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Two-dimensional disordered conductors show a resistance anomaly at low temperatures. In addi-
tion to weak localization there is also a contribution due to the Coulomb interaction which was
discovered by Altshuler et al. In this paper the Hartree contribution is translated into transparent
physics. The underlying physics is rather interesting and has some similarity with optical hologra-
phy. If one considers the propagation of an electron on a closed loop (after many scattering events)
then it interferes with itself and forms a charge pattern which contains all information about the im-
purities (and corresponds to a hologram). A conduction electron which is scattered by the same im-
purities generally experiences the same phase shifts. However, if it is scattered by the "charge holo-
gram" the dephasing is readjusted, and one obtains a constructive interference.

I. INTRODUCTION

At low temperature the resistance of two-dimensional
disordered electronic systems such as thin films show in-
teresting deviations from the Boltzmann theory, in partic-
ular a logarithmic temperature dependence. These
anomalies are due to electron interference. For normal
metals one distinguishes essentially two contributions:
quantum interference —generally called weak localiza-
tion —and the Coulomb anomaly. The first part was
discovered theoretically by Abrahams et al. ,

' and Gorkov
et a1. Altshuler et aI. interpreted weak localization as
the interference of two partial electron waves propagating
on a closed loop in opposite directions. Independently the
author derived from the corresponding Kubo graph that
a plane wave (not necessarily an electron wave), scattered
by impurities builds up an echo in the backwards direc-
tion and that the application of a magnetic field allows
time-of-flight experiments with the conduction electrons.

The Coulomb anomaly was discovered by Altshuler and
Aronov in three-dimensional disordered conductors and
extended to two dimensions by Altshuler et al. and
Fukuyama. Since then, the effect of the Coulomb in-
teraction in disordered electron systems has been inten-
sively studied and reviewed by several authors. ' Al-
though the evaluation of the Kubo diagrams is straight-
forward within the formalism of the Careen's functions,
and some papers give additional insight into its phys-
ics," it is never discussed in terms of graphical phys-
ics. (By graphical, I mean "physically transparent" corre-
sponding to the Cierman word "anschaulich" which, when
translated into English, means descriptive or graphic. ) In
this paper we want to close the gap between formalism
and physical understanding. Of course, we have to start
with some basic properties of the electrons, i.e., their wave
character, the Pauli principle, and simple results of per-
turbation theory in particular that a potential U causes a
transition between states. For the interpretation of the
physics it is absolutely essential not to oversimplify the

physical picture, but to perform a one-to-one translation
of the diagrams into propagating electron waves. Within
this process many questions arise which are either au-
tomatically solved by the theoretical formalism or are
completely ignored because they lie beyond the formalism.
The so1ution to these questions can be quite demanding
and the physical interpretation which is presented here re-
quires more space and discussion than the original
theoretical evaluation. Therefore one might ask whether
it is worth the effort. I would like to meet this challenge
with the following arguments: (i) It is always desirable to
understand the underlying physics of what one is doing.
An interesting point is that one discovers behind the dia-
grams rather stimulating physics which gives considerable
insight into the dynamics of the processes which is gen-
erally completely hidden in the diagrams. (ii) Because of
the new insight into the problem one may be capable of
making new predictions. (iii) One may transfer the phys-
ics from one field to another when one understands the
inner connections.

As an example of the third point I would like to refer to
the interpretation of weak localization as an echo of a
plane wave scattered by impurities. As a consequence the
scattering of laser light by random scatterers has been in-
vestigated during the last year' ' showing this echo in
the backwards direction and promising to become a new
field of research. I expect that the physical interpretation
of the Hartree diagram describes nonlinear optical effects
in disordered optical media.

FIG. 1. Kubo diagrams which yield the conductance correc-
tion for the Hartree term in the presence of the Coulomb in-
teraction.
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FIG. 2. The Hartree diagrams of self-energy.

II. DIFFUSION IN REAL SPACE

The propagation of electrons in real space along trajec-
tories is in many ways particularly graphical, although

Concerning insight into the physical problem the fol-
1owing description shows that the Coulomb anomaly cor-
responds to an interference experiment and that the in-
elastic lifetime should destroy this interference and there-
fore the anomaly. In the past it was thought that the in-
elastic lifetime of the conduction electrons had no effect
on the Coulomb anomaly. Only recently has its destruc-
tive effect been recognized and calculated. '

The diagrams in Fig. 1 describe the Hartree correction
to the conductance. In Sec. IV we will discuss its physical
meaning. For its physical understanding it is quite help-
ful to consider first the so-called self-energy of a conduc-
tion electron, i.e., the effect the Coulomb interaction has
on the frequency and damping of a conduction electron.
The corresponding diagrams are shown in Fig. 2. The
physics behind the different diagrams is quite similar al-
though they partially compensate each other. We will dis-
cuss only the first one. Essentially we have to unfold this
diagram and for our understanding the description in real
time is most helpful. Such a diagram contains the recipe
for the electron propagation and the information about
the development of the electron phase. This will be con-
sidered later in detail.

The propagation of electrons may be evaluated in k
space as well as in r space. Both pictures give (different)
physical insight into the problem. In Sec. II we discuss
electron propagation in real space and in Sec. III in
momentum space. In real space it turns out that we have
to consider the motion of an electron on a closed loop. By
interference with the original (self-reconstructing) wave
function it builds up a charge pattern. At finite tempera-
ture such a charge pattern is only possible if the thermal
coherence length /r ——A'Uzl(2mk~ T) is larger than the dif-
fusion path on the closed loop. This brings the tempera-
ture into play. The propagation in real space yields an
understanding of the influence of a magnetic field and the
role of inelastic scattering processes. Finally in Sec. IV
we consider the influence on the conductance.

