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Reconstructed W(001) surface: distortion and phonons at T=0
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Effective bulk and surface interatomic potentials are used to construct a quantitative description
of the c¢(2X2) reconstruction of the clean W(001) surface. Appropriate Landau-Ginzburg Hamil-
tonians for the reconstruction are described, and numerical values for their parameters are obtained
at T =0 from our effective Hamiltonian. The full phonon spectrum of the reconstructed surface is
then calculated. Prominent surface modes and resonances characteristic of this reconstruction are

identified and discussed in detail.

I. INTRODUCTION

The findings of Felter, Barker, and Estrup' and simul-
taneously by Debe and King? that the clean (100) surfaces
of W and Mo undergo reconstruction have generated wide
interest. A variety of studies have been carried out in or-
der to clarify the nature of this phenomenon. Clearly the
interest in these reconstructions has more than one facet.
They are first of all interesting per se, as “intrinsic” sur-
face phase transitions.> However, they are also important
for the broader field of adsorbate ordering. It is becoming
more and more evident in fact, that ordering phenomena
on apparently inert surfaces also imply in many cases an
accompanying reconstruction. It is important to under-
stand the nature both of naturally reconstructed surfaces
as well as “dormant” surfaces, which will reconstruct,
once covered by some amount of adsorbate.

The main experimental facts concerning these recon-
struction phenomena have been reviewed by Estrup
et al.,* and also by King et al.>® On the theoretical side,
work has been done on several fronts, particularly in con-
nection with (i) what is the microscopic origin of the
reconstruction, and its energetics; (ii) what kind of statisti-
cal mechanics does one have at the reconstruction phase
transition; (iii) how can one characterize the static distor-
tion of the reconstructed surface lattice, and its vibrations
about equilibrium.

We can briefly summarize the present status of these is-
sues as follows:

(i) Microscopic mechanism. Following early suggestions
that the reconstruction could be due to two-dimensional
(2D) surface charge-density waves (CDW) of the half-
filled surface states,”! evidence has accumulated which
indicates that the half-filled surface states indeed exist
and are likely to be the driving force of these reconstruc-
tions.®~1® On the other hand, it is now believed that the
details of the reconstruction periodicity are almost cer-
tainly dictated by the underlying lattice, rather than by a
2D Fermi surface.!” We have referred to this state of af-
fairs as a “strong coupling CDW”,'® while others prefer
to call it a “short-range Jahn-Teller effect.”!® The impor-
tant issue, namely that the same surface would not recon-
struct if its surface states were empty—as is actually the
case for Ta(100) (Ref. 20) and Nb(100) (Ref. 21)—seems
now well established. First-principle attacks on the ener-

35

getics of the surface reconstruction which are beginning to
appear!® provide further support for this point of view.

(ii) Statistical mechanics. A Landau-Ginzburg theory
of surface reconstruction phase transitions can be formu-
lated based solely on symmetry. For W(100), one ex-
pects” 822 the same universality class as an X-Y model
with cubic anisotropy. Ying et al. have gone into consid-
erable more detail, and have investigated the switching
from pure X-Y (Kosterlitz-Thouless) to nonuniversal,
roughly Ising-like behavior in the presence of cubic aniso-
tropy.>*?* Lau and Ying®® also considered additional
phase transitions induced by “renormalizing” the clean
surface parameters with an “annealed” adsorbate, such as
hydrogen. Related work has also been published by
Yoshimori and co-workers.?¢

(iii) Static distortion and phonons. Prior to first-
principle studies of surface reconstruction energetics, we
have shown that the reconstruction problem can also be
studied by a simplified lattice Hamiltonian.?” Here, all
electronic degrees of freedom are effectively integrated
out and replaced by a phenomenological pairwise interac-
tion between first surface neighbors only. Based on stabil-
ity studies performed on slabs, this approach shows that
the commensurate c¢(2X2) reconstruction of W(100), as
well as the incommensurate reconstructions of Mo(100)
may appear quite naturally, once these effective intrasur-
face forces are made sufficiently different from their bulk
values. In particular, it is interesting that in this case in-
commensurability can arise due to strong competition be-
tween direct atom-atom forces in the surface and opposing
indirect forces, that are mediated through the second and
deeper layers.”® Our effective-Hamiltonian approach and
search for surface phonon instabilities has recently been
adopted and modified by various authors.?%2%30

The purpose of this paper is to present the results of ac-
curate and comprehensive calculations (based on the same
effective lattice Hamiltonian as in Ref. 27, but with a new
and better potential parametrization) of the detailed form
of the reconstruction of W(100), of its energetics at T=0
including surface relaxation effects, and of the new sur-
face phonon spectrum to be expected on the reconstructed
surface. For special purposes, not involving either surface
phonon spectra, incommensurate phases, or relaxation
phenomena, two-dimensional simplified approaches as
that of Hu and Ying®® can be valuable. In the present
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context, however, the use of a full three-dimensional ap-
proach is inescapable. In particular, the subtle phonon in-
teractions leading to incommensurate instabilities occur
via the second layer,?® or even via coupling to the deep
bulk [as in the so-called “incommensurate sandwich”
mechanism].!

We start in Sec. II by introducing our lattice Hamil-
tonian based on different bulk and surface interatomic po-
tentials. In this section we further discuss how a suitable
phenomenological bulk pairwise potential may be chosen,
particularly in connection with the helpful check provided
by molecular dynamics. In Sec. III we introduce the
parametrized surface potential, and discuss the general
connection between instability of the unreconstructed sur-
face and possible displacive reconstructions. In Sec. IV
we determine the reconstruction parameters (static in-
plane displacement of atoms in first, second, and deeper
layers, as well as the change of relaxation of first layer rel-
ative to the second) which minimize the total energy. We
compare in particular the energetics of different ¢ (2X2)
reconstructions, and discuss their relative stability at
T=0. The total-energy differences can be approximately
cast in the form of Landau-Ginzburg Hamiltonian, and
this is done in general terms in Sec. V and more particu-
larly for the ¢(2X2) reconstruction of W(001) with the
inclusion of relaxation effects in Sec. VI. These Hamil-
tonians are of great usefulness for the purpose of acquir-
ing a qualitative understanding of the mutual interplay of
different order parameters. Also, when generalized to
represent free energy differences, the Landau-Ginzburg
Hamiltonians become crucial for the purpose of identify-
ing universality classes for the reconstructed-to-disordered
phase transitions.

The lattice vibrations of a clean reconstructed
transition-metal surface have never so far been measured
in detail. In Sec. VII we present the full surface phonon
spectrum of the clean reconstructed W(100), calculated by
our effective Hamiltonian. Important surface modes and
resonances are identified, and pinpointed for possible fu-
ture identification, e.g., by He or electron scattering exper-
iments. Finally, a summary and a general discussion are
given in Sec. VIII. In particular, we discuss qualitative
expectations, based on mean-field theory reasoning, con-
cerning finite temperature behavior, and possible surface
phonon softening phenomena at the reconstruction phase
transition.

II. EFFECTIVE LATTICE HAMILTONIAN FOR
SURFACE RECONSTRUCTION

The occurrence of displacive reconstruction at low tem-
peratures on the W(100) and Mo(100) surfaces obviously
indicates that somehow a periodic surface lattice distor-
tion acts to lower the total energy. Ideally, a reconstruc-
tion problem could then be studied by a total-energy for-
mulation which should include both electronic and ionic
degrees of freedom on a similar footing. The first
relevant, if obvious, consideration is that the electronic
densities and wave functions are changed drastically by
the presence of a surface only within a finite and quite
small depth, usually of the order of a few times K '3
The underlying semiinfinite bulk remains unaffected. Be-

ing intrinsically stable against lattice distortions, it will
just basically resist elastically the onset of a displacive
surface reconstruction.

