
c 1+2o

(2.6)

is a constant of motion. However, its x and y com-
ponents H~ and H~ do not commute with each other, al-
though they do with the z component H, =Pp, . This is
due to the fact that the number of the electrons and the
holes is not the same, unlike what happens in the case of
the exciton or the biexciton where the three components
of the (2.6) analogous operators may be defined at the
same time.

Because the components H, H, and the Hamiltonian
may be simultaneously diagonalized, we can transform the

Due to the presence of the factor A(Rp), the momentum
Po ———ibad'R of the center of mass does not commute

0

with the Hamiltonian. Only its z component Pp, is a con-
stant of motion. It is however easy to verify that the
operator

e
11=p&+p&+p~ ——( A)+ Aq —Ah )

c

where the unitary transformation operator U reads

U= K A(R) Rp — Xp Yp
Ac 1+2o. Ac 2

(2.8)
This transformation is equivalent to a gauge transforma-
tion. We remark that the vector K(K„,O, K, ), fiK„and
AK, being the eigenvalues of the operators H„and H„ is
not to be confused with the zero-field wave vector Kp of
the center of mass. Only the z component Kp, ——K, of the
latter may be defined when the magnetic field is nonzero.
This results from the fact that the components H„and H~
of the momentum (2.6) do not commute with each other,
in contrast with the case of the exciton and the biexciton,
where a three-dimentional K vector may always be de-
fined ' '

The energy of the trion is given by

E= (4
~

H
~
4)/(4
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where the transformed Hamiltonian H' reads

H'= U HU= — V, — VR — VR, + K + Vc—,A(r) V,+ A(R) VR
2 R 2 A 2 6 p l Re 1 —2o
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with

B(Rp)= —,A (Fp,Xp, O) . (2.1 1)

Because the function N does not depend on the coordi-

nates Xp and Zp of the center of mass, the operators
K VR and [A(Rp) —B(Rp)].VR do not give rise to any

contribution.
Finally, the transformed Hamiltonian reads
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H'=H1+H2+H3+H4+H5, (2.12)

$2
Ho+ X

2Mo
(2.13)

where the first term, which exhibits no magnetic field
dependence, is given by

]I&(r,R, Yp)—:4&„](r,R)4]i ( Yp) . (3.1)

ison with the relative motion, so that the corrective term
H5 does not furnish an important contribution to the en-
ergy. We therefore try to separate the two motions in the
sense of the Born-Oppenheimer approximation by making
the ansatz

H2 ——— 1 —2A(r). V,+ A(R).VR
m 'c ' l+2o

with

2 2

Ho = — V, — VR+ Vc .rel ~ 2 ~ 2

2p
' 2M

The second term

(2.14)

(2.15)

N„1 is the fundamental eigenfunction of the Hamiltonian
of the relative motion:

H"'=Ho+H2+H3, (3.2)

H4+I ——EL&1 . (3.3)

whereas @L stands for the eigenstates of the oscillator
term H4.

is the orbital Zeeman contribution, which is linear in the
magnetic field. The third term

2

[ —,A (r)+k(o. )A (R)], (2.16)
m,'cH3 ——

with
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the quadratic diamagnetic contribution. The fourth term

Mo em' Ac

2M, gy,' 2 M,
+ 0

(2.18)

is due to the coupling of the xy-plane motion of the center
of mass with the magnetic field. It corresponds to an har-
monic oscillator with mass Mp and circular frequency
tp=eA /Mpc, the motion taking place around the origin
Yp ——hcK„/eA . The last term

The corresponding energy eigenvalues are the Landau lev-
els:

EL (n+———,
' )fi, n =0, 1,2, . . .

Moc
(3.4)

eA Ac
4L ——exp Yp — K2' eA

(3.5)

The total energy reads then

E:& I]&&]
i
Hp +(]]] /2Mp)K& +Hg+H3

+E
i e„„)/&+„,

i
e„„). (3.6)

Indeed, the coupling term H5 does not rise to any contri-
bution in our approximation because

(3.7)

and the non-normalized eigenfunction of the fundamental
level n =0 is given by

2
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Moc
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with relative wave functions of spherical or cylindrical
symmetry. It may be further verified that

&e, ia/aY, iC, )=&C,
i

Y —(Rc/ A )K„i+ )=0

(2.19)

may be interpreted as a correction to the oscillatory term
H4 due to the coupling of the relative motion with the
xy-plane motion of the center of mass.

It is important to note that no oscillator term, like H4,
appears in the case of neutral mobile quasiparticles (exci-
ton, biexciton, etc.). In the following section, we will
show that it gives rise to additional Landau energy levels,
which are expected to allow us to distinguish excitonic
trions from other excitonic complexes.

III. GROUND-STATE ENERGY IN THE
LOW-FIELD APPROXIMATION

]I]„](r,R) =e(r]p, r]]„rp],) . (3.9)

For an accurate calculation of the zero-field ground-state
energy, we used the coordinates

as a consequence of the parity of the functions NL. These
results agree with our ansatz (3.1).