In this article we concentrate on the Hartree term
which is shown in Fig. 1. The Fock term has a similar
meaning because it follows the same physics. On the oth-
er hand it has an additional inner dynamics because the
effective interaction depends on the energy difference of
the two electrons involved.

Xei fk
f

fr —r'f —Ir —r'f21e (2.1)

Its density decays exponentially after the mean free path I
and reduces inverse proportionally to 1/r" ', i.e., the sur-
face of the d-dimensional sphere. The phase is modulated
according to the wave vector k. For a single electron state
P"(r) the source has an infinite coherence time. In an
electron system at finite temperature the electron source
has a coherence time rT ——A'l(2mk&T) because of the su-
perposition of different frequencies in the range of
mk~T/R at the Fermi frequency. In an electron system
with impurities one is generally interested in a mean free
path I which is much smaller than the thermal coherence
length.

Let us consider an electron source at the position C in
the lower part of Fig. 3. We follow the trajectory along
the closed loop C~1 "~2"~ ~9"~10"~C. The
electron wave returns to C with amplitude A. The fre-
quency of the electron source may be the Fermi frequency
ez. On the closed loop the electron wave experiences a
phase shift 6 which is included in the amplitude A. If L
is the total length of the closed loop (L =Uzt, where t is
the diffusion time) then the main phase shift between the
source and the returning amplitude 3 is given by Lki;.
The scattering by the impurities causes additional phase
shifts. Electrons which differ in their frequency by e"
from the Fermi frequency experience an additional phase
shift e"t along the closed loop. The interference between
the electron source and the returning wave modifies the
(homogeneous) local electron charge by a factor

there is some complex physics behind it. To offer a
description of sufficient accuracy a rather extended dis-
cussion is required. In this section we would prefer to ex-
tract the important physics of the Hartree diagram. Let
us consider a free-electron gas in a (large) box with all
states up to the Fermi frequency occupied. If we are far
from the surface of the box, and if there are no impurities
present, then the density of the electron gas is constant.
The electronic wave function can be given in any basis:
plane waves, spherical waves, etc. A single impurity pro-
duces the scattering of the electron waves and introduces
interference. A free-electron wave which propagates from
point C towards the impurity is scattered by the impurity,
and the scattered wave interferes with the original wave at
position C and modulates the charge density. This yields
the Friedel oscillations (after summation over all occupied
electron states ). This concept can be directly generalized
to many impurities.

In the following we use Huygens principle for the elec-
tronic wave function. We start with the assumption that
the electron wave functions in the space between the im-
purities are free-electron wave functions g". Then, ac-
cording to Huygens principle, every point r' acts as a con-
tinuous source of an electron wave which propagates radi-
ally in all directions. In the presence of impurities the
amplitude is damped since every impurity generates a new
spherical wave (we assume s scattering in the following
consideration). In d =2 or 3 dimensions this damped
spherical electron wave has an amplitude at the position r

G(r', r)

ccrc"(r')I

I

r —r'
I

'
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where No [ = m/(vrfi ) in two dimensions) is the density
of states (Novi is the density of frequencies), er is the
characteristic frequency for the temperature T, and ~z the
corresponding time

ep ——1/wp ——2mkg T/A . (2.3)

The Matsubara frequencies are defined as

eI ——(1+1/2)er . (2.4)

The sum at the right side of (2.2) is evaluated in Eq. (3.8)
below. For short times it can be replaced by an integral
and yields

p(C)=iA*NoA/t for r &~r . (2.2')

FIG. 3. The scattering sequence of an electron (") (lower
part) which propagates on a closed loop from
C~ 1"~2"~ . . ~C. At C it interferes with itself and
forms a charge hologram by which another electron (') can be
scattered due to the Coulomb interaction. The upper part shows
the interference of the electron (') going from 0 to R. From 0
it propagates on one hand directly to R and on the other hand it
propagates along the closed loop where it is Coulomb scattered
by the charge hologram at C. At R both partial waves interfere
coherently because (i) the electron wave has a coherence length
of UFA/(2~k~T) and (ii) the scattering by the charge hologram
readjusts all the phase shifts by the impurities. This propaga-
tion is a direct translation of the (left) diagram in Fig. 2.

p(C)=A*Novi f de"f(e")exp( ie"t)—
=iez A*Novi g exp( e~t), —

I()0)
(2.2)

[I+Aexp(+e"t)+A "exp( i@"t)] . —

The same phase shift is obtained for all points C which lie
on an ellipsoid around the points 1" and 10". Therefore
the maxima and minima of the charge pattern lie on such
ellipsoids. This charge pattern carries the information
about the phase changes of the electron wave on the
closed loop. It is an electron hologram. (Any impurity
averaging eliminates this charge pattern mathematically. )

The amplitude of the charge pattern can be estimated.
In a two-dimensional system (of unit area) the amplitude
of the wave function P"(r) at the position C is one. We
concentrate on the charge pattern A'exp( i e "t) resulting—
from the interference after encircling the closed loop. All
occupied states 1/i"(r) contribute to the charge pattern ac-
cording to the thermal occupation number f(e") The.
summation over all occupied states yields for the charge
density

This means that the magnitude of the charge pattern is in-
versely proportional to the length of the closed loop. For
t & ~z- the charge pattern reduces proportionally to
exp( Ert/2)—, which describes the fact that at finite tem-
perature the electron wave packets have a coherence time
of ~z-. For simplicity we replace the time dependence by a
1/t law with a cutoff at ~, =1/ez-. Therefore one obtains
the important result that the charge pattern is tempera-
ture dependent. The point C can lie between any two
neighboring impurities on the closed loop. The resulting
charge pattern is a generalization of the Friedel oscilla-
tions. Of course, this is not the only contribution to the
inhomogeneous charge density. Every other closed loop
yields its own pattern which characterizes the phase shift
on this loop. We will see below that we have to consider
each loop and its hologram individually.