The next question is, what happens in the first few
atomic layers, which might favor a displacive reconstruc-
tion. Here the electronic structure is greatly disturbed
with respect to the bulk, and the motivation must come
from these perturbed electronic states. One qualitative,
but very suggestive consideration that one can make about
a bec transition-metal surface is that such a surface must
bear some similarities to a semiconductor surface. A
semiconductor is covalently bonded in a bulk, and this im-
plies a strong directional bond hybridization, and a gap.
At a free clean semiconductor surface, though bonds are
broken, rehybridization is not very strong, due to the pres-
ence of a gap (states whose energies are above the gap
would have to be used in order to rehybridize). As a re-
sult, a semiconductor surface has half-filled “dangling
bonds,” and the necessity to saturate them provides a
strong driving force for reconstructions, which are indeed
observed.’* The bulk bonding of a bec transition metal
can also be seen as partly “covalent” in a similar sense:
the d density of states has two main “bonding” and “anti-
bonding” peaks,** with a kind of pseudogap in between,
where the Fermi level lies. The presence of a sharp densi-
ty of states peak crossing Er on clean bcc transition-metal
surfaces is known (Refs. 35, 36, 7, 8, 9, and 10). The dan-
gling bond nature of these states has been recently demon-
strated by local density calculations,'"!? which confirms
the similarity to semiconductors.®’

Similarly to early theories outlined for semiconduc-
tors,>? the atoms of the outermost layers of W(100), and
the electrons in its half-filled dangling bonds form a com-
plicated coupled electron-lattice system. In order to make
such a system tractable, one could in principle choose to
integrate out the lattice degrees of freedom, and one
would obtain an extra “‘excitonic-like” electron-hole at-
tractive interaction,* leading to a gap or pseudogap in the
electronic spectrum. The alternative possibility of in-
tegrating out the electronic degrees of freedom, resulting
in an effective lattice problem, is in principle exactly
equivalent. However, these two schemes may become
quite different if they are handled by means of approxi-
mations, as invariably is the case. An effective lattice for-
mulation is attractive, since once the electronic forces are
modeled, the remaining lattice problem can be dealt with
exactly. Then a number of detailed issues ranging from
distortion geometries and energies, to lattice vibrations
and all the way to statistical mechanics of the reconstruc-
tion phase transition, become immediately tractable.

In this spirit, we have used for the description of the
W(100) clean surface, an effective (classical) lattice Hamil-
tonian where bulk atoms and surface atoms interact dif-
ferently. That is,

H=T+V=3SP//2M++ 3 Vz(R,—R,,)
1 ILm

(#(yl,m »
+7 X Vi(R—R,), o)
(ILm)
=first surface
neighbors
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where the summations run over atoms (R; denoting their
coordinates) of a semiinfinite crystal, or equivalently of a
n-layer slab. The bulk lattice properties of W are here
supposed to be described by a two-body potential Vz(R),
to be suitably chosen.’® The interaction of two surface
atoms V,(R) is then in principle very different from that
of two bulk atoms, due to the different surface electronic
structure as discussed earlier. Strictly speaking, the in-
teractions between a surface and a “bulk” atom (particu-
larly a second-layer atom) should again be different from
either V3 or V,. It should be noted, however, that recon-
struction and relaxation lead to a change of static inter-
particle distances near the surface, implying that also
pairs connected by F(R) interact in our model different-
ly than in a bulk. Therefore, we will insist in our model
Hamiltonian Eq. (1) that such interactions remain equal
to Vp(R). Moreover, we are not at present in a position
to determine any of these interactions from first princi-
ples. Instead, we will phenomenologically parametrize
both Vg(R) and V (R); and the introduction of yet more
parametric freedom is neither desirable nor necessary.
This will mean, that we in some way conventionally em-
body the whole spectrum of different atom-atom forces
which occur near a surface into a unique interaction
Vs(R), vastly different from the bulk Vz(R). We will
furthermore take ¥V (R) to be short ranged. We have ar-
gued!’” that this should be appropriate for a strong-
coupling situation, which is close to a short-range chemi-
cal bonding between surface atoms.

We write the general V' (R) (both bulk and surface) as a
fourth-order power expansion, namely

2
0 02 R 1 R
3 4
1 R 1 R
+3 v ;? 1 +Z!‘5i Rio—ll

)
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J
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FIG. 1. Bulk phonon spectrum of tungsten as obtained by the
phonon fitting of Ref. 39. Experimental points are taken from
Brockhouse (Ref. 67).
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represent harmonic and anharmonic force constants. In
the bulk, we consider first-neighbor interactions (i=1)
and second-neighbor interactions (i=2). There, R,-O is the
equilibrium distance (RS =a(v'3/2, R3=a,=3.16 A for
W). All further bulk interactions are taken to be zero. At
the (001) surface (i =s) only first-neighbor intrasurface
interactions are retained, with Rs0 =a,. The bulk harmon-
ic parameters satisfy @;= —a, and are taken a;= —0.03
eV/A?, B,=4.60 eV/A?, B,=3.29 eV/A? from the pho-
non fitting of Castiel et al.** In Fig. 1 we show the re-
sulting bulk phonon spectrum of W.

The anharmonic parameters y;,y, are determined by
fitting the linear thermal expansion coefficient a=3.76
X 107¢ K~! and the linear temperature coefficient of the
Cyy elastic constant Agy=—0.644%10"* K~ '% Given
an average potential energy per atom U (a) for a local lat-
tice parameter a, a crude but simple way to evaluate the
thermal expansion coefficient a is the Einstein average

(a*ao): P
f_wexp{ —[U(a)—Ul(ay))/kpT}da

Since U(a)=+[8V (R =aV3/2)4+6V,(R =a)] we ob-
tain, by inserting for ¥, and V, the form (2)

a (Y1+72)
ke 6ad(Bi+B,)?*
In the quasiharmonic approximation the elastic con-

stant change is obtained simply by recalculating C,, at
a=apg(l4+aT),

(3)

Bz—a2+7’1/3+2(31——111)/3
Au=a |—1 4
W T T (Bi+2a) /3 @

~apaT .

I

giving y;=—93.3 eV/A?, y,= —79.0 eV/A2.

Since distortions at the surface are generally not small,
we need to specify also bulk fourth-order anharmonicities
6i,8, as in Eq. (2). Though in principle we could try to
determine §,,8,, e.g., from the quadratic temperature
coefficients of thermal expansion and elastic constants, in
practice it was found to be handier and safer to determine
them by a simple molecular dynamics (MD) run of bulk
W (which was performed with the help of C. Z. Wang),
and with the bulk potential as specified by Eq. (2). As it
turns out, the expansion curve is very dependent upon the
choice of §; and §, already at relatively low temperatures.
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FIG. 2. Comparison of the experimental thermal expansion
of bulk W with the molecular dynamics (MD) results obtained
with the bulk potential described in Sec. II.

The best values yielding a reasonable low-temperature ex-
pansion as on Fig. 2 turned out to be §,=3.0X 103 eV/A2
8,=1.5x10° eV/A2 4l The constants VO determine very
sensitively the crystal structure in the MD calculation. A
stable bcc structure with the correct cohesive energy of
E.=8.66 eV/atom was obtained with V= —1.25 eV,
Vy=—121¢V.

Clearly no such fitting is possible for the four surface
parameters «a;,f,Vs,0;. They therefore remain free ad-
justable parameters of this theory. In the following
chapter, we will show that the harmonic surface force
constants (SFC) «ag, 3, closely determine either the stabili-
ty of the ideal (unreconstructed) surface, or the type of
reconstruction of the surface. In the subsequent Sec. IV,
on the other hand, the anharmonic SFC y, and 8; will be
shown to determine the magnitudes of the T=0 recon-
struction distortions, and other important features.

III. HARMONIC STABILITY AND INSTABILITIES OF
THE IDEAL (UNRECONSTRUCTED) SURFACE

As discussed above our bulk potential yields a stable
bee bulk crystal. We want now to determine the stable
surface structure of a semiinfinite crystal whose first-layer
atoms interact via a given surface potential V;(R). Clear-
ly, reconstruction will occur if a rearrangement with dif-
ferent periodicity from the ideal can yield lower energy.

In principle, the unreconstructed surface could be, as a
function of ag,pB;,y;,8s, either (a) a stable energy
minimum (no reconstruction), (b) a metastable energy
minimum, i.e., not the lowest minimum, or (c) an unstable
extremum, such as a maximum or a saddle point.

Our goal is to uncover and pinpoint regions of SFC
values where either of these possibilities is realized. It is,
in fact, generally difficult to discover “first-order” recon-
structions, of type (b), without some kind of random sam-
pling of the configuration space. We have not pursued
this possibility further, as it did not appear a likely one.
Fresh MD results that are currently being examined con-
firm this guess.*? Surface lattice instabilities of type (c)
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can be found by a standard linear stability analysis. In
practical terms, this amounts to asking whether there are
in the ideal surface any unstable phonon modes, i.e., nega-
tive values for some g, (q,A denoting, respectively, wave
vector and branch).

Given a surface phonon branch which has negative ®?,
the implication is that the time evolution of such a state
will change from oscillatory to exponentially growing e®*
The growth will eventually be stopped by anharmonicity,
and the final stable configuration is generally close to the
one obtained by ‘““freezing in” the fastest growing mode
eigenvector, which is the lowest, over the initially ideal
surface.

