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Proof of the nonexistence of (formal) phase transitions in polaron systems. I
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In recent literature it was frequently claimed that free polarons should undergo a (formal) phase
transition from a mobile to a localized state, if the electron-phonon coupling constant o. exceeds
some critical value a, . For a=0.„the formal free energy should be nonanalytic in a. In this paper
we prove that for optical polarons no such transition exists for finite temperatures. To do so, we use
functional-integration techniques and discuss perturbation theory in a to infinite order.

I. INTRODUCTION

+ g (g„,e'" ia„,+H. c. ) .

Here, m, Q, and P are the mass, the position, and
momentum operator of the electron. k, j, cokj, ak~, and
a kj are the wave vector, branch index, frequency, annihi-
lation, and creation operator of phonons. Finally, V is the
quantization volume, gk~ the electron-phonon coupling.
It is useful to extract the dimensionless electron phonon
coupling parameter aj by defining

gl J' =:~&jgtj . (2)

We note that the structure of (1) remains as it is, if we
consider systems in one, two, or three dimensions (of
course the functional dependence of gj,j. from k changes).
Moreover, (1) is readily generalized, if external fields exist.

Spectral properties of H can conveniently be deduced
from the diagonal elements of the reduced density matrix
p, depending on the inverse (formal) temperature P and
the set a:= (aj. ) of coupling parameters,

p(a, /3):=(x
~

trp„e ~
i
x) . (3)

In (3), trph indicates the trace operation concerning pho-
nonic degrees of freedom,

~

x) is an eigenstate of Q. As
H is translation invariant, p does not depend on x; x may
be chosen as zero.

It will prove profitable to relate p(a, P) to the well-
known expression p(0, /3) of the uncoupled electron-
phonon system. Let us introduce

In this paper and in a following one we discuss analyti-
cal properties of the (formal) free energy of a polaron as a
function of coupling parameters, temperature, and exter-
nal fields.

The standard polaron model is defined by the well-
known Hamiltonian H, proposed by Frohlich, Pelzer, and
Zienau. ' H reads as follows:

p2
+ g ~kgakgak&

2m k.

From the very beginning of the polaron story, it was a
controversially discussed question, whether F(a, /3) is a
real analytic function of aj (provided we insert for gl,l the
familiar couplings). The entire discussion was probably
initiated by Landau s early idea of self-trapping (see, e.g. ,
Ref. 2) and Feynman's highly significant paper on optical
polarons in 1955. Feynman's concept is crucial for our
approach to F(a,P). Therefore, we concentrate for a
while on optical polarons and stress some important con-
ceptual aspects. Feynman proved that all phonon effects
can exactly be incorporated into a translation-invariant,
noninstantaneous self-energy functional Sz for the elec-
tron. As Sz cannot be treated rigorously, it has to be ap-
proximated. A possible choice for an approximation to
Sz could be a one-particle potential U containing free pa-
rameters. One may choose a variational procedure to fix
these parameters and to produce upper bounds on F(a, /3).
For examples, see Feynman, Luttinger and Lu, and
Manka and Suffczynski. Intuitively, one expects that
U~O for a—+0, whereas strong binding should occur for
a~ oo. In the latter case the electron should be trapped
at a certain point in space. It may even happen that the
variational principle forces one to put U:—0 for a(o;|-
and U&0 for a )ac, where ac is some positive number
(again, see Refs. 3 and 5). Thus the variational bound on
F(a, /3) exhibits a nonanalyticity. In fact, results of this
kind may have caused the first conjectures, that F(a, /3)
itself might not be real analytic for all a, /3.

It seems to be widely unknown (in fact, it was unknown
to the present authors until recently) that a complete dis-
cussion of the ground-state energy Eo(a) was available as
early as 1974 (see the paper of Frohlich and for detailed
comments, those of Spohn ' }. If only one branch of pho-
nons couples to the electron and

cok W 670) 0, (6)

Z in turn is connected to the formal free energy F(a, /3)

by

Z(a, P) =exp[ /3[F(a—, /3) —F(0,/3)] ) .