In the next step we consider the propagation of a probe
electron () from the position point 0 (at the origin) to R
as is shown in the upper part of Fig. 3. Its amplitude de-
cays as given by Eq. (2.1). On the other hand the electron
wave may also propagate on the same closed loop from 0
to point R. The electron propagates from point 0 via
1'~2'~3' to point C. Here it is scattered by the charge
distribution p(C) of the other electrons which we dis-
cussed above and continues its closed loop via 4'. . . to R,
where it interferes with its original wave function. For
simplicity we assume that the distance 0-1' and 10'-1' are
the same as are the distances 0-R and 10'-R. Therefore
the amplitudes at point R for the Coulomb scattered wave
(along the closed loop) and for the direct path differ only
by the propagator along the closed loop. Along the closed
loop the probe electron experiences the same phase shift
as if it had started at position C, propagated on the same
closed loop to C, and performed the Coulomb scattering
at C. The amplitude after the propagation along the
closed loop from C to C is the same as for the electron
("), i.e., Ae"'. The Coulomb potential for unscreened
charges is eU(r) = fep(r')/

~

r —r'
~

dr'. (We work here
in three dimensions because thin metal films are always
three dimensional with respect to the screening length. )

In momentum space this corresponds to the Coulomb po-
tential 4~e /q . In the case of Thomas-Fermi screening
the potential is

4~e /(~, + q ) = ( I /N )1/o[1+ (q /~, ) ]

and for very strong screening it is just 1/Xo
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l ( U )1 0/fi = —(i /fi)r~( r)F/N0 =Fr0A ' /t (2.5)

(K =4vre N0 ). In this case one obtains a 6 function in
real space, and the Coulomb potential is essentially
p(r)/N0. For finite screening the potential averages the
charge distribution in real space over a finite distance of
about 1/K, . Since the charge pattern changes over a dis-
tance of half the Fermi wave length, its contributions can-
cel partially, and a less screened potential yields a smaller
Coulomb effect. This imperfect screening is expressed by
a screening factor F which means that the effective
Coulomb potential in real space is about Fp(r)/N0.

The Coulomb scattering lasts for r0 (because the elec-
tron wave experiences impurity scattering) and contributes
to the final amplitude of the returning electron wave (')
with the factor

is the distance between 0 and R, although I do not want
to stress this point.

The effect of the hologram scattering on the electron
wave which passes through the closed loop is a partial
coherent repair of the electron wave function propagating
from 0 to R. The "direct" propagator fades with increas-
ing distance from 0 because of the impurities which
scatter this wave and cause an overall decay as
exp( r /2—1). The partial waves scattered by the hologram
replace this loss of "coherent" amplitude partially and
reduce the decay or increase the effective decaying length
to 21I I+[F/(2rrkFl)]ln(rr/r0) I. The relative difference
between this and the old amplitude as a function of the
distance r between 0 and R is (r /21)(F /2m kFl)l n( rT/r0).
The effect of the hologram scattering is just that the met-
al appears to have a larger mean free path

Since the Coulomb scattering can take place between
every two scattering processes we obtain another factor of
n =t/7 p and the Coulomb scattering yields a total factor
of FA*. The total amplitude of the returning electron
wave (') on the closed loop including one Coulomb
scattering is just F

~

A
~

as long as the diffusion time is
less than ~T. For times larger than ~T there is an ex-
ponential cutoff.

The value of
~

A
~

depends on the impurity distribu-
tion. However, if we sum over all loops and average over
all impurity distributions, then we expect the probability
for back scattering on a closed loop to be described by the
diffusion probability. In two dimensions the total proba-
bility to return to the origin is X

~

A
~

~ 1/(Dt), where X
represents the sum over all closed loops.

The relative "amplitude" of the Coulomb scattered elec-
tron wave at the point R for times t &~T is proportional
to F/(Dt). In other words, besides the direct electron
wave amplitude (for propagation from 0 to R) we also
find a coherent amplitude at the position R which comes
from the partial waves which started before the time t and
propagated along all possible closed loops and reached fi-
nally the point R. Since all partial waves which started in
the time interval —~T & t' &0 contribute coherently at the
time t =0, their amplitudes add up to (F/D70)ln(70/7 T ).

Now we consider the four points 0, R, 1', and 10' more
closely. The phase shift between the direct and the
closed-loop partial waves is zero when the distances fulfill
the following condition: distance (0-1')+(10'-1') is equal
to (0-R)+(10'-R). Only those constellations contribute to
the amplitude at R. For a given position of 0, R, and 10'
the impurity 1' may lie on a hyperbola which goes
through R and has its poles at 0 and 10'. Generally an
area of length I and width 1/kF contributes to the ampli-
tude yielding a contribution proportional to

(I/kF)(F/Dr0)ln(r0/rT) ~ [F/( F7E)]10(AT/r0) .