Slab calculations are a particularly simple way to study
the surface stability and surface phonons.** We here give
details following closely our earlier work.2’” We take an
n-layer slab (usually n=25 is quite sufficient, though, oc-
casionally we have used up to n=75) and solve the eigen-
value problem

[D(q)—Mw} L]up(q)=0, (5)

where q is the 2D wave vector and D(q) is the dynamical
matrix. For a central potential, that can be written expli-
citly as

Di(q)= 3

e

i

Ri R,
aisﬂV+(Bi‘ai)W

iq-r;(I")

X (& —e Sr1) (6)

where R;=r;+(lay/2)Z is the coordinate of an atom on
layer / [r; being the (x,y) projection of R;], uv are Carte-
sian  coordinates, and «;,3; take the value
ay,Br,asBras,Bs for first, second, and intrasurface
neighbors, respectively.

As a function of the harmonic SFC a, and f3;, we ob-
tain the stability diagram of Fig. 3. Each region inr this
diagram signifies either stability of the ideal surface or an
instability of some type. For a;=a,, B;=/, the ideal
surface is stable, and the surface phonons of Castiel
et al.*® are reproduced. Surface stability is only lost for
very large changes of surface force constants. Within the
present scheme instabilities occur at the Brillouin zone
(BZ) points L and M (see inset in Fig. 3) and in their
neighborhood. An analysis of the details of each instabili-
ty and possible reconstruction implied by this phase dia-
gram is given in Appendix A.

The regions I, and I, are incommensurate, i.e., a)é, 3 1S
minimal for values of q such that q-Rs427n, where R is
some direct lattice vector and »n is a small integer. It may
be at first sight surprising to find incommensurate insta-
bilities in a system with short-range forces. What hap-
pens is that the direct surface interaction ¥V, and the
bulk-mediated forces compete in determining the actual
surface arrangements. It is known from many other ex-
amples that incommensurability is a very common way to
resolve this competition. We believe this aspect to be of
importance for the incommensurate reconstructions of
Mo(001) (Ref. 28) and of W(001):H (Ref. 17). However,
since our focus is on the ¢(2<2) commensurate W(001) a
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FIG. 3. Stability diagram of the ideal W(001) surface as a
function of the harmonic SFC, a;,,f; (in units of eV//gsz). A
sketch of the eigenvector of the soft mode on the first layer is
shown for the three regions corresponding to commensurate
reconstructions. Two types of c¢(2X2) distortions are indicated
in the M5 region, namely (11) and {10) (they are degenerate
within the harmonic approximation, and acquire a different en-
ergy only with the inclusion of anharmonic forces). In the inset
the Brillouin zone (BZ) of a bee (001) surface. All calculations
in this paper are performed for the point P, as representative of
clean W(001) at T=0. Other points on the dashed line inside
the Ms region would approximately yield the same distortion
magnitude and energy gain.

detailed discussion of the nature of the incommensurate
phases I, and I, is postponed until Appendix B.

The c(2X2) reconstruction obtained by freezing in a
twofold degenerate M surface phonon mode has all the
characteristics expected for a description of the ¢(2X2)
state of clean W(001).”-2” They are the following.

(i) Correct periodicity, leading to a ¢ (2<2) unit cell.

(i) The M5 eigenvector is mostly confined in the first
layer, and for a particular choice of phase, is very similar
to the Debe-King model of reconstruction, found by low-
energy electron diffraction (LEED) (Ref. 2) and shown in
Fig. 4.

(iii) Surface symmetry is reduced for an Ms(11) dis-
tortion from Cy, to C,,, which agrees with LEED obser-
vations.

A. FASOLINO AND E. TOSATTI 35

(b)

FIG. 4. (a) Sketch of atomic positions on the
W(001)c(2x2){11) reconstructed surface. For clarity the M;
distortion magnitude in this figure is approximately 1.5 times
bigger than the true distortion py (in this work, po~0.22 A).
Second layer atoms are shaded, third layer atoms are black. (b)
BZ of the reconstructed surface inscribed in the BZ of the ideal
surface (dashed).

(iv) Double degeneracy of M5 implying two types of
domains that can be selectively enhanced in presence of,
e.g., oriented steps, as observed.*>

(v) The switching from c(2x2){11) to ¢(2x2){10)
reconstruction upon H adsorption can be readily under-
stood as a switch from an Ms{11) to another Ms(10)
distortion, which differ only by small anharmonic terms.

In detail, the suggested M distortion at and below the
surface can be written as

o_Ms PPN
Ry —Rjj=pow; > =poepy (DX +T)

27,1 0
i—(5,7)Ry
ap

X |exp +c.c. |, (7)

where the normalized eigenvector €y (I) decays exponen-

l, 44

tially with the layer number as shown in Fig. 5, and p,
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FIG. 5. Square distortion amplitude for the M5 soft mode as
a function of the depth. The topmost surface layer corresponds
to I=1. We expect the c¢(2X?2) distortion magnitude to decay
in this way below the first layer.

is an overall amplitude, which plays the role of order pa-
rameter, as discussed in detail later.

Before we move on to examine more closely the ener-
getics of the lattice distortion, we wish to make a few gen-
eral comments about the connection between the surface
forces and the type of reconstruction.

All in-plane reconstructions seem to require the har-
monic second-order SFC f3; to be opposite in sign and
about + the bulk magnitude. Incidentally, this finding
bears an interesting qualitative analogy with that by
Binder and Landau,*> who noted that an antiferromagnet-
ic surface reconstruction on a bulk Ising ferromagnet will
also occur when J* = — jbuk /4,

The L,(2X 1) or (2X2) reconstruction which consists
of forming pairs or quartets of surface atoms is formed
when the surface interaction is attractive (a; >0). The
Ms and M| c(2X2) states on the other hand, are pre-
ferred when the surface forces are repulsive (a; <O0).
There is a very simple way to argue about which recon-
structions will be favored by an attractive or repulsive in-
teraction. As indicated in Fig. 6, with a repulsive V, the
pair distribution function obviously favors the three possi-
ble ¢(2X2)’s (M5 and M) over either (2X2) or (2X1)
(L,) as indeed found in our phase diagram of Fig. 3.

Returning to W(001), the presence of c(2X2) recon-
structions indicates a repulsion between surface atoms.*®
It is not simple to trace the reason why two surface atoms
on W(001) effectively repel, back to a straightforward
physical, or chemical reasoning. However, it is important
to keep in mind that ¥V is only an effective interaction,
which can embody more than one mechanism. For exam-
ple, it would be entirely plausible to suppose that in reali-
ty, due to the surface contraction—which is omnipresent
on clean metal surfaces—the indirect force via the second
layer could in fact become repulsive, due to core-core
overlap. Our effective Hamiltonian Eq. (1), though mak-
ing no explicit provision for surface contraction, is able
nevertheless to handle a situation of this kind as well.*’

Q‘VR)T) E a,(1+2 %) ]
: M, c (2x2)
b)
() a,(1-V2 & + 0?) i a1+ V2 ¢ +4%)
|
II _ E ﬂ M;c (2x2) an
(C) a,(1-4) ‘ a,(1+26%) a1+6)
1
: “ M;c (2x2) <10,
(D '
a,(1-9) ! 3 ao(1+6)
I
t L2x)
(& (- VZ 8) :. agli- V2 )
|
; L (2x2)

R——

FIG. 6. Schematic T=0 surface pair distribution function
for the M,, Ms, and L, reconstructions. In cases a,b,c, the
center of the distribution is at a@ > a, while for cases d,e it is ex-
actly at a,. Hence, a,b,c, are preferred for forces that are
repulsive within the surface.

IV. ENERGETICS AND PARAMETERS OF
RECONSTRUCTION

Once a; and B, take up values outside of the stability
region, the ideal surface no longer minimizes the effective
lattice potential energy of Eq. (2). The ensuing distortion,
if it is not too large, is expected to be close in form to the
fastest growing mode eigenvector of Eq. (7). The anhar-
monic forces—both bulk and surface—act to limit the
growth of the distortion. In particular, a crucial role
should be played, like in other structural phase transi-
tions, by steric hindrance of hard atomic cores.

Our task at this point consists of the following.

Comparing the energetics of different types of distor-
tion, and choose the most convenient, at 7=0. In doing
so, additional surface displacements, compatible with the
known facts and with symmetry (e.g., relaxation of the
first-second layer distance), must be allowed for.

Choosing a set of values ag,f,7s,0s which within our
phenomenological scheme can represent as closely as pos-
sible the experimental situation for W(001).

Extracting any new information that this simple 7=0
model may provide. Such are, for example, the energetic
gain upon distortion, the change of surface relaxation, etc.