Some years ago, we studied the binding of the ground
state of the negative trion X in the zero-field limit. In
that case, the Schrodinger equation can be separated into
an equation for the translational motion of the center of
mass and a second equation for the relative motion. Be-
cause the zero-field ground state is invariant with respect
to the rotations of the system, the wave function depends
only on the three mutual distances r12, r1h, and r2h.

For not too high magnetic fields the xy-plane motion of
the center of mass is expected to remain slow in compar-

s =r1h+r2h, 1h 2h 12

s&0, —s&t&s, it
i
&u(s, (3.10)
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and the following 34-term trial wave function:

4(s, t, u) =P(ks, kt, ku),

N(st, u)= g c „~mnp),
m, n, p

(3.11)

remaining quadratic diamagnetic term Hq (2.16) may be
simplified by using the usual atomic units eA /m, *e for

4 2 2length, m, e /e A =2R~ for energy and the effective
magnetic field parameter y =Ace, /2R ~, co, =eA /m, *c
being the effective electron cyclotron frequency:

mnp ) = exp ——s t "u
2

Ho' ——T+ V, ,
(3.15)

where m, n,p are positive integers or zero, with
m +n+p (5 and even values of n due to the symmetry
of P by interchanging the two electrons. The scaling fac-
tor k and the linear parameters were determined using the
variation method.

For the present study, we choose the same wave func-
tion in the low-field approximation

T= ——,(Vi+ V2) ——Vp„VC ——
2

2 2

Hg ——y Pr 2

4 4
+k(cr)pR

p, =& +y, p =X'+g'.

~ I2 I 1h

(3.16)

4„,~(r, R)-4„&(r,R), (3.12) IV. NUMERICAL RESULTS AND DISCUSSION

although its spherical symmetry does not reflect all the
properties of the Hamiltonian at higher values of the
magnetic field. In particular, this function does not de-
pend on the angles defining the triangle (12h) in the space.
Therefore the linear orbital-Zeeman term Hz does not
give any contribution in Eq. (3.6), although a nonzero
term may result from the use of a better adapted wave
function. Nevertheless, this function is expected to give
acceptable results in the low-field limit by varying the pa-
rameters k and c „z in our 34-term basis (3.11). Within
these approximations, the total energy reads then

g2
E=E„,+E:+ ' E.'.

2MO
(3.13)

where the relative energy E„], the scaling factor k, and
the parameters c „& are determined by the variation con-
dition

E„)——(C'„) ~HO +H3
~

~ ])I(+ 1~ + I) mtn (3.14)

The zero-field relative Hamiltonian Ho' (2.14) and the

In order to fulfill the condition (3.14), we rewrite the
relative energy mean value

E„]——k —k—+L, l P
N N

in terms of the quadratic forms

M=c Tc, I.= —c Vc, P=e Dc, N=c Sc .

(4.1)

(4.2)

where c denotes the column matrix of the linear coeffi-
cients c „z. The matrices T, V, D, and S are defined
with respect to the basis functions

~
mnp ) given by (3.11):

T „z~ ——(m'n'p'
~

T
~
mnp),

I t I

——(m'n'p'
~

V,
~
mnp),

(4.3)=(m'n'p'
~
Hq

~
mnp),

S „~
~ = ( m 'n 'p'

~

I
~

m np ) .

All these matrix elements may be expressed in terms of
the integrals ( m, n,p), which are defined for even values of
n by

(mnp)= f dse 's f dt t" f du u~=
(n + 1)(n +p +2)!

I I

„z~ ——m [m(m —1)(m'+m 2,n'+n—+2 p'+p+1) —m(m'+m —l, n'+n+2, p'+p+1)

(4.4)

—(m n)(m +n —+2p+3)(m'+m, n'+n p'+p+1)+p(2m +p +1)(m'+m, n'+n+2 p'+p+1)
+ 4 (m'+m, n'+n +2 p'+p+1)+(m +p +2)(m'+m + l, n'+n p'+p+1)
—p(m'+m + l, n'+n +2 p'+p —1) n(n —1—)(m'+m+2, n'+n —2 p'+p+1)

p(2n +p —+1)(m'+m +2,n'+n, p'+p —1)—, (m'+m +2—,n'+n, p'+p +1)]
+g+[2m(m —1)(m'+m 2, n'+n p'+p+3—) —2m(m'+m —l, n'+n p'+p+3)

—2n (n —1)(m'+m, n'+n —2 p'+p+3) —2(m n)(m +n +1)(m'+m, n'+—n p'+p+1)
+ —,

' (m'+m, n'+n p'+p +3)+2(m + 1)(m'+m + l, n'+n, p'+p+ 1)

——,(m'+m +2,n'+n, p'+p+1)], (4.5)
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V „"~=H[ —(m'+m, n'+n +2,p'+p) —4(m'+m + l, n'+n, p'+p+1)+(m'+m+2, n'+n, p'+p)],