If the distance between 0 and R is small compared with l
then the contribution is smaller because it reduces the
most probable distance either between 0-1' or R-10'. It
shows the tendency for an effective area of r /kF where r

1' =1[ 1+[F/(2vrkF l )]ln(rT /7 0) I

III. COULOMB SCATTERING
IN MOMENTUM SPACE

A. Closed-loop scattering of a probe electron

2= 2 1/2~o
I
ai,

I

'=
nklV0 (e' —ek, ) +(I/2&0)

(3.2a)

where Np/2 is the density of states per spin. This means
that the eigenstate is roughly smeared over Z wave num-
bers

~

k'), where

Z =No~/wp (3.2b)

On the other hand, we may concentrate on the plane-wave
component

~

k' ) . We denote its amplitude by a ' =a 'k .
It will be scattered after the time ~p, for example, into the
state

~

k
~ ). The number of possible scattering states is Z.

There is, of course, also a scattering into the plane-wave
component

~

k') from all other components and their
scattering amplitudes add up and yield the amplitude a'
[with the phase shift exp( i 1 e)]. 0T—his scattering into
the

~

k') component can be expressed as a continuous
source of momentum

~

k').
The scattering sequence of

~

k') may continue via
k p k 3 ~, k,' ~ The electron is not only scattered by the
impurities, it also is affected by the inhomogeneous
charge distribution of the other electrons. If we consider

We consider a probe electron in an eigenstate P' of the
disordered electron system. This eigenstate can be ex-
pressed in terms of plane waves,

(3.1a)
k'

The wave function is, of course, stationary, and oscillates
with the frequency e'.

The occupation of the
~

k') component is, according to
Thouless, ' given by
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for example the electron (") in the state P" in the Fermi
sea, its wave function may be written as

(3.1b)
k" k"

Such a wave function has an inhomogeneous charge dis-
tribution and contains a charge wave with the wave num-
ber Q. Its amplitude is simply obtained from the density
of tt",

g II

1

p k"

It lt
p&=Z ak"+&a

k"

(3.3)

In the following we will see that we must analyze the
charge waves much more closely, but at the moment we
realize that our electron ('), i.e., its scattered plane wave
component

~
k,' ), is affected by the inhomogeneous

charge wave of any other electron, and there is a finite
chance of being scattered, for example from

~
k,') to

~
k,'+& ) with Q =k,'+, —k,'. The screened Coulomb po-

tential is replaced by its averaged value ( U, ) =F/Np (see
Sec. II). For large screening k, & Q, F is equal to one and
for small screening it approaches zero.

Generally one considers the charge wave p~ as suffi-
ciently small that only one Coulomb scattering must be
taken into account. Therefore we regard only further im-
purity scattering processes following the series

k,'+) ~k,'+2 —+ . - ~k„'~k„'+]——k' .

There is always a finite chance that the scattering state is
the original

~

k'). We assume that this happens after n

impurity scattering events. Therefore the total scattering
sequence is given by

FIG. 4. The propagation of the electrons (") and (') in
momentum space. The lower part shows the scattering series of
(") which generates a charge pattern with momentum Q. The
upper part shows the electron (') which is scattered by the
charge pattern. Both scattering sequences contain almost the
same momenta which differ only by a small q. This assures the
conservation of coherence in the two sequences.

~ . ~k,' - k,'+, ~ . ~k„'~k„'+) ——k' .

(3.4)

This scattering series is shown in the upper part of Fig.
4 and corresponds to an indirect transition from the plane
wave component

~

k') into
~

k'). During this transition
the amplitude and phase are changed.

After the time nrp we have the following situation.
Since f' is an eigenstate all sequences of impurity scatter-
ing of all components

~

k') of g' reproduce the eigenfunc-
tion and therefore also its

~

k') component. But the
phase has been oscillating and is shifted by e'(nap)—
[Although the actual scattering series takes (n +1) times
'To we generally replace it by n ~o because this difference
does not matter. ] Therefore one finds an additional phase
factor exp[+i@'(n'Tp)] between the amplitude of the

~

k')
components of the original state P' and the Coulomb sa-
tellite. On the other hand, we find an additional ampli-
tude in (each) component

~

k') from the scattering series
(3.4). Since it contains the Coulomb scattering it is not in-
cluded in the single-particle eigenstate.

The amplitude of the satellite in the final plane wave
state

~

k') has experienced a number of phase shifts

caused by the Coulomb scattering, the impurity scatter-
ing, and the phase oscillation according to the kinetic en-
ergy. The Coulomb scattering during the time interval ro
introduces a factor of —i (F/Np)pgrp/A. The other
phase shifts are discussed in the Appendix but their expli-
cit knowledge is not required.

Finally, the amplitude of the Coulomb satellite is

—i a'a '(F /Np )p& rp/fl, (3.S)

where a' accumulated the effect of the impurity scattering
and contains the phase shift due to the kinetic energy.
This amplitude interferes with the stationary amplitude of
the

~

k') component of the eigenstate f'. The amplitude
of this Coulomb satellite appears, however, to be rather
chaotic. It contains many impurity matrix elements Vg.
One might expect that this amplitude averages to zero be-
cause the phase shifts 5; due to the impurity scattering
have random values for statistical impurity distributions.
However, the charge wave p~ has a component which ex-
actly compensates these phase shifts.
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B. The coherent charge wave

We introduced in the scattering sequence of the plane
wave component

~

k') the Coulomb scattering by the
charge pattern of the (occupied) state g" of the electron
("). Now we want to select a particular component of this

charge wave. For this purpose we consider in the eigen-
function g" the plane wave component

~

k" )
=

~
k,'+&+q). We denote its coefficient as a"=ak'.