Z(a, P):= p(a, P)/p(O, P) . (4) f d'k ~gl, ~
/(ko+k') & m), (7)
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for some coo and ko & 0, then Eo(a) is real analytic in a.
Obviously, Frohlich s important result applies to the case
of optical polarons and disproves the claim of many au-
thors, that Eo(a) be nonanalytic. The general shortcom-
ing of their "proof" is that they all use variational argu-
ments. We mention the work of Gross, Manka,9 10, 11

Manka and Suffczynski, Lepine and Matz, ' I.epine, '

Shoji and Tokuda, ' and Lu and Shen. ' It should be add-
ed however, that the lowest available bounds on Eo(a) do
not exhibit any nonanalyticity (again, see Feynman and
the work of Adamowski, Gerlach, and Leschke' as well
as that of Peeters and Devreese' ).

The main purpose of this paper is to generalize the re-
sult for Eo(a) to F(a, /3). There seems to be a widespread
belief that a free energy F(A, /3), being a function of some
parameters A and /3, should generally behave more
smoothly in A for P & co than for P= oo. To the best of
our knowledge, no rigorous result supports this belief (see,
e.g. , Ruelle, ' in particular, Chap. 5). Moreover, some re-
cent results (see, e.g. , Coleman' ) cast considerable doubt
on the smoothness assertion as such.

Consequently, we prove from the very beginning that
F(a, /3) —F (0,/3) is real analytic in a, P for 0 & a,

0&/3& oo. This is in a marked contrast to the work of
Manka" and Manka and Suffczynski.

To show the analyticity of Eo(a) Frohlich uses an
operator theory. His proof cannot be generalized to arbi-
trary /3. Our method differs totally from the one of
Frohlich and gives valuable insight into the structure of
high-order perturbation theory. Furthermore it can be
easily generalized. In fact, in a following paper we do
generalize our discussion to the case of acoustical cou-
pling, mixed and anisotropic couplings, lower spatial di-
mensions, as well as additional external fields.

II. STATEMENT OF THE PROBLEM IN TERMS
OF FUNCTIONAL INTECxRALS

We start from Hamiltonian (1) and the corresponding
expression (3) for p(a, /3) In d. oing so, we consider free
polarons in three dimensions.

It is well known from Feynman's work that p(a, P) can
be represented by a functional integral as follows:

p(a, /3)=Z, „f n'~. "'"' "' ', (8)

where

So[R]:=f dr R' (r),
P PSt[R]:=—f dr f dr' —gaJ ~gki ~

e' '( " '')G(fink, r —r') .
j,k

(10)

G (fico, r):= cosh[Ace(
~

r —/3/2) ]
/3Acu

2

In (8), Zph is the partition function of free phonons,

~

~ ~

~

~

~

~6 R indicates Wiener-integration over three-
dimensional, closed, real paths R(r) with starting- and
ending-point x. In (10), G (fico, r) is the temperature-
dependent Green function of a harmonic oscillator,

r

Now Sl is proportional to the coupling constants aj.
Consequently, (13) is a power series in all aj. Every ques-
tion concerning analytical properties of Z (a, /3) or
F(a, /3) can be incorporated into the two key questions:
Does the power series (13) converge for all a&.? Are the
coefficients analytic functions in /3?

III. OPTICAL POLARONS: RESULTS

Every term in (10) is negative, therefore Si(R) is negative
(see Adamowski, Gerlach, and Leschke ). We obtain
from (8) and (4)

3 Sp[R] SI[R]6 Re e
Z(a, /3) =

f 5Re

(
—Sl(R)

) 0 (12)

Z(a, /3)= g (( —St[R])")s
0 n!

The last equation defines the expectation value of
exp[ —St(R)] with respect to So. Because of St(R) &0, a
theorem of Beppo-Levi ' assures us that

In polar semiconductors, the interaction of electrons
with LO phonons is dominant. Neglecting all other cou-
plings, we have (see, e.g., Ref. 3)

gi, =

italo

v'4/2m'—&4tra/k . (14)

Under these circumstances, we prove the following.
Statement 1. The power series (13) for Z(a, /3) exists

for all complex o. , the coefficients being analytical func-
tions in /3 for 0&Re/3& ~. Consequently, Z(a, P) is a
holomorphic function in the specified domain.