Given a starting set of SFC «y,f3,¥,6; we calculate the
energy change as

AE,(p,h)=V{Ry+pruli+h28,0} — VIR, (8

where V{R;} is the effective lattice potential-energy
functional of Eq. (1), A denotes the symmetry and type of
distortion (i.e, Ms{11), or Ms{10),M,,...), ul is the
corresponding fastest growing normalized eigenvector, as
given for example by Eq. (7), p, is the reconstruction or-
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der parameter amplitude already introduced in Eq. (7),
and A is a first-second layer relaxation with respect to the
equilibrium value of the unreconstructed surface. Our
bulk parametrization yields for the unreconstructed sur-
face an initial slight outwards relaxation of 0.01 A. This
is, of course, at variance with an experimentally known
slight contraction of about same magnitude.*® In fact, we
have used a simple two-body potential to describe bulk
tungsten, and such potential cannot yield a surface con-
traction. This notwithstanding, we have all reasons to be-
lieve, that the change of relaxation with reconstruction is
still very reasonable in our scheme. In fact, we will find
that such relaxation changes do make a nonnegligible con-
tribution in qualitative agreement with the recent results
of Ref. 16.

We are primarily interested in describing the
¢(2x2){11) (in-plane) reconstruction, which is found ex-
perimentally. Therefore a; and B; must lie inside the M5
region in the T=0 phase diagram of Fig. 3. However, the
¢(2x%2)(11) and the c¢(2x2){10) reconstruction are en-
ergetically degenerate, so long as the system is purely har-
monic. A difference between the two arises due to the
presence of anharmonicities (both bulk and surface).
Hence, it is not surprising to find that a sharp divide ex-
ists in a (y,,8;) parameter plane, between a region where
the (11) distortion prevails, and another where the (10)
prevails. This does indeed happen, as exemplified by Fig.
7 for a particular, but reasonable choice of «;,3;. Choos-
ing a point on either sides of this divide leads to total-
energy curves, as a function of distortion amplitude pg
and of relaxation change h, such as those shown in Fig.
8.

A. FASOLINO AND E. TOSATTI 35
}; 10 b b
(eV/A2)
5 |
oP
0 ' 200
- 5 -
6s(ev/32)

FIG. 7. Stability diagram as a function of the anharmonic
SFC v;,8; for a,,B; fixed at the value of the point P. On the
right-hand side of the oblique line, the energy of the
c(2x2){11) is lower than that of the ¢(2x2){10) and vice-
versa.

We see that (i) the anharmonic forces block the recon-
struction magnitude, as expected, and (ii) the surface ac-
quires an extra outward relaxation, upon reconstruction,
corresponding to an extra energy gain of about 15%.
This relaxation is bigger for the {11) distortion, than for
the (10) distortion. This can be understood in simple
terms by noting that for a (11) distortion the first-layer
atoms have to climb directly over the second layer repul-
sive cores, while this does not happen for a (10) distor-
tion. At present, it is difficult to select, as stated, a sur-
face potential (or “point” P in our parameter space) P

E (meV/SURFACE ATOM)

— £-0021A=£, ./
—-- £-005 A

T
1
i
\
\‘ R:"OO A «10) ,/’
\
\
1
\

FIG. 8. Distortion energy as a function of the ¢ (2X2) distortion magnitude along 11 and 10. The full line is calculated with the
potential parameters as in Table I, for the equilibrium value of the relaxation A =hy. The dotted line for #=0 which minimizes the
energy of the ideal surface. The dashed line for 4 > h¢ is also included, showing that A, is optimal.
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=(as,Bs,Vs,0;) as representative of the clean W(001) sur-
face.

Our best guess is based on the following.

(1) The harmonic forces a;,; must be such that the
M, (vertical) instability does not occur, but is also not too
far from occurring. We argue that this should be the
case, because of the similarity of W(001) to Mo(001). We
believe in fact that Mo(001) falls inside the incommensu-
rate area I, of Fig. 3.2?® This region I, represents the
borderline between M5 and M, instability. Moreover, we
believe?® that the apparent discrepancy between LEED
and field-ion microscopy (FIM) studies of W(001) could
be understood as due to a field-induced switching from
M to M, reconstruction,*® and this is more likely to hap-
pen if P is close to the M, region.

(2) The anharmonic forces y,,8, must be such that
the c(2x2)(11) is only marginally stable over the
c(2x2){10) reconstruction. Our argument is based on
the fact that a very small amount of annealed hydrogen,
between 0.11 and 0.16 monolayers, is able to cause the
switch from (11) to (10).4%5!

(3) The distortion magnitude p,, which depends very
strongly upon both (ag,3) and (y,8;), should be not very
far away from the well-established order of magnitude of
about 0.2 A (measured at low temperatures).*°

(4) The static coherence length £ =2 /8q related to the
wavevector 8q of the critical k-space region, should be in
the range of experimental values, i.e., £=10—15 A.>%527

(5) All phonons of the reconstructed surface must be
stable at 7T=0.

Our best choice of potential parameters, and resulting
calculated quantities is given in Table I. There is a large
amount of arbitrariness in this choice, which could be fur-
ther reduced, given more experimental input. The avail-
able freedom in the choice of «g,B; is visualized by the
dashed line, inside the M region of Fig. 3. Pairs of ay, S,
lying on that line (for fixed y,,8;) basically all yield
reasonable distortion features. For a; more negative,
however, the system becomes prone to vertical (M) dis-
tortions, a tendency which disappears as a; increases. Re-
cent ab initio total-energy calculations provide a picture
qualitatively similar to ours.!® However we find that a
larger energy gain of about 30 meV fits better than their
value of about 10. A preliminary MD study of this sur-
face with the present potential indicates indeed a c(2X2)
reconstruction and a phase transition around room tem-

perature.*? Other interesting simplified electronic struc-
ture approaches which have recently appeared yield either
no reconstruction for clean W(001) (Refs. 15 and 53)—
contrary to experiment—or a reconstruction with an ener-
gy gain again lower than 10 meV/surface atom,’* which
we believe to be much too small.

V. LANDAU-GINZBURG HAMILTONIANS

In this section we wish to establish connection between
the energy changes calculated in the previous section and
the phenomenological approach of Landau-Ginzburg
Hamiltonians (LGH). In that approach the change of en-
ergy (or free energy at T=0) upon reconstruction is cast
in the form of a power series of one or more order param-
eters, plus gradient terms to account for inhomogeneous
situations. While the nature of the order parameter is dic-
tated by physical considerations, the detailed form of the
expansion relies solely on symmetry [see, e.g., (55)].

A LGH is useful in several respects. Firstly, it provides
a very simple and compact picture of one or more com-
peting distortions, as controlled by very few parameters.
This is in contrast with the detailed microscopic picture
that is usually quite involved. Secondly, it explains
universality, since in that approach entirely different
physical situations may be described by formally identical
Hamiltonians. Thirdly, it is valid at all temperatures, and
thus it shows how phase transitions occur when one or
more parameters are made temperature dependent.

We will present here several types of LGH. First, we
discuss the simplest Hamiltonians applicable to each
reconstruction that appears on the stability diagram of
Fig. 3. These are the following: (1) Ms, (2) M, (3) L,,
and (4) I, or I, (incommensurate). Subsequently, in Sec.
VI, we will focus on the specific point P=(a;=—0.75
eV/A2 B;=—0.94 eV/A2 y,=3.76 eV/A2 8 =225.67
eV/Az) which we take to describe the c( 2><2)< 11) dis-
tortion of the clean W(001) surface, and work out all de-
tails, including numerical values of the parameters in the
LGH, the effect of the relaxation, and the relationship to
the surface phonon spectrum.

(1) Ms plane distortion (twofold degenerate). Here we
need a two-dimensional order parameterzpei"’z(u,ﬁ )
where u is the distortion magnitude along (10) and %
that along (01):

TABLE I. Numerical values for parameters describing W-W interactions [first and second bulk
neighbors, and (001) surface neighbors], and of calculated distortion magnitude, relaxation change, ener-
gy gain, surface vibration frequencies, and phase coherence length of the reconstructed W(001) surface.

a; (eV/AY) —0.03 ay (eV/AY) 0.03 a; (eV/AY) —~0.75
B cV/A ) 4.60 B> (eV/A ) 3.29 B; (eV/A ) —0.94
71 (eV/A) —93.3 2 (eV/A) —79.0 Vs (eV/A) 3.76
8 (eV/A ) 3.0%10° 52 (eV/A ) 1.5x10° 8, (eV/AY) —0.75
Po (A) 0.225 (A) 0.028 AE (meV/surf. atom) —31.2
w1 (meV) 4.7 wz (meV) 9.2 o1 (meV) 10.3
oL, (meV) 28.9 @r, (meV) 32.1 dwt/dp (meVi/A) —1.43
Epase® (A) 12

2Approximate value along the (11) direction (see Sec. VI).
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AEy = [d(—r(u?+a ) +au?+a ) +bu’a?
+Jo[(Vu)2 (V@ )?]}
= [d*(—rp*+ap*+bp'sin’(2¢)/4
+Jo[(V@) 2 +p*(Ve)*]} , ©)

where r,a,J, are positive at T=0,” and the expansion is
limited to the fourth order in the order parameters and to
the second order in the gradients.