This component will be scattered by the impurities (as be-
fore the component

~

k') of g'). We follow the scattering
sequence,

k"=k,'+, +q~k,'+, +q - - . k„'+, +q=k'+q~k', +q k,'+q . . . ~k, +q (3.6)

This scattering series is shown in the lower part of Fig.
4 and is cyclically exchanged in comparison with the
series (3.4) and its wave numbers are shifted by a small q.

The important properties of this scattering sequence are
as follows:

(i) It contains all the wave numbers of our first scatter-
ing sequence besides a shift of q.

(ii) The order is cyclically changed.
(iii) The impurity matrix elements are the same.

The series due to the impurity scattering corresponds to a
reduction e" of the original amplitude a".

As before, for the eigenfunction g' we now conclude
that the scattered plane wave components reproduce g".
After n scattering processes we recover the plane wave
component

~

k" ) =
~
k,'+ & +q ) with a phase shift of

exp[ —ie"nrp]. On the other hand we see the coefficient
of

~

k,'+q) contains a term which comes originally from
the plane wave component

~
k,'+&+q). It has rather in-

teresting properties. (a) Its magnitude is proportional to
the coefficient of a". (b) Its phase shift accumulates all
the information about the scattering potentials which are
the same as for our probe electron (').

Now we will consider the charge wave which is formed
during the time interval from nrp to ( n +1)rp by the sta-
tionary component

~

k")=
~
k,'+&+q) and that part of

~
k,'+q) which is obtained by the scattering sequence

(3.6). The sum of the two plane wave components is

a"
I exp[i (k,'+ ~ +q)r —i e' n Tp]+a "exp[i(k,'+q)r) ] .

The resulting charge wave density with momentum Q
contains the complex-conjugated amplitude of the scatter-
ing series, (3.6):

p~=ct"*
~

a"
~

exp(iQr ie"nrp), — (3.7)

where Q =k,'+& —k,'. The charge wave with the wave
number Q (and —Q) form an electron hologram by which
the probe electron (') is scattered.

C. Phase readjustment

In Sec. III A we considered a probe electron (') which
experienced the scattering sequence (3.4). This scattering
sequence contains the same impurity matrix elements as
the scattering sequence (3.6) and even the corresponding
electron momenta are almost identical. Since the
Coulomb potential contains the complex conjugate of the
scattering amplitude of (3.6) and since it enters in the am-
plitude of the scattered probe electron as a factor we find

complete cancellation of the impurity phase shifts.
We introduce the electron charge from Eq. (3.7) into

Eq. (3.5) and obtain for the relative amplitude of the
Coulomb satellite with respect to the k' component of the
eigenstate

i (F—/Np)(rp/A')a'cz'"
~

a"
~

X exp[ [ i (e—"—e')](nrp) ]f (e") .

The Fermi factor f(e") arises because the state P" is
thermally occupied.

The two impurity scattering amplitudes a' and a" are
almost identical. They arise from two parallel impurity
scattering series of the electrons (') and ("). (i) The first
corresponds to the scattering of the pair from (k', k'+q)
into ( k,', k,

' +q). (ii) The second corresponds to the
scattering of the pair from ( k,'+ &, k,'+, +q) into
( k', k'+q).

In the Appendix it is demonstrated that for each of the
scattering series the two amplitudes of the electron (') and
(") lose their phase coherence very slowly as exp[ Dq t]—
because they experience the same impurity scattering.
Each scattering series yields the factor

(1/Z)exp( iDq t; ), —
where t; =n;rp is the duration of the (parallel) scattering
series.

For the final evaluation one has to perform a number of
summations and integrations.

(i) A summation over the intermediate states k,' and
k,'+ ~. The summation over k"=k,'+, +q (which is
equivalent to the summation over k,'+ ~) sums all

~

a"
~

=
~

ak'
~

and yields just one. The summation over
k,

'
yields just Z (and averages the Coulomb matrix ele-

ment).
(ii) 3 summation over all occupied states which corre-

spond to an integration over the frequency e" times the Fer
mi function According to .Eq. (3.2a) the two eigenfunc-
tions P' and P" contain only neighboring wave numbers
k' and k'+q when their frequency difference is less then
1/~p. Since e' lies close to ez the frequency of the elec-
tron (") is restricted to the frequency range

~

e"
~

& I/rp.
The sum over the frequency e" is equal to the integral
over the frequency times the factor AN0. The integral
yields

1/ro l
CI dc 'f (e")exp( ie"t)=2'(k+—T/4) g exp( ett), —

1=0

(3.8)
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with the Matsubara frequencies eI ——(2l + I )vrkti T /A.
Since the integration is limited to the frequency range of
1/1 p one restricts the ei summation to

~
et~ &'1/1o oi'

I &I, with

which requires coherence of two electronic wave functions
over a time period of rr.

I, =2~k~ T~p/fi . (3.9) IV. THE CONDUCTANCE CORRECTION

1 lE+~ 2+2 k, T
—p( —, ) (3.11)

From the real part [the first term in Eq. (3.11)], we
realize that the coherent Coulomb scattering increases the
amplitude of the

~

k') component. If we turn off the
source the plane wave component k' decays normally
with the rate a'/27p. Because of the Coulomb interfer-
ence the elastic lifetime increases by a factor

[1+F/(2ire~rp)ln(2irk& T/irt)] .