For real a and /3, 0&a, 0&P& oo, and the quantity
Z(a, /3) is positive. Consequently, we can immediately
deduce from statement 1:

Statement 2. F(a, /3) —F(0,/3) is a real analytic func-
tion in a, /3 for a & 0, 0 & /3& ~.
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IV. OPTICAL POLARONS: PROOF
OF STATEMENT 1

Z(a, P)= g Z„(P)cc",
n=0

(15)

Our starting point is Eq. (13), which can be rewritten as
follows:

right-hand side of (15) converges for all complex a, Z„(p)
being an analytic function in /3 for 0 & Rep & oo.

To begin with, we reformulate (9) and (10) in an ap-
propriate way: Firstly, we introduce fico and U'ill/mco as
units of energy and length. This leads us to dimensionless
variables, 7, k, R(7). Secondly, we perform a scaling
transformation

Z„(P):=
n

——S R (16) R(7)~&pficoR
Acu

(17)

According to statement 1 we have to prove that the Then one finds from (9)—(11),

~i [Rl =—
So[R]= f dr ,'R' (7—),

1 1 d k(pf )3/2 d d r G (
r
)

ik. [R(r ) —R(r')]
4 2 o 0

(18)

(19)

G(7):= cosh[Pfico(
I

7
I

——, )] 2 sinh (20)

Z„(P)=

Proceeding from (10) to (19), we have additionally replaced the k summation by an integration. Inserting (19) into (16)
and interchanging the Wiener integration with the k and ~ integration, we obtain

1 ~2(Pfico )

nt 4m
dri. . . dr2„G(71 —72) . . G(72n 1

—72„)
0 0

d k1
X

k

d3k„
exp I g k, [R(72j 1)—R(72j)]

k„ j=1 So
(21)

for n & 1. Clearly, Zo(P)=1.
The p dependence of Z„(p) is simple; it is contained in the prefactor and the functions G(7). Consequently, the

right-hand side of (21) defines an analytic function Z„(p) for 0 & Rep & ao. This proves the minor part of statement 1.
The expectation value in (21) can be calculated by standard methods (see, e.g., Adamowski, Crerlach, and Leschke ).

One finds

1 ~2(/3fico )Z„(P)= dri . d72„G (71—72) . G (72& 1
—72& )

nf 4~ 0 0

d'k„
2 exp —g AII(7». . . , 72+)kj kl

k„ j, l =1
(22)

where

1

~jl(rlr ~ ~ ~ r 72rr ) 2 (72j —1 72j )(72l —1 72I )

1

72l 1 I
+

I rij 72I
I
——17—2j 172I I

—
I 72j 72I —1 I

) . (23)

It is well known from an early paper of Krivoglaz and Pe-
kar24 that

(Pfico) I Pfico.

2 sinh(Pfico /2) 2
(24)

where Io(z) is a modified Bessel function of first kind.
To the best of our knowledge, Z„(/3) cannot be evaluated
analytically for n )2. However, it is easily derived from
(22), that k; =k;(sin8;cosP;, sino;sin(tr;, cos8; ) . (26)

holds true. We are now going to generalize this inequali-
ty. In a first step, we calculate upper bounds for the k in-
tegrals, in a second one for the ~ integrals. In doing so,
we assume that A = (Aji ) is a positive definite matrix al-
most everywhere and for any n ) 1. We prove this prop-
erty at the end of this section [Eqs. (35). . . ]. Let us now
consider the k integration. We use polar coordinates, de-
fined by

Z2(/3) & —Z i(P) (25)
Introducing a matrix 3 = (A ji ) by
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A J( ..——AJI [ sinOJ sin8((cosgjcosg(+ sinP~sinP() g Ai)k) k) ——g A~(kjk( . (28)

+cosOJ cosO( ]

1 2 3=:Bjg+Bp+BJ.I,
we obtain

(27)

As A is positive definite almost everywhere and for any
n ) 1, the same holds true for 8', 8, 8, and A. As for
8, this is guaranteed by the familiar determinant cri-
terion; A is positive as a sum of positive matrices. There-
fore

d k1
Y

1

~n /2 lf

exp —g A (k k( & II f d(() f dO. sing
+detA

(29)

3

det g 8' 3) g (det8')' "

(Notice that we enlarged the integration domain to —oo &k; & oo. Consequently, we arrive at an inequality. ) To
proceed, we apply an inequality due to Minkowski:

1/n

det A ) (detA )

for positive matrices B . Applying this to A according to (27), we find
1/n 1/n 1/n n

II-"~, + II -'~, -"~, + II "; -'~, (31)
j=l j=1 j=l

If, in addition, the inequality a +b +c & 3+abc (a, b, c positive) is used for the bracket in (31), all integrations in (29)
can be done. This leaves us with

[2&~/3I ( —, )]"
Y„(

2v'detA

We insert (32) into (22). Furthermore, we use

G(r) & G (0)= —,coth(plica/2) .