D "~ =y~ j [(m +m'+2, n +n', p+p'+3) —(m +m', n +n'+2, p+p'+3)]
mnp

(4.6)

+A(cr)[(m +m'+4, n +n', p +p'+1) —(m +m', n +n'+4 p +p'+1)

—(m +m'+2, n +n', p+p'+3)+(m +m', n +n +2 p +p +3)]], (4.7)

s„z~ ———H[( m'+m, n' +n+2, p+p'+1)] . (4.8)

The extremun condition (3.14) reads now

aE„, aE„,=0,
~cnmp

=0, (4.9)

whatever the indices m, n,p. The first equation leads to
the relations

k —Lk /2M —P/M =0,
E„,= —k'M yX+3Pyk'X,

(4.10)

(4.11)

whereas the last equations are equivalent to the system

( k'7+ k V+D/k' E, ,S )c =0—. (4.12)

The eigenvalue E„& and the eigenvector c are determined
using the 34-term basis (3.11), each term being normalized
to unity. The scaling factor k is obtained by a converging
iterative method, using the generalized virial theorem
(4.10) and (4.11). In a first step, and for fixed values of a.
and y, we use the k values previously obtained, and

E~ +(o,y')=o 'Ex (cr, y),2+ (4.13)

where the effective fields y and y' are assumed to have
the same numerical value. y' is defined in the same
manner as y by replacing the electron mass by the hole
mass. In particular, for a given magnetic field, y =y'/o .

Figure 2 shows how the scaling factor k increases with

determine the quadratic forms (4.2) with the set of param-
eters c „z relative to the lowest eigenvalue of Eq. (4.12).
Next, we solve numerically Eq. (4.10) and compute the en-

ergy values (4.11) corresponding to each root. The k
value giving rise to the lowest energy is then used in a
second step to solve again Eq. (4.12), and so on until the
desired accuracy on the energy is obtained.

In Fig. 1 we have reported the relative energies E„& ob-
tained for the negative excitonic trion X . The corre-
sponding values for the positive trion X2+ may be deduced
from this curve. Indeed, the symmetry properties of the
Hamiltonian show that, in our units, the energies of the
two complexes are related by the relation

.o 1.4—
E
O

CP—0E
O
O

.~ 06-
O

I t

0-1

. 2

0

10 10 10

FICx. 1. Variations of the relative energy
(3.13) vs the effective magnetic field y.

E„~~, as defined in

t l l t

10 10

1 I t & s

10 10

FIG. 2. Variations of the scaling factor k vs the effective
magnetic field y.
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FIG. 3. Variations of the relative energy E„~ defined with
respect to the sum of the fundamental Landau levels EL(e, e, h )

of the three noninteracting particles.

FIG. 4. Discrete part E„~+EL of the total energy vs the ef-
fective magnetic field y corresponding to the four lowest Lan-
dau levels.

the magnetic field. This is due to the shrinking of the or-
bitals when the magnetic field takes higher values. In Fig.
3 we have reported the relative energies with respect to the
sum of the fundamental Landau energies EL (e, e, h) of the
three noninteracting particles. It appears, as expected,
that the Coulomb interaction is enhanced by the magnetic
field. Figure 4 shows how the quantified motion of the
center of mass in the plane perpendicular to the magnetic
field lifts the degeneracy of the energy levels. Because the
present study does not take into account the linear Zee-
man contribution, the levels reported in Fig. 4 undergo an
additional splitting, not reported here. To our knowledge,
there exists no experimental study of the influence of a
magnetic field on the energy of an excitonic trion. The
expected transition energies between a free electron (hole)
and an X (X2+) trion are given by

(4.15)E„)(X ) =E~+ W

This latter can be obtained using our values of the relative
energies (Fig. 1) and the exciton binding energies as re-
ported for instance by Cabib et al. ' The Landau energies

I

Ei"(X ) and El" (e) appearing in (4.14) are given by

EL (X ) = (n + —,
'

)fxo, 1+2o.

(4.16)El" (e) =(n'+ —, )fun, ,

~, =eA /m, *c, n, n'=0, 1,2. . .

In the present study we have restricted ourselves to iso-
tropic, spherical, and nondegenerate electron and hole
bands. This approximation becomes questionable for ma-
terials with (j=—,)-type hole band structure. In this case
the best results would probably arise from the use of an
experimental "mean" hole mass deduced, for instance,
from the observed exciton spectra.

The above splitting into Landau levels is the main re-
sult of the present study. We hope that it may be used to
distinguish experimentally the excitonic trions from exci-
tons and other excitonic complexes. The most important
splitting is expected in materials with small electron and
hole effective masses.

(4.14)

where hvx is the fundamental exciton discrete transition
energy in a magnetic field. —W ( —W +) stands for

2

the binding energy of the excitonic trion X (X2 ), de-
fined by

2 2AK,» -=»x+ +EL(X ) EL (e), —
2m 267+ 1

»~ + =»x+ W~ + — „+El".(X2+ ) —El". (e),
2 2me 0 +2
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