It is clear from this Hamiltonian that a homogeneous
distortion will be ¢ (2x2){11) if b <O (that is, it is then
convenient to have (@)=m/4, 37/4, etc.), and
c(2x2)(10) if b>0 (when (@)=0, 7/2, etc., prevails).
The switching from (11) to (10) is supposed to take
place experimentally with adsorption of hydrogen (Refs.
4, 50, 51, 25, and 17). These two situations in fact corre-
spond to the microscopic energy balance of Fig. 8.

From the phase transition point of view, this Hamil-
tonian represents an X-Y model with cubic anisotropy,
whose critical behavior is expected to be interesting and
nonuniversal. These aspects have been discussed by vari-
ous people.’62223

(2) M, vertical distortion (nondegenerate). By calling v
the nondegenerate order parameter, we have simply

AEy = [d*[—Rv’+Av*+J,(Vv)’] . (10

This Hamiltonian gives rise to a phase transition that falls
in the same universality class as the 2D Ising model.’

(3) L, planar distortion (two degenerate inequivalent k
points). The two-dimensional order parameter can be
again written as pe’?=(w, 0 ), where w is the amplitude of
an L, distortion at

q=(1/2,0)27/ay=(1,0)

and w=that of an L, distortion at

q=(0,1/2)2m/aqg=(0,1) .

This LGH is identical in form to Eq. (9) for an M dis-
tortion and similar considerations are applicable. In this
case a (2X1) reconstruction occurs for b>0, while a
(2X2) unit cell is formed for b <0.

(4) Incommensurate distortions I,. As detailed in Ap-
pendix B, the incommensurate phases arise because of the
competition between tendencies to distort at the same time
vertically and horizontally. Hence, we must include both
types of degrees of freedom, which leads to a three com-
ponent order parameter =(u,#,v)=(p,¥,p). The Hamil-
tonian is the following:

AE,‘:fdzx,—r(u2+172+v2)+a(u2+172+v2)2

+ A2+ Avt 4 buT T+ b (uP+ 7 22

|
(©3 2o}
<<
|

<
Q|
4l
-—

+Jo[(Vu )2+(V17)2]+J1(VU)2‘ . (11)
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Here the term Av? accounts for the energy splitting be-
tween Ms and M; modes (see Appendix B, Fig. 16). In
this respect the present problem is somewhat similar to
that of a ferroelectric in an external field*®>° (proportional
to A). The incommensurability is driven by the
“Lifshitz” term proportional to 8. The competition lead-
ing to incommensurability occurs between u and v in the
x direction, and between % and v in the y direction.
Hence, in both cases, the coupling of the horizontal to the
vertical displacement drives the incommensurability.

It is interesting at this point to make contact between
the specific LGH [Eq. (11)] and the general symmetry-
based LGH form (as given, e.g., by Mukamel and Krin-
sky®’). Following that general formulation, a two-
dimensional incommensurate distortion of an originally
C,, undistorted system is described by two complex order
parameters ¥, and ¢,. The incommensurate order param-
eters consists in this case of a star of four inequivalent k
points (g0,90), (— g0, —q0), (—q0,90), (g0, —g0). For ex-
ample, we can take 1,17 to be the (complex conjugate)
amplitudes of the first two k points, and 1,,1/5 those of
the latter two. Using the standard rules of constructing
Cy, invariants up to the fourth order plus gradient terms
up to second order, we get

AE; = [d2{—r(||2+ || D+ | |2+ | 4] 2

+B [ |2+ TC VP 24 | Vi [ D)) (12)

At first sight, the general LGH [Eq. (12)] looks quite dif-
ferent from our previous expression Eq. (11). However,
the two expressions become identical, once we recognize
that the incommensurate order parameters 1,1, can be
approximately constructed in terms of amplitudes u, %,
and v at the nearby commensurate k point M. They are
simply given by

¥y =expl(i 8q-1)(u +inv) , (13)
W, =expli dq-r) (@ +inv) ,

where 8q is the distance to the near commensurate point,
and 7 is a numerical coefficient. By substituting Eq. (13)
into Eq. (12), we recover Eq. (11) by neglecting terms of
order (8¢)? or higher, and by identifying parameters as
follows:

r=7, a=a,
A=a(2n’*—172+2a2y*—1)+bn*,
A=—F(29*—1), b=b,
by=bn*+2a(2n*—1)

8=J2n|8q|, Jo=J, and J,=279*T .

Summing up, the physical fact that both in plane dis-
placements u and @ couple to the same vertical displace-
ment v reduces the order parameter dimensionality from
its general value of 4, as in Eq. (12), down to three, as in
Eq. (11).

The complete form [Eq. (11)] of the LGH for the 7, in-
commensurate phase has not to our knowledge been given
before. It simplifies to a two-component problem, analo-
gous to the ferroelectric in an external field of Refs. 58
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and 59, once one of the two components u or % is set
equal to zero. In this case the problem implies the ex-
istence of discommensurations [or “soliton lattice” (Ref.
60)] between regions where the order parameter is
predominantly u (or %) and narrower regions where the
order parameter is close to v. A statistical mechanical
study of this situation has been given by Ying.®!

In general, however, the simultaneous presence of a
|
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third (“Heisenberg-like”) component of the order parame-
ter is not a priori negligible. The full problem appears ac-
tually much more complicated. It may be useful to
transform this Hamiltonian from the form of Eq. (11)
into polar coordinates, by putting

(u,%,v)=(p sind cosg,p sind sing,p cosd)

whence

AE; = [d* | —rp*+ap*+p*[b sin22p(2 sin?® —sin?29) + 2b ,sin>29] + Ap’cos®Y + Apicos*d

+8p?[ ¥, cosp+ Oy sing +sin2d (@), cosp — @) sing) /2]

+Jop*[(VD)?cos?d + (V) sin®d ] +J,p%(V ) sin2d} , (14)

where an additional (“phase-only”) approximation of con-
stant amplitude, Vp=0, has been introduced.

Equation (14) represents a functional AE =AE[d(r),
@(r)] of two phases ¥,¢p. The minimization of this func-
tional should yield the two functions ¥(r) and @(r) which
describe the true nature of the incommensurate surface
structures [such as those of Mo(001) or W(001):H].®
With the additional assumption @ =const=nw, one re-
covers the simpler commensurate-incommensurate Hamil-
tonian leading to a soliton lattice,®! as already mentioned.
Conversely, if we set 9=(2n +1)7/2, as would be ap-
propriate for A— « (when the z degree of freedom drops
out) then we trivially recover the Ms commensurate Ham-
iltonian Eq. (9), involving x-y motions only.

Though we have been able to find no existing study of
the full problem of minimizing AE(3,p) of Eq. (14) in
the literature, we see several reasons why this should be
very interesting. The first is the physical consideration
that the detailed form of the discommensurations separat-
ing regions (“stripes”) of predominant u character
(3 ~m/2, p=0) from regions of predominant v character
(¥ ~0) will certainly be greatly affected by acquiring some
u admixture (i.e., by allowing ¢=40 in the discommensura-
tion region). The second, more general consideration is
that minimization of Eq. (14) corresponds formally to a
dynamical Hamiltonian problem where the number of
phase space variables (9,V9,p,Vp) exceeds three. Such
problems with a large number of variables may be expect-
ed to yield quasiperiodic, or chaotic behavior, rather than
periodic behavior.®> This leads to the rather suggestive

AE=fd2x{—r(u2+i4'2+v2)+a(u2+172+v2)2+Av2+Av4+bu2172+b1(u2+u w
—c1h(u?+72)—cyhv +ph?+gradients) .

In the c(2x2){11) state, b is <0, and the T=0 mean
value of the order parameter is characterized by
(u)=(T)=po/V2+#0, {v)=0, or po={[(u*+7?»]'?)
(for r>0 and A sufficiently large). Moreover, a finite re-
laxation hy=(h )540 will accompany the reconstruction.

Mean-field minimization of Eq. (15) yields

f

possibility that some incommensurate surface reconstruc-
tions could be described by nontrivial nonperiodic distor-
tions, which nevertheless are in a sense “ordered.” On the
experimental side, this would probably show up as some
apparent disorder, and “streaking” in the LEED and He
diffraction patterns. We hope to come back in the future
to discussing this interesting possibility more closely.

V1. EFFECTS OF RELAXATION
AND LGH PARAMETERS
OF THE c(2x2)(11) PHASE OF W(001)

The (“Debe-King”) c(2x2){11) distortion of W(001)
stems, in our description, from an Mj instability. As
such, it is described in principle by the LGH Eq. (9). If,
however, one wants to tie quantitatively such an expan-
sion with the actual microscopic energetics of W(001) dis-
cussed in the previous section, then some slight extension
is needed. This need stems from two facts: (i) The sur-
face relaxation parameter A which we have found in Sec.
IV to be quantitatively important, has to be included; (ii)
if the vertical (M,-type) displacements (though not
present in the static mean-field distortion) were actually
not too far from being unstable, their presence could not
in principle be neglected. In some respects, this problem
is analogous to that of including the # degrees of freedom
in addition to (u,v) in the incommensurate problem dis-
cussed in the preceding section. In fact, the Hamiltonian
we consider has the same form as Eq. (14), plus a relaxa-
tion term

(15)

.
dAE /9p?=0, dAE /d0h=0, whose solution is the follow-
ing:

’
2a —|b|/2—c}/2u

po= (16)

and
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ho=clps/2u . (17)

This result shows the following.

(a) Both the in-plane distortion and the vertical relaxa-
tion are proportional to the “driving” parameter r. This
quantity is identified with the squared frequency of the
“fastest growing” Ms mode — r =Mw?2/2.

(b) The effect of the anharmonic term (a — | b | /4) is,
as expected, to block the growth of the distortion.

(c) The inclusion of relaxation (hy50) favors the in-
crease of the distortion, as already found in our energy
minimization of Sec. IV. Incidently, this implies values
of ¢?/2u small enough in comparison with 2a — | b | /2,
which is a critical value. Close to and beyond this value
the fourth order expansion Eq. (15) is no longer sufficient.

(d) The outwards accompanying relaxation (hy>0)
found in Sec. IV can be accounted for by a positive sign of
the LGH parameter c,.

The presence of 4 degrees of freedom in the starting
LGH Eq. (15) implies that AE is a positive quadratic
form of the four small amplitudes u —{u), 7 — (&), v,
and A —(h). Leaving aside # which is not a normal
coordinate and whose ‘“‘spring constant” u remains un-
changed, the remaining 3 degrees of freedom lead to the
corresponding vibration frequencies

ci/2u
2a—|b|/4)—ct/2u
b |r
a—|b|/4—ci/2p
0y =2[—r +A+(2a +b,)pi—c2ho] ((001) motion) .

wr=4r |1+ ((110) motion) ,

({110) motion) , (18)

2
wr=

These three frequencies w;, wy, and wz, have a
straightforward lattice vibration correspondence. By
looking at the eigenvector in Eq. (18) we identify w; as a
longitudinal in-plane ‘“‘amplitude” mode, and wy as a
transverse (or more correctly, shear horizontal) “phase”
mode. The amplitude mode frequency is directly propor-
tional to the unstable frequency w?= —2r/M, and has to
do with the overall stability of the c(2X2) distortion
against modulation of the amplitude p,. The phase mode
wr, on the other hand, is connected with the relative sta-
bility of the (11) distortion relative to the (10). Its fre-
quency therefore vanishes, together with the LGH param-
eter b, at the dividing line, shown in Sec. IV (Fig. 7), be-
tween (11) and (10). The overall effect of surface relax-
ation is to improve stability, and to push both w; and wy
up, corresponding to the larger distortion Eq. (16), and to
some extra energy gain.

Finally, the vertical vibration frequency w; represents
simply the translation to the ¢(2X2) surface of the M,
mode of the ideal surface, upshifted by the M distortion,
through the anharmonic coupling a and b, and downshift-
ed by the outwards relaxation, through c,.

Given the microscopic Hamiltonian and parameters
(a;=—0.75 eV/A?, B,=—0.94 eV/A? y,=3.76 eV/A?,
8,=225.67 eV/A?) given in Sec. IV, we can and have, by
identifying the results of the two approaches, determined
the values of the 7=0 LGH parameters of W(001). They
are given in Table II.
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TABLE II. Numerical values of the LGH parameters for
W(001)c(2x2) at T=0 given in Eq. (13).

r, s a . A Ao . b s
(eV/A%) ev/A% eV/A% (ev/A% ev/A%
1.20 16.1 2.44 8.9 —10.6
blo4 clo} Czo} ’u'oz
eV/A%) €eV/A%) eV/A%) eV/A%)
—7.3 5.5 16.5 4.05

VII. SURFACE PHONONS OF CLEAN W(001)

Starting with our lattice Hamiltonian Eq. (2), with the
effective potential surface parameters and static 7=0 dis-
tortion as in Sec. IV, it is straightforward to generate a
(001) slab with two statically distorted surfaces, and to re-
calculate the full reconstructed surface phonon spectrum,
over the new 2D Brillouin zone.

The c(2x2){11) surface has C,, symmetry, where ob-
viously the (11) and (1,—1) directions—previously
equivalent on the undistorted surface ( C,4,)—are now ine-
quivalent. In particular, this new structure has a glide
plane, which causes modes to stick together in pairs® at
(+,—3)27/a,.

In our calculation we have statically displaced only the
first-layer atoms away from the ideal positions according
to the M eigenvector (purely in-plane) with a distortion
amplitude p,. We have neglected for simplicity the distor-
tion on the second layer. That distortion can be estimated
to be about + of the distortion on the first layer.?” 442
However, the corresponding corrections to the surface en-
ergetics are only of second order, and thus very small.

We present the phonon spectra calculated in this way in
Fig. 9. We note the following.

(i) Besides the normal “bulk continua” there are in this
spectrum several surface modes, and/or strong surface
resonances. Most of them lie within or below the bulk
continua, but there are also modes pushed up above the
bulk continuum.

(ii) There are generally six surface modes of rather
mixed polarization corresponding to two atoms in the unit
surface cell.

(iii) In particular, three modes emerge as strong surface
resonances at g=0. These modes can be identified with
wr,0T,07, of the simple Landau-Ginsburg (LG) picture
in the previous section.

For easy reference, and in order to help understanding
how much the reconstruction distortion has changed the
surface phonon spectra, we present in Fig. 10 also the hy-
pothetical phonon spectra of the undistorted W(001), tak-
en with surface force constants equal to the bulk, namely
(ag,Bs, V505 ) =(3,B,72,6,), but folded into the ¢(2x2)
Brillouin zone. We note that, the truly distorted c¢(2X2)
surface has many more low-frequency surface modes, par-
ticularly modes with an in-plane component. In Fig. 11
we illustrate some of the eigenvectors of these modes.

At high frequencies, where the unreconstructed surface
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FIG. 9. Phonon spectrum of the W(001)c(2x2)(11) reconstructed surface calculated with the parameters of the point P
(ag=—0.75 eV/z&z, Bs=—0.94 eV/&Z, vs=3.76 eV//&Z, 5, =225.67 eV/A%) and 15 layers. Modes which have a squared first-layer
component of the (normalized) eigenvector >30% are marked according to their main polarization ( P=planar, Z=vertical). At the
I" point the polarizations of modes labeled L (longitudinal) and Z (vertical) is in reality of mixed character. L or Z simply indicates
the main component. The T mode is instead strictly shear horizontal. These three modes L, Z, and T correspond to the three fre-
quencies wy, ©t, and wz (see text).
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FIG. 10. Phonon spectrum of the ideal surface (with bulk force constants) folded into the BZ of the reconstructed surface. Modes
with a squared first-layer component > 30% are marked. Here at the -point longitudinal and vertical modes have different symme-
try. This figure serves to demonstrate, when compared with the true phonon spectrum of Fig. 9, how large and important are the
changes brought about by reconstruction.
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FIG. 11. Square distortion amplitude of the surface mode
eigenvector as a function of the depth (surface /=1) for the five
modes with surface character at the I" point.

has no special modes we find two split-off modes on the
reconstructed surface labeled as L; and L,. They can
generally be attributed to an effect of strain exerted on the
second layer by the first-layer distortion. This is con-
firmed by looking at the eigenvectors of these high-lying
modes (represented in Fig. 11) which are indeed large on
the second layer.

From the surface phonon spectrum of Fig. 9 we also ex-
tract a crude value for the phase coherence length in the
form £PP*° 27 /8q, with 8¢ =27ws/s. Here, oy is the
phase mode frequency (here 4.7 meV), and s describes its
dispersion along =, taken as (w7 +s¢?)'/% This yields
£PPase__ 12 A, compatible with experiments.’>*>?” The re-
sults established in the present chapter constitute a precise
theoretical prediction for the low-temperature surface vi-
brations of clean reconstructed W(001). As of this date,
there is very little experimental evidence to be used for
comparison. Inelastic electron scattering experiments
have been reported,65 which however lack of resolution at
low-energy loss, @ <20 meV, where most of our calculat-
ed features lie. One peak has been reported at 36 meV,
which could be tentatively identified with our mode L.
Its eigenvector is about 50% in-plane longitudinal (the
two surface atoms out of phase) and 50% vertical (the two
surface atoms moving in phase). The amplitude is about
twice as much in the second layer than in the first. All
atoms in the first layer move vertically bodily together,
and so do all atoms on the second layer. However, the
two layers are 180° out of phase; i.e., they vibrate one
against the other. Further work on the expected tempera-
ture dependence of this and other modes is in progress.

VIII. DISCUSSION AND CONCLUSIONS

We have presented in this paper a theory of the recon-
structed W(001)c(2X2) clean surface. The theory is

based on a phenomenological effective lattice Hamiltoni-
an, characterized by an adjustable surface interatomic po-
tential specified by four parameters a;,f;,7;,0;. We have
shown how in this theory the unreconstructed surface be-
comes unstable, and how to describe the new stable recon-
structed surface, in a quantitative way at T=0. Known
experimental quantities, such as the distortion magnitude
and the coherence length help us to choose the adjustable
parameters, although they do not really specify them
uniquely. Nevertheless, the most important findings do
not depend critically upon fine details of the parametriza-
tion chosen. Thus, for example, we expect quite generally
that the reconstruction should involve an energy of some
30 meV per surface atom, and that the reconstructed sur-
face should be about 2% outwards relaxed with respect to
the (unstable) unreconstructed surface.

While our statements are valid at T=0, they should not
be taken to imply that at the reconstruction phase transi-
tion of W(001) (which occurs near room temperature)
there should be a 2% inwards relaxation, or an energy in-
crease of 30 meV. One might rather expect, based also on
our phonon results to be discussed in a moment, that at
T. the phase of the order parameter is lost, rather than
the amplitude. In that case, a short-range distortion
would be present also above T,, except that long-range
coherence would be lost. If that were the situation, then
the surface relaxation and the energy gain just discussed
would be only marginally affected at T,. In contrast to
this, an energy gain upon reconstruction of only 10
meV/surface atom or less would seem reconcilable with a
T. of 200—300 K only if the distortion magnitude be-
come negligible above T,.

Coming back to T=0, we have then calculated the
surface phonon spectrum of the reconstructed
W(001)c(2x2){11) surface. Our results show that the
reconstructed surface exhibits a wealth of new specific
surface vibrations, which should be readily observable
with current experimental techniques (particularly He and
inelastic electron scattering). In particular, one mode at
36 meV reported in the literature® may be connected with
our mode L.

As an additional useful tool, we have discussed
Landau-Ginzburg Hamiltonians for the surface recon-
struction of W(001) [and of the closely related Mo(001)].
These Hamiltonians help to establish a simple approxi-
mate connection between the surface static distortion and
its dynamics (i.e., g=0 surface phonons) which in princi-
ple goes beyond our lattice Hamiltonian model. Future
measurements of surface vibrations of this and other sur-
faces may thereby be directly related to the T=0 surface
energetics through such Hamiltonians. The LGH for in-
commensurate reconstructions such as that of Mo(001) or
of W(001):H, is presented and intriguing possibilities con-
nected with it are pointed out.

Before closing, we wish to speculate again briefly on the
implications of our 7T=O0 results on the surface phase
transition, as well as on the possible temperature behavior
of surface phonons.

As the energetics of Sec. IV and the LGH Eq. (15) of
Sec. VI shows, it is really energetically very costly to try
to change the reconstruction amplitude p,, but it is instead
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very easy to change its phase, e.g., from (11) to (10).
This implies that with temperature a strong anharmonic
shift (and broadening) could build up, affecting mostly the
shear horizontal ot mode. We are thus led to speculate
that, to some extent, this phonon could exhibit some
softening, at least well below 7, (where quasiharmonic
behavior may still hold). We have calculated tentatively
the change of wt upon decreasing very slightly the distor-
tion amplitude from its equilibrium value (all of this at
T=0, however). We find that decreasing p, from
0.22—0.19 A is sufficient to drop wt from 5 meV to zero.
It may be expected that the effect of temperature could re-
sult in a softening (as well as a broadening) of wr, at least
at low 7. The amplitude mode w;, which is connected
with the reconstruction magnitude is not expected to
soften initially quite as much as wy. However, it should
then soften quite dramatically near the transition tem-
perature, because it must coincide with ot at high tem-
peratures where the surface recovers the full C,, symme-
try. In this case wy,wt become degenerate partners of ws.
We hope to return to these questions in the near future.
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APPENDIX A: INSTABILITIES OF THE
IDEAL SURFACE

By continuously varying the harmonic SFC ag,f, and
looking for surface instabilities (w? <0) we can construct

the stability diagram of Fig. 3. Regions of «,, B, where all
modes are real correspond to a stable undistorted (1X1)
surface. The point a;=a;, B,=/3, obviously belong in
this region. The corresponding phonon spectrum is
shown in Fig. 12. When, however, a,,B, are drastically
changed from their bulk values, one or more surface pho-
non frequencies may go imaginary. Then, as explained in
Sec. IIT we expect a reconstruction, obtained by “freezing
in” a distortion proportional to the eigenvector of the
fastest growing mode. Within this harmonic scheme, we
obtain, besides the region of ideal surface stability, five
separate regions of instability. Each of them is labeled in
Fig. 3 by the type of its soft mode. Three of these five
types of instability occur at the high-symmetry points
M =(1/2,1/2)27w/ay or L =(1/2,0)2m/a,. They give
rise to three types of commensurate reconstructions,
namely M,,Ms,L,. Typical unstable surface phonon
spectra for each of these regions are those of Figs. 13, 14,
and 15. The two remaining instabilities 7, and I, occur
in the neighborhood of either M or L. They give rise to
incommensurate reconstructions discussed further below
in Appendix B. In Fig. 3 we conventionally draw lines be-
tween the stable region and the others at the point where
the corresponding phonon frequency vanishes wé, 2=0. It
is more difficult to trace dividing lines between the unsta-
ble regions. Often, in fact, more than one phonon fre-
quency is imaginary and it is not clear which reconstruc-
tion prevails. In that case, the actual reconstruction de-
pends in principle also on the anharmonic forces that act
to limit the growth of each possible reconstruction. These
anharmonic forces are generally not the same for two dif-
ferent surface phonons. Nevertheless, we have decided for
simplicity to stick to the harmonic picture and simply as-
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FIG. 12. Phonon spectrum of the ideal 11 surface with a; =a,, B;=f,. The symmetry labels mean 1=even, 2=o0dd along sym-

metry lines, and correspond to labels of C,, at I', L, and M [notation of Koster, Dimmock, Wheeler, and Statz (Ref. 68)].
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sume that the phonon with lowest »? will prevail. to a c(2X2) unit cell.

The M, surface phonon involves displacements normal The M5 surface mode is twofold degenerate with u
to the surface, i.e., with u along (001). The eigenvector  along (110) or (110), leading to a c(2X2) unit cell.
is similar to that of M5 given in Eq. (7), except for Z re-  The clean surface reconstruction (Debe-King model) cor-
placing (X+9). The corresponding reconstruction con-  responds to a frozen-in mode as given by Eq. (7). Only

sists of a raising and lowering of alternate chains, leading one of the two components of the displacement is dif-
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FIG. 14. Phonon spectrum of the ideal surface with a;=—0.75 eV/f&z, Bs=—094¢eV/ A’ corresponding to the point P inside the
M region.
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ferent from zero, giving rise to two possible domains
oriented along (110) and (110). We call this a
c(2x2){11) reconstruction. However, depending on
anharmonic terms (see also Sec. V), a different situation
can occur where both (110) and (110) components of
the displacement are different from zero and equal in
magnitude. Then we have a different reconstruction,
which we call ¢(2Xx2){10). This too has two possible
types of domains with displacements along either (100)
or {010). A c(2x2){10) reconstruction seems to take
place when a small amount of hydrogen is deposited on
W(001).4%3!

Finally, we discuss the L, reconstruction. There are
two degenerate inequivalent L points, namely
(172,027 /ay and (0,1/2)2m/ay. The corresponding L,
eigenvectors point along (100) and (010), respectively.
Condensation of one of them alone leads to a (2x1)
reconstruction. Simultaneous condensation of both, on
the other hand, produces a (2X2) phase. Again, the
anharmonic terms decide between the two possibilities.
Neither of these reconstructions has ever been reported on
this type of surfaces.

APPENDIX B: INCOMMENSURATE SURFACE
PHASES I1 AND 12

For special ranges of the surface force constants a; and
B; falling at borderline values between those yielding an
M instability and either an M, (for the case of I,) or an
L, (for the case of I,) instability, the phase diagram of
Fig. 3 in Sec. III indicates the tendency toward the incom-
mensurate phases I, and I,. As discussed, in this Appen-

dix, we describe (a) how this indication is obtained, (b) the
physical mechanism underlying this tendency to incom-
mensurability, and (c) the type of distortion to be eventu-
ally expected in such a phase, at least at T=0.

A. Commensurate and incommensurate instability

For a start, let us consider on Figs. 12, 13, 14, and 15
the slab phonon spectra characteristic of an ideal (i.e., un-
reconstructed) W(001) surface which is either stable (when
a,,f3; take the unperturbed bulk values) or exhibits M,
Ms, or L, commensurate instabilities, respectively. At
these commensurate instabilities the fastest growing mode
is a zone boundary mode, indicating a tendency to form
various commensurate reconstructions, such as c¢(2X2),
or (2X2) or (2 1), as discussed in Appendix A.

However, it is also possible to find an instability at a k
vector qqo slightly away from the zone boundary. Of
course, when this happens, the fastest growing mode is in-
commensurate with the ideal surface lattice. The way in
which this occurs in region I, and I, is shown in Figs. 16
and 17, respectively. In both spectra the fastest growing
mode, indicated by an arrow, occurs not at M but some
deviation 8q away. Quantitatively, the imaginary phonon
frequency at the incommensurate point is only marginal-
ly, often imperceptibly, better than at the M point. This
fact indicates that, within the limits of a linear analysis,
the energetic extra benefit to be expected from driving the
reconstruction incommensurate does exist, but will never
be very large. We will come back to an important conse-
quence of this marginality. The deviation 8q (the inverse
of a wavelength which corresponds to the “beat” between
the best reconstruction wavelength 27/ |qy +6q| and
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The arrows denote fastest growing modes for the resulting incommensurate phase.

the commensurate M-point wavelength 27/|qy, |
behaves quite differently in I, and I,. On crossing the
region I, e.g., by moving on the phase diagram of Fig. 3,
the deviation 8q starts from zero at the boundary M-I,
grows to rather small values (8qum.x/qa <10%) and re-
turns to zero again at the boundary I;-M,. On the other
hand, as one crosses the region I,, the deviation |&q |
starts from zero at the boundary Ms-I,, grows rapidly,

and settles to |8q | =7/ap=|qa —q; | at the boundary
I,-L,.

B. Physical mechanism

The mechanism leading to incommensurability of the
displacively distorted surfaces can be given several levels
of description. Furthermore, it is different for the two
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FIG. 17. Phonon spectrum of the ideal surface with «;

—0.23 eV/;\Z, Bs=—1.05 eV/A” inside the I, region.
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phases I, and I,. We begin with I, which is both more
interesting physically, and more important since it has im-
mediate realizations, such as the clean reconstruction of
Mo(001). A first level of description is in terms of cou-
pling between soft phonon modes of different symmetry.
Incommensurability of type I, arises when the two dif-
ferent soft modes—the planar M5 mode and the vertical
M, mode—are both unstable and very close in (imagi-
nary) frequency. If they could mix, one of the two mixed
modes would end up being lowest. Symmetry, of course,
prevents mixing at the M point. However, mixing be-
comes allowed away from the M point, where the symme-
try is lowered. For 8q along either {11) or (10), the
M |-compatible mode and one member of the twofold de-
generate Ms-compatible modes have same symmetry. As
the M, and M frequencies cross each other this leads to
a range where the lowest mode is incommensurate as on
Fig. 18. Schematically, the corresponding dynamical ma-
trix can be written as

oi+J,]8q? is | 8q|

s (B1)
ws+Js|8q >

PO={ —is|sq|
where J; and Js phenomenologically describe the two
dispersions, and s their coupling. The coupling is pure
imaginary, so that the M, and M5 components of the
mixed mode are in quadrature, rather than in phase.

At the next level, we can go back to the diagram of Fig.
3 and select in it a point in the M5 region, and consider
that by merely decreasing a; one can enter the I; incom-
mensurate region, to end up in the M region. A decrease
of a, amounts to an increasing repulsion between first
surface-neighbor atoms. A look at the diagram of Fig. 6
makes it clear why one should go from M to M,, in
terms of purely fop layer atom-atom distances. The neces-
sity of an intermediate incommensurate phase, however,
cannot be understood without including the second atomic
layer. It is easy to check, for example by using the effec-
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FIG. 18. Sketch of the mechanism leading to incommensura-
bility in the I, region. The modes M| and M are orthogonal at
the M point, but interact away from the M point, both along the
3 and the A lines. The doublet of interacting =, and A; modes
gives rise to minima away from the M point when the M, and
M frequencies cross. From Ref. 28.

tive mass method of Fasolino, Santoro, and Tosatti** that
the is | 8q| coupling term leading to incommensurability
is entirely due to second-layer coupling. Incommensura-
bility, here as elsewhere, comes about as a sort of
compromise between competing forces, pushing for dif-
ferent structures. Here, the top-layer forces would sud-
denly like to switch, as a; decreases, from M, planar, to
M,, vertical, distortions. However, planar distortions
bother the second layer a lot less than vertical distortions.
These have the undesirable feature of causing a clash of
atom cores between the two layers, which causes a com-
petition to occur.

Perhaps the ultimate level of physical description of the
necessity of I; incommensurability on a bcc (001) surface
can be reached by abandoning sinusoidal phononlike dis-
tortions and going straight over to sharp boundaries, as
done for the case of ferroelectrics by Heine and McCon-
nell.% Suppose we consider an M distortion, with an an-
tiphase boundary, as in Fig. 19. Then, it is immediate to
see that the first-layer atoms at the boundary are pushed
by the concurrent motion of the second layer, alternatively
up, or down. This illustrates how, generally allowing a
phase slip of an M distortion, a local M parasite distor-
tion naturally creeps in. As in Heine and McConnell
case,% steric hindrance arguments are fully sufficient to
understand this coupling. This completes our discussion
of the physical motivations for the existence of the I,
phase.

We have much less to say about I,. The difference be-
tween Figs. 16 and 17 makes it very clear that the incom-
mensurate I, phase arises in a rather different way from
I,. If we restrict ourselves to the lowest three surface
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FIG. 19. Aspect of the surface with an M distortion and an
antiphase boundary. Open circles denote first-layer atoms,
small dots second-layer atoms.
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phonons, there appears no clear reason for incommensura-
bility. The very shallow incommensurate minimum ap-
parently arises via coupling through bulk modes and reso-
nances. Unlike the case of I;, straight consideration of
the first two layers, and of steric hindrance between them,
does not suffice to explain incommensurability. We leave
here the issue at this point; it is clear that the higher level
of practical complication called for to understand I, can
be handled along similar lines as I, should it be desirable
in the future.

C. Incommensurate distortion

We finally come, before closing this Appendix, to a
brief discussion of the type of T'=0 distortion to be ex-
pected of surface displacive incommensurate phases, such
as I and I,. Quite generally, this distortion will be such

as to minimize a suitable energy functional, such as Egs.
(9)—(15), or one of those discussed by Bak,® if a single-
phase approximation is good enough. Like that case, the
minimum to be expected is of soliton-lattice type, i.e., an
array of domains of approximately commensurate areas,
separated by solitons, or walls or boundaries, roughly like
that of Fig. 19. These walls, in general have a finite
width, rather than an abrupt nature, as in that figure.
The actual width of the wall relative to the domain size is
a quantity which depends critically upon the system pa-
rameters. In our case, we can argue that the width of
domain walls should be substantially smaller than the
domain size. It was pointed out earlier that the energy
difference can only naturally be accommodated with a
sharp soliton lattice, where the “misfit” region is very lo-
calized, and essentially all the incommensurate surface is
identical with the commensurate case.
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