This means that the decay of the plane wave component
k' (and all other plane wave components) is partially com-
pensated. The Hartree-Coulomb scattering partially re-
stores the plane wave components and gives them a longer
elastic lifetime. As a consequence the effective scattering
is reduced. This corresponds to the result in real space
where the coherently back scattered Coulomb satellite
partially restored the exponentially decaying electron
wave ('), yielding a slower decay with the same factor.
The imaginary part changes the phase of the

~

k') com-
ponent and results in a frequency shift.

The second diagram in Fig. 2 yields just half the contri-
bution of the first one with the opposite sign. According
to this diagram the electron (') experiences two additional
impurity scatterings (in real space by the same impurity
and in momentum space with opposite momentum
transfer) at the beginning and at the end of the scattering
sequence. The evaluation is very similar to the one we
just performed.

The important message of this section (and of Sec. II) is
the physical process which underlies the Hartree diagram.
Although we have not yet included the effect of an exter-
nal electric field we have developed the dynamics of the
electrons as a function of time. Within this picture it is
obvious that the Hartree term is an "interference effect"

(iii) The integration ouer time W. e want to determine
the amplitude of the Coulomb satellite at a given time for
example at the time t =0. Let us take n2 impurity
scatterings after the Coulomb scattering and n& before.
Then we have to sum over n& and n2 or integrate over
dti /ro and dt2/rp from zero to infinity where t =ti + t2.

(iu) The integration ouer d q/(2m. ) . When we perform
the two time integrations then we obtain for the relative
amplitude (with respect to the

~

k') component of P' at
the corresponding time t =0) the following expression:

Frp 2n.ktiT f d2q
(3.10)

Z fi (2m. ) t =o ro(Dq +el —ie )

The integration and summation yield

F 1
In(2m. kti Tap/k).

2meF~p/W 2~p

We want to discuss the contribution of the Hartree dia-
gram only qualitatively. We treated the essential scatter-
ing processes quantitatively for the "self-energy" to root
out the underlying physics. Now there is no point in go-
ing into the quantitative details again because the result-
ing equations and integrals are already known from the
formal theory.

The highest threshold in the graphical understanding of
the conductance is the Kubo formalism itself. The origi-
nal derivation by Kubo' and Greenwood' is rather for-
mal. There are now several review articles and textbooks
available but the physical transparency is still limit-
ed.

We are used to the fact that an electric field E ac-
celerates the conduction electrons and each plane wave
component k changes with time according to

Adk/dt =eE . (4.1)

Of course, the collisions scatter the conduction electrons
to the back side of the Fermi sphere. However, for the
moment we assume that we turn off the impurity scatter-
ing. As a consequence the whole Fermi sphere is shifted
by ii(t),

Sue(t)= f dt'eE(t')= —eA (t) . (4.2)

The Kubo formalism simulates the shift of the Fermi
sphere in a rather sophisticated manner. If aj, is the coef-
ficient of the k component of an electron in the eigenstate
i)'j then the electric field E causes a transition into the k
component of an unoccupied state. With the above defi-
nition of v(t) the transition rate daI, /dt for the amplitude
1s

daq/dt = —l vt, Kaj, . (4.3)

[One important difference to perturbation theory, which
cannot be discussed here in detail, is the fact that dal, /dt
and aI, are not perpendicular to each other, although the
rate has the formal factor —i. As we see below, the occu-
pation of the k component changes linear with time in the
Kubo formalism. The use of integrated variables like v(t)
or A (t) hides this fact, because they introduce the factor
1/( —i tu) for finite frequencies. ]

The transition rate dal, /dt into the plane wave com-
ponent k mixes states with different energy into the state

Later one has to neglect all those contributions which
belong to occupied states.

The Kubo formalism treats generally only finite fre-
quencies F(t) =Fpexp( imt) For finite f—requen. cy co (at
T =0) the transitions occur from occupied states in the
frequency range —co & e & 0 into empty states with
0&v&co. The final amplitude of the "field satellites" is

v~~aI, /cu. If one calculates the change in the total occu-
pation of the plane wave component, the finite frequency
drops out. One obtains



4212 GERD BERGMANN 35

b, nk(t) =
( —co & e„&p)

2
VkK(t)

(ak(n) f'

dnk
VkK(t) )

or

&nk(t) =V/, n/, K(t),

pnk(t) nk —(t)

(4.4)

This means that one may simulate the displacement K(t)
of the whole Fermi sphere by electronic transitions ac-
cording to Eq. (4.3).

In the presence of impurities the plane wave component
k decays with the elastic scattering time ~p. This yields a
stationary satellite amplitude

Aak = i vkK—7Qak
.ev/, E——1Qak l(f.leo) (4.5)

or
pnk(t) =nk —eEz~lr .

(4.6)

We realize that the Kubo formalism yields just the shift
of the Fermi sphere by an electric field in the presence of
impurities as the Boltzmann treatment. However, the use
of the finite frequency co and the final integration over the
frequency range co disturbs the transparency of this treat-
ment on first sight. To clarify this point let us assume
that at the time t =0 we apply a constant electric field E.
We know that this field will shift the Fermi sphere by
eE&p/A roughly after the time 7p. In the framework of
the Kubo formalism this field causes transitions. In the
first instant the transitions range over the whole Fermi
sphere, i.e., the transition amplitudes Aak contain all fre-
quencies. With progressing time the transition amplitudes
Aak change their energy distribution. At the time t ))7p,
the amplitude Aak, for states with 0 & e ~ 1/t, has grown
linear with t while Aak approaches zero for the other
states with e) 1/t. This means, that the amplitude for
small-energy transfer grows with the reduction of high-
energy transitions so the overall change in the occupation
of the plane wave component k remains the same, as does
the resulting shift of the Fermi sphere, i.e., eE~p/A. For a
dc field this means that the final states lie within a very
narrow (5-like) shell at the Fermi frequency. Therefore
the Kubo formalism yields the well-known shift of the
Fermi sphere but in addition it yields inner dynamics by
introducing transitions between occupied and empty
states.

In the presence of impurities one obtains, as we dis-
cussed above, a stationary amplitude Aak ——evkEwpak/
(fKo), because the impurities scatter this plane wave com-
ponent. However, it is this scattered amplitude which
may cause quantum interference after many scattering
events, and we are going to observe its fate as a function
of time.

and corresponds to a shift of the Fermi sphere of eE7p/A
according to the change in occupation nk

Ank(t) =VknkeE7Q/f/

tc

tc tc ta tb tb

ta»

FIG. 5. The time evolution of the propagation of the two
electrons (') and (") in the presence of an electric field pulse at
t =0.

Next we are going to discuss the time development of
the Kubo diagram in Fig. 1 during the conductance pro-
cess. We consider again the plane wave component k' in
the eigenstate i//'. k' will be scattered according to the se-
quence given by Eq. (3.4). In Fig. 5 we have sketched the
time development. The scattering sequence starts at
—t, &0. At the time t =0 the electric field may act (ei-
ther as a pulse or (even better) as a section of a slowly
varying field). As a consequence the amplitude (and occu-
pation) of the plane wave component k is changed
without losing the coherence. This change is positive on
the right side of the Fermi sphere and negative on the left
side (if the electric field points to the right). In the fol-
lowing we trace only this differential partial wave. It per-
forms further impurity scatterings until it experiences the
Coulomb scattering at the time t, by the hologram of the
electron (") which started already at the time t, t, tb. ——
[The electron (") propagates opposite to the direction of
the arrows. The reversed direction of the arrows is due to
the fact that only its complex conjugated amplitude enters
in the charge hologram which causes the Coulomb
scattering. ] After the Coulomb scattering the electron (')
continues the scattering sequence until it is scattered into
the original state k' at the time tb. In the state k' the
"satellite" (with respect to the electric field and the
Coulomb interaction) interferes with the k' component of
the original state it/. This interference yields finally the
current contribution of this process.

In this process the electric field acts in the middle of
the scattering sequence. Normally the left vertex in a
Kubo diagram, (which represents the action of the electric
field) is the starting point for the time evolution (see, for
example, weak localization). In the Kubo diagrams for
the Coulomb interaction we observe instead the fate of the
conduction electron from the time —t, &0 before the ac-
tion of the field until the time tb after the action of the
field. This is the reason why the vertex is neighbored by
two equivalent Green's functions (either advanced or re-
tarded).

One easily realizes that in zeroth approximation this
contribution of the interference in k to the current is zero
because of two reasons: (i) The electric field causes satel-
lites which have opposite sign of the amplitude (respec-
tively occupation) on opposite sides of the Fermi sphere.
Since their contribution to the amplitude in the state k
just add, they compensate each other. (ii) The relative
amplitude of the k' component of the satellite with
respect to the original amplitude of P' is independent of
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k' and does not yield a current because of this spherical
symmetry.

One has to be beyond the zeroth-order effects and look
for asymmetries with respect to k and k'. Such asym-
metries exist indeed. In the Appendix we see that the two
electrons (') and (") in the plane wave components k and
k +q develop a phase difference during the time ~o which
1s

exp( —i vi, qi0) =(1 i vi, q—ro+ ) .

The linear term generally averages to zero if one sums
over all states k. However, after the action of the electric
field the occupation of the states k and —k have opposite
signs, and the main contribution (i.e., the 1 in the
parentheses) cancels, and the linear term in the bracket to-
gether with the amplitude of the field satellite
evi, E7O/(fico) (after the transition time rp) yields a contri-
bution proportional to eDqE&o/(fico). (The average of
( vy )To yields the diffusion constant D).

The same applies for the final (i.e., initial) plane wave
component k'. Between k' and k'+q the corresponding
phase shift develops and since the current is proportional
to vI, , one obtains only a contribution from the linear part
in the phase coefficient, which yields the factor Dq.

The product of both factors is proportional to the
square of q and is finite. As a consequence the whole Fer-
mi sphere becomes asymmetric which corresponds to a
shift of the Fermi sphere and causes a current. We realize
that in momentum space the current and therefore the
conductance correction depend very delicately on small
phase shifts during their lifetime in the momentum states
k and k'.

In the detailed calculation one has three sections in
which the two electrons (') and (") scatter in parallel;
from k' to k, from k to k, and from k, +& to k'. This
yields three diffusion poles. Furthermore the electric field
introduces for dc field the thermal transition factor
f(e')[I f (e'+co)]. Ther—e is, however, no point in re-
placing the formal calculation by a heuristic one. Instead
we add a physical interpretation to this formal calcula-
tion.

The electric field can act before or after the Coulomb
scattering. Furthermore one has also to include the effect
of the electric field on the charge hologram. Since the
electrons in the shifted Fermi sphere generate also the
charge hologram one obtains also a change in this holo-
gram which is also determined by Eq. (4.3). This yields a
second contribution to the current which has opposite sign
(which one can derive from the fact that the scattering
states lie symmetrically around the momentum zero) and
twice the magnitude of the first part. The conductance
correction is not just due to the change in the effective
mean free path or lifetime that we discussed at the end of
Secs. II and III. (In the corresponding conductance pro-
cess the electrical field and the interference would act on
the same wave number k, i.e., the left diagram in Fig. 2
would be closed to a Kubo diagram which lacks the lower
impurity scattering lines. This diagram is compensated
by the Kubo diagram which is constructed from the right
diagram in Fig. 2.)

It is valuable to say a few words about the propagation

FIG. 6. The two contributions of the Coulomb satellite to the
diffusion in real space.

in real space. In Fig. 6 we have drawn two possible dif-
fusion processes. In Fig. 6(a) the electron (") starts as
usual at the position C, performs a closed diffusion loop
and interferes with itself at C generating the charge holo-
gram. The probe electron (') may diffuse from the posi-
tion R along the closed loop back to R being Coulomb
scattered by the charge hologram at C. At the time t =0
it may be located at the position O. Therefore this propa-
gation yields an additional diffusion channel from 0 to
R. It has the interesting aspect that it depends on the his-
tory of the electrons.

The second contribution is shown in Fig. 6(b). Here the
electron (") propagates from C to C along the closed loop
and forms the charge hologram at C. At the time t =0
we find it at the position O. The other electron (') starts
at R, propagates along the closed loop including the
Coulomb scattering at C and returns to R. This is an in-
direct diffusion from 0 to R because the electron (')
reaches only the point R when the electron (") is at the
time t =0 at the position O. If we would remove the elec-
tron (") at t =0 from the position 0 the electron (')
would not reach the point R (by this process). Therefore
both processes modify the diffusion in real space.

V. CONCLUSIONS

In a disordered metal the electronic wave function has
many possibilities to interfere with itself. As a conse-
quence one finds an inhomogeneous electron density
which stores the distributions of the impurity positions
and which represents an electron hologram. This holo-
gram contains the charge pattern for every closed scatter-
ing loop and acts as a (Coulomb) scattering potential it-
self. A second conduction electron which propagates on
the same closed loop can readjust its phase, interfere
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coherently at its starting point with its original wave func-
tions and change the mean free path.

The coherence of the electronic wave functions is an
essential requirement for the mechanism of the Hartree
(and Fock) diagram. This coherence is limited by the
thermal coherence time ~z-. This thermal coherence time
is well known from the theory of superconductivity. Re-
cently it has been suggested that conductance fluctua-
tion in small samples are also limited by the thermal
coherence time.

In addition the Coulomb anomaly must be sensitive to
inelastic scattering which destroys the coherence of the
wave function. However, the effect of inelastic scattering
is rather sophisticated. If we consider for example the
electron paths in Fig. 3 there the electrons (') and (")
propagate from 1'=8" at the same time along the same
impurities. Any inelastic scattering on this part of the
closed loop has little effect on the interference because the
inelastic process occurs for both electrons with essentially
the same probability and phase. However, along the path
from C to 10'=7" the two electrons travel at quite dif-
ferent times (see Fig. 5) and inelastic processes are des-
tructive for the phase coherence. This demonstrates that
the understanding of the physical processes in real time
are important for the evaluation of the phase coherence.

It is important that an electric field does not influence
the coherence between g'(r) and the Coulomb satellite. Of
course, the electric field changes (in real space) the phase
of the amplitude 3" and therefore the charge pattern.
However, the phase shift is the same for both electrons on
the same path and therefore cancels in the amplitude of
the Coulomb satellite.

The same applies for a magnetic field. For the paths in
Fig. 6 as well as for Fig. 3 we recognize easily that a mag-
netic field changes the electron hologram because the flux
which is encircled by the closed loop changes the phases
of the two partial waves and therefore the interference.
As a consequence the phase shift caused by the magnetic
field is also stored in the electron hologram. This (mag-
netic) phase shift compensates the phase shift which the
conduction electron experiences on the same closed loop
because the coherent Coulomb scattering selects just the
complex conjugated component of the charge wave.

It is, however, remarkable that the magnetic field
changes the charge pattern completely. In small systems
where we do not have a perfect averaging of the impurity
distribution, ' the incoherent Coulomb scattering
should enter into the resistance of the electrons.

The physical interpretation of the Hartree diagrams
gives a simple understanding of the magnetoresistance in
a magnetic field derived by Lee and Ramakrishnan. In
a magnetic field the spin-up and spin-down electrons have
different Fermi wavelengths and therefore the hologram
of spin up electrons (at the Fermi frequency) does not per-
fectly compensate the phase shifts of a spin down conduc-
tion electron and vice versa. For p&H =k&T half of the
electron hologram becomes ineffective in the phase adjust-
ment and no longer contributes to the Coulomb anomaly.
This yields the magneto-resistance with the weight F/2.

In the presence of spin-orbit scattering the spin of the
electron will be rotated after the propagation on a closed

loop. Therefore we expect not only a charge pattern (with
half the amplitude) but also a spin pattern. This applies,
of course, for nonmagnetic metals. