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Proof of the nonexistence of (formal) phase transitions in polaron systems. II

B. Gerlach and H. Lowen
Institut fii r Physik der Uniuersitat Dortmund, D 460-0 Dortmund 50, Germany

(Received 5 September 1986; revised manuscript received 12 November 1986)

In recent literature it was frequently claimed that free polarons should undergo a (formal) phase

transition from a mobile to a localized state, if the electron-phonon coupling parameter a exceeds

some critical value a, . For +=a„ the formal free energy should be nonanalytic in a. In this paper
we prove that for nonoptical polarons no such transition exists for finite temperatures. Our results

can be generalized to the case of lower spatial dimensions as well as to polarons in homogeneous

electromagnetic fields. We include some comments on related problems; in particular, the partition
function of an electron moving in a Gaussian random potential is considered.

I. INTRODUCTION AND STATEMENT
OF THE PROBLEM

In a recent paper' we discussed the question of a possi-
ble (formal) phase transition in a system of optical pola-
rons. The final answer was negative. To prove this, we
considered the diagonal element of the reduced density
matrix and used functional-integration techniques to cal-
culate the (formal) free energy.

The aim of this paper is to generalize the previous re-
sults to nonoptical polarons and mixed couplings, lower-
dimensional polarons, and anisotropic electron-phonon in-

teractions. Finally, we turn to polarons in an external
electric or magnetic field and to some related problems.
Interesting enough, all these cases can fairly be reduced to
our treatment of optical polarons in Ref. 1.

If an electron couples to several phonon branches
(branching index j, 1 &j &r, wave vector k, dispersion
coi,i) with coupling functions gkJ ——~a~gi, i, where a~. is
the dimensionless electron-phonon coupling parameter,
the partition function Z and the formal free energy F de-

pend on a:= (ai) and the inverse formal temperature P.
Using the techniques discussed in Ref. 1 we deduce

Z(a, p)=1+ g g ai . aj. Z„(ji, . . . ,j„,p),

where

Z„(ji, . . . ,j„,13):= 1 1

n' (2tr)'"

n

i, l = i

X + ~g, ~'G(irido, , ; —;). (2)

In Eq. (2) all variables are dimensionless. We have chosen
fico and v'fi/mto as units of energy and length, to being an
arbitrary (e.g. , LO phonon) frequency. As for A and G,
see Ref. 1. Direct inspection of (1) and (2) shows that
Z(a, P) can be represented as a power series in the cou-
pling parameters aJ, the coefficients being positive func-
tions in P (for 0&P). Inserting familiar types of cou-

plings gi,j into (2), one may easily prove that
Z„(ji, . . . ,j„,p) defines an analytic function in p for
0 & ReP & oo. Consequently, the following statement is
true:

Statement 1. If the power series (1) converges for all

complex aj., Z(a, P) is an holomorphic function for all

complex aJ and P, 0 & ReP & oo.
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As Z(a, P) is positive for real aJ,P with 0(aj,
0 & P & oo, we deduce under the condition of Statement 1:

Statement 2. F(a») —F(O,P) is a real analytic func-
tion in aJ,P in the specified domain 0(ai, 0&13& oo.

In the subsequent sections we prove under various cir-
cumstances that (1) does converge for all complex a&.

II. NONOPTICAL POLARONS
AND MIXED COUPLINGS

Let the couplings and the dispersions fulfill the follow-
ing conditions: For all j =1, , r there exist positive con-
stants Q, C, and R, depending merely on P, such that

pfico pfizerf f dade' f d k
l gkt l

G(fitok, ,r r—')exp
2 2Pfico

k B(Q —k) &R & oo

and

k'
l gkj l

G(~kj

f«all k )Q and r, r'E [O,p~]. Under these circumstances, we shall prove that (1) converges for a]l a .
Sphtting the domain of the k integrations, we obtain from (2):

1 1Z. (j» j.») =
n' (2ir)'"

phoo philo n

X
0

~ ~ ~

0
d7 . d71 2n d'k d'k e(k —Q) e(rc —Q)1 n 1 n —s

s=0

x e(Q rc„„,)— e(Q —~„)

xexp —Piruu g Ajtkjkt

x g lg, l

'G(ditto . , ; —;).
We have to add the prescription that the product B(k i

—Q ) . B(k„,—Q ) has to be omitted for s =n, whereas
B(Q—k„,+ i ) B(Q —k„) has to be omitted for s =0. Estimating successively the maximum in the exponential, one
finds

—g A~tk) ki & —g Ajtkt"ki+

AJ~ is explicitly given by (see Ref. 1)

71 2n

pe ' 'pr

j=n —s+1
A JJ kJ

2

To get an upper bound on Z„(j&, . . . ,j„,p) we insert (6) and (7) into (5) and, after having employed our conditions (3)
and (4), we omit the first n —s B functions. This yields

n pm pm d k1
Z„(J, , . . . ,j„,p)&, g f - f «& . . «2n —2s f fs=0 1

d k„
Cn —sg s

2k„

n —s

xexp fico g Ajtk~ kt-
j, l =1

Within the s summation, the term for n =s has to be re-
placed by R". The remaining integrations are well known
from the case of optical polarons. Applying our estima-
tions from Ref. 1 we finally obtain

~4

Z„(j,, . . . ,j„,P) & [220(Pfico) C+R]" .
n' (2ir)'"
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Therefore the power series (1) is clearly convergent for all

a).
The familiar couplings and dispersions satisfy the con-

ditions (3) and (4). We mention optical polarons, where

cubi )co)0,
1

g k

(10)

holds true. In the case of acoustical (piezoelectric) pola-
rons, we have

cok =Ck

g, -k-'"e(k, —k) .

(12)

(13)

In (13), ko is a cutoff wave number (see Whitfield,
Gerstner, and Tharmalingam ). In the theory of
deformation-potential scattering, we find

Taking a short-range coupling, he proves that the polaron
is delocalized for any coupling parameter a.

III. LOWER-DIMENSIONAL POLARONS

In recent years, considerable attention was paid to the
case of lower-dimensional polarons, because polaron ef-
fects have been observed in low-dimensional systems like,
e.g. , p-type InSb MOS (metal-oxide-semiconductor) struc-
tures (see Horst, Merkt, and Kotthaus"). Another exam-
ple concerns the interaction of an electron with the sur-
face modes of a thin liquid helium film, which was dis-
cussed by Jackson and Platzman. ' In d dimensions the
form of the Frohlich Hamiltonian remains as it is in three
dimensions except that now all vectors and vector opera-
tors are d dimensional. Of course the functional depen-
dence of gkz from k changes. We shall concentrate on
dispersionless longitudinal optical phonons, where

ct7i )co)0,
gt-e(ko —k)

in the optical case (see Harrison ), whereas

(14) cok=co) 0

and assume the coupling to be

I gk I
~dk' '

(17)

(18)

gg ~k e( ko —k )

is proposed for the acoustical case coq ——ck (Whitfield and
Shaw ).

We may summarize our results of this section as fol-
lows: If an electron interacts simultaneously with an arbi-
trary number of phonon branches which are of the type
(10)—(16), the free energy is real analytic in the coupling
parameters aj and the inverse temperature p, 0 & p & oo.

We finally add some remarks on previous work: To the
best of our knowledge the analytical properties of the
ground-state energy Eo(a) are not clear up to now, if the
dispersion coi,j has a zero at a certain value of k and j. By
variational calculations Peeters and Devreese, Shoji and
Tokuda, Toyozawa, Sumi and Toyozawa, and Hashi-
moto and Tokuda find nonanalytical behavior of the
ground-state energy in several polaron models involving
acoustical phonons. On the other hand, Spohn' has re-
cently examined the localization transition of polarons.

v 2~a
k

For the formal partition function we obtain

(19)

with finite Ad for d) 1. We note that Peeters, Xiao-
guang, and Devreese' have tried to prove Eq. (18) under
severe assumptions concerning the electron-phonon in-
teraction. In fact, they found (18) for d & 1, whereas 3

~

did not exist. We are not going to rediscuss this point
here but note that the assumptions in Ref. 13 may be
questioned. Our attitude is here to use Eq. (18) as a model
coupling for all d) 1 ~

All steps of our proof in Ref. 1 can be easily general-
ized to d-dimensional Frohlich polarons, estimating the k
integrations by introducing d-dimensional polar coordi-
nates. In the case d =2 one parametrizes the coupling ac-
cording to Sak' as follows:

m. / (PAcu) / lo(Pfizer/2)a ~ ~4„
Z(a, p) &1+ . + +0.427, [4)&3 /

m
' I ( —,)(pRco) / coth(pfico/2)a]",

4 sinh %co/2 n! (20)

where Io(x) is a modified Bessel function of first kind. In (20), the first coefficient is exact. In the case d = 1 we choose

(21)

Then we can deduce

Z(a, P) & 1+
1/2(p~)3/2I p

0

/2sinh
2

a
00

+ g . X (Pfico) coth a
a=2 2

(22)

where the first coefficient is exact. The generalization to
nonoptical polarons and mixed couplings is straightfor-
ward.

Summarizing, we can repeat our conclusion, that the

free energy F(a,p) —F(0,p) is real analytic in aj,p for
0&aj, 0&P& oo.

As far as previous work is concerned, we note that the
proof of Frohlich, ' which guarantees analyticity of the
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ground-state energy in the coupling parameter in the case
cok) ~&0, is valid for arbitrary spatial dimensions. On
the other hand, Farias, Studart, and Hipolito' as well as
Bodas and Hipolito' claim that formal phase transitions
exist, considering two-dimensional optical polarons.
Their results are artifacts of the (variational) approxima-
tion. We add that in a recent paper, Xiaoguang,
Devreese, and Peeters' have already questioned the con-
clusions in. ' ' Matsuura' finds a nonanalyticity in the
ground-state energy in a case of mixed lower-dimensional
couplings. The work of Spohn' holds for arbitrary spa-
tial dimension, too.

IV. ANISOTROPIC COUPLINGS

Z(a, g) = (exp( Sr ) ~s— (23)

where, now,

In systems with anisotropic energy bands the Frohlich
Hamiltonian must be modified. We restrict ourselves to
dispersionless optical polarons, because the results can
readily be generalized to non-optical cases. According to
Gerlach and Schliffke the formal partition function is
given by

Plica Phut G(fun, r r')—
S,[R]=- d7 d~'

&m [A][M] ' [R(r) —R(r')]
~

(24)

In (24), the strictly positive 3 X 3 matrix [M] describes the anisotropic energy bands, m is a mean value of the eigenvalues
of M. [A] is a nondegenerate symmetric 3 && 3 matrix, which represents anisotropic electron-phonon coupling. Conse-
quently, there exists a positive u & ao such that

au I'™ ~&, G(fun, r —r')S [R])—~ dr d (25)

Clearly, the anisotropic polaron problem is reduced by
(25) to the isotropic case. We remark that Frohlich's
analyticity proof for the ground state also applies to this
case.

=[O, Bx,O)]. In (27), we defined

(2&)

V. HOMOGENEOUS MAGNETIC FIELD

Z(a, P,B)= (exp( —Sr —S ))s /(exp( —S ) )s (26)

The only new quantity, generated by the B field, is

S [R]:= iy f drR—'(r)R (r), (27)

where we have used the Landau gauge A(x,y, z)

If a polaron is exposed to a homogeneous magnetic
field B=(O, O,B), the Frohlich Hamiltonian has to be gen-
eralized in a standard way. The same holds true for the
functional-integral formulation of the renormalized for-
mal free energy F(a, /3, B) F(0, /3, B). A—s for details we
refer to Peeters and Devreese. ' F(a, /3, B) F(0,/3, B) in-
turn can be derived from a partition function Z where
now

sinh(Plies, /2)
/3fico, /2

(29)

Note that (29) gives a lower bound on the formal free en-
ergy. Combining Eq. (29) and our results for Z(a, /3, 0),
derived in Sec. II, the dominated convergence theorem as-
sures us that Z(a, P,B) can be represented as a power
series in aj, which converges for all complex aj-
provided we insert the familiar couplings. In particular,
we find

co, is the cyclotron frequency, R ',R are the first two
components of the three-dimensional vector R, and e is
the elementary charge. Since the action S is purely
imaginary, we obtain immediately

(exp( Sr ) ~s, —

i
(exp( —S ))s, i

((—Sr )"e )s
Z(a, /3, B)= Qon!

aj. . .aj Z„(jt, . . . ,j„)P)B), (30)

where Z„(j~, . . . ,j„,f3,B) can be calculated according to the prescription in Ref. 22. We obtain
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1 1Z. (j1 J., /3, B)=
n' (2?r)'"

philo

phoae

x f . - f dr1 . . dr2„ f . fd'k1 . d'k„

x+ Ig, I'G(~, , —,)

s=l
3 T

X exP —g g B?1 (7 1 ~ ~, 7 2n )k? kl
i =1 j, l =1

Xcos g D?l(r„. . . , r2„)k?'kl
j, l =1

(31)

In (31), we introduced

B?l(71~ ~,72n):= B l?(71, . . . , 7 2)n:= [ —G(A'Bc, r?& 1
—721) —G(ANc&T2j 72I —1)

2r

+G(~c?2? 1 F21 —1)+G(~c r2? —&21)1

3 1 %2n
B?1(r1, . . . , r2„):= /3A'co A?1 (33)

Furthermore, D&l is given by (32), if we replace G by a
function D, defined as

r

sinh[y(
I
r

I
/3ficu/2)j-

sinh( y/31m /2 )

(34)

Eq. (31) should be compared to Eq. (2), being the limiting
value of (31) for y~0. The coefficients
Z„(j1, . . . ,j„,/3, B) are pretty complicated, but clearly an-
alytic in /3 and B in some complex surrounding of the
positive /3 and B axis. Since Z is a partition function, it is
clearly positive. Therefore we find again that
F(a, /3, B) F(D, /3, B) is re—al analytic in a&, /3, B for 0 & n?,
0&/3( cc, and 0(B.

Finally, we comment on the previous literature. To the
best of our knowledge, the analytical properties of the
ground-state energy Eo(a,B) are not clear at the moment.
(See Note added in proof. ) In a series of papers, Devreese
and Peeters (see, e.g., Ref. 21) have discussed variational
bounds on F(a, /3, B) For optical po. larons, they do find
nonanalytical behavior of these bounds and conclude that,
e.g., the mass stripping is discontinuous. They indicate
themselves that this might be an artifact of the approxi-
mation.

VI. HOMOGENEOUS ELECTRIC FIELD

(exp( SI —S, ) ~s, —
Z(a, /3, E ):=

(exp( —S, ) )s
(35)

In (35),

phut

S,[R]:=y f drR'(r),
IeIEy:= v'1rl/men .

%co

(36)

(37)

Note that —in contrast to (27)—S, is manifestly real. In-
serting the explicit expression for Sl, we find

We proceed along similar lines as in Sec. V. It is
straightforward to generalize the Frohlich Hamiltonian
and the function-integral formulation of the formal free
energy. The electric field E is taken to be parallel to the l
axis, E= (E,O, O). To avoid technical difficulties —the
generalized Frohlich Hamiltonian is unbounded, if the
volume becomes infinite —we consider again the differ-
ence of the formal free energies F(a, /3, E) F(0,/3, E), —
firstly for finite volume V. However, this difference is
well defined even for V~~. It can be derived from a
partition function Z ( a, /3, E ), where now

Z(a, /3, E)=1+g g n, , . . . , a, Z„(j1, . . . ,j„,/3, E),
n=1 jl, . . . ,j„=1

where

(3g)
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Z„(ji, . . . ,j„,p, E)= 1

n! (2ir)'"
PRa) Phoo

)& f . f dr, . dr, „f . fd'k, d'k„

X + ~g„ i
G(fico„, , —,)

s=1

7] 2n~exp Plica g—A,i, . . . ,
"

k,"ki' pe

2 2
+2i —1 +2j

&& cos —PA'co g ki' 72j —1+72j

(39)

The only influences of the electric field are oscillating
terms in (39). Hence we obtain

Z(a, P,E) &Z(a, P, O) .

Recalling our results from Sec. II for Z(a, /3, 0), we con-
clude from (40) that the power series (38) converges for all
complex a~. (provided we insert the familiar couplings
gki). Moreover, Z„(j,, . . . ,j„,/3, E) is clearly analytic in

p and E, if 0 & Rep & ao. Because of the positivity of the
partition function Z(a, /3, E), we arrive at the familiar re-
sult that F(a,p, E ) F(0,p, E ) is —real analytic for all

ai, P,E with 0 & aj, 0 & P & co.
We mention that it was proposed to define a polaron

mass by the response to an external electric field (see Ar-
isawa and Saitoh '). As this mass is expressible as a
second derivative of the free energy with respect to E, it
cannot be discontinuous as a function of aj or E. This
question was also studied numerically by Jackson and
Platzman. "

VII. RELATED PROBLEMS

Firstly, we mention that all our discussions are formally
transferable to the exciton-phonon coupling, i.e., the for-
mal free energy of an exciton in a phonon field is real ana-
lytic in all parameters like mass ratios, screening parame-
ters, and coupling constants, but we shall discuss this as-
sertion extensively elsewhere.

In the second place, we remark that a number of other
physical problems can be cast into a similar path integral
form (see Khandekar and Lawande for a review). These
are the propagation of waves in random media, the ex-
cluded volume problem in a polymer chain, and the densi-
ty of states in disordered solids. To apply our methods to
these problems we take the last subject as example.

W(R):= —f d x u(R+x)U(x) =:f d k f(k)e'"'
2

(42)

v being the scattering potential. Because of (42) and (41)
this problem can be treated in the same manner as the po-
laron functional integral. Let 8' be positive. Then we
have proved that Z(/3) is analytic in p (0& p& ~), if
there exists a Q & cc such that

and

f d k
~
f(k)

~
e(Q —k)( (43)

k" 'if(k)
~

&C&co for all k)Q . (44)

The conditions (43) and (44) are fulfilled by familiar po-
tentials v like Gaussian scattering and screened Coulomb
potentials in three dimensions (see Samathiyakanit ) or
Gaussian white noise in one dimension [W(x)—6(x)].
Gross discusses the question, whether Z(P) is an analyt-
ic function or not, but this is now clarified by the state-
ment above.

1Vote added in proof. One of us (H.L.) has recently
shown that also Eo(a,p) is real analytic for 0(ai. , 0 &p.
A corresponding paper has been submitted for publication
in J. Math. Phys.

The density of states of an electron moving in a random
potential, subject to Gaussian statistics, may be found as
the inverse Laplace transform of a partition function Z,
which depends on an inverse temperature P and is given
by

P PZ))))=l. '(exp f d7 f dr'I)'[R)r) —R(v')] ~, (4))

where I, is the system length, d the spatial dimension, and
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