This leads to

Z„(P) & (2 ) '~'3 ' 'I'( —, )(P~)' 'coth
2(n!) 2

n

(32)

(33)

e(ry(2n) rl()(2n —))) e(ry(2) ry(1))()()P(()P(2/l)~dA() (34)

where P indicates a permutation of the numbers 1, . . . , 2n It is obvi. ous that we finally need an upper bound on the r
integration. It is exactly this point that brings us back to the assumed positivity of the matrix A. The decisive idea to
prove this is to rewrite (detA) '~ as functional integral in one spatial dimension; the corresponding component of the
path is R ) (r). Then

1 oo
n/2

[detA (r), . . . , rp„)]'~
OO nf dk( dk„exp i g kj[R)(r2J ()—R)(12~)]

j=1
(35)

The expectation value in (35) depends only on 2n r arguments. Expressions of such a type may be rewritten as a Gauss-
ian integral (see, e.g. , Yeh ). We obtain for the r ordering, prescribed in (34),

1

V'detA

exp i g kj(xy )(2 () xy ((2 )
)

(X)

dk1 . dk„dx1 . - . dx2„
[vp() )(rp(2) —rp() ) ). . . ( 1 —ry(2„))]

2'+1
Q exp

2 7f(1) 7P( 2n ) 7$(2n —1 )7P(2) P(1)

(x2 —x() (xq„xq„()+ o ~ ~ +
2

X2n+
& —7)(2n)
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The n k integrals yield n 5 functions. Therefore, n x integrations can easily be done. We are left with (at least) n +1
Gaussian factors, which have to be integrated. As we are only interested in an upper bound, we can omit so many of
them, that exactly n independent Gaussian factors remain. Without loss of generality, exp( —x(/2r~())) should survive.
Performing the last n x integrations, we arrive at

1 2n /2
(37)

[det& (r), . . . , rp„)]' ' [&(r), . . . , rig)]' '

where b, (r(, . . . , ~z„) is a product of n + 1 different factors; each factor in turn is a r difference, being positive almost
everywhere [within the admitted r domain in Eq. (34)].

According to the determinant criterion, (37) proves, that A (r(, . . . , rz„) is positive almost everywhere and for any
n)1.

Inserting (37) into (34), we find

(2n)!
2(n!)

—3/2
3 ' I' ( —)(PAL@) coth

2 3 2

'n

1 1 e(rf(2n) rp(2n —))) e(rp(2) rp(1))
X max. . . d~~[1) . dry(2n)0 0

(38)

(n+1)/2

I ((3n +1)/2)
(39)

The value of the r integral could depend on the kind and sequence of the r-differences in b, (r), . . . , rz„). However, the
inspection of two successive integrations shows, that this is not the case. Therefore, we replace b,(r), . . . , ri„) by
(1y(p) —ry())) . .

(Ty( +i)—ry( +))) and obtain

n

2n '
Z„(p) &

'
3 '~ I '( —, )(pfico) i oth

2(n!) 2 2

Making use of Stirling s form'ula, we finally arrive at

Z„(p) & C, (pfuu) coth
C, dn pfizer

n! 2

n

(40)

for n )2. In (40), C) ——0.415, Cz —3.85.
Making use of (40) and (24), Eq. (15) shows that Z(a, p) converges for all complex a. Thus our proof of statement 1

is complete.
We add a final remark: Every upper bound on Z(a, P) yields a lower bound on F(a,P) —F(O,P). Combining (15),

(25), and (40), we obtain the following lower bound:

F(a,p) —F(O,p)) ——ln [[I+2C(p)a+2C (p)a +2C (p)a ]exp[C (p)a ]I'~1

—[C(P)—Z, (P)]a— C (P) ir p(p)
vZ 4

(41)

where Z)(p) is given explicitly by (24) and C(p) is de-
fined by

F(a,P) —F(O,P)
a~ oo a 2 (43)

C(P):=3.9(Price) i coth
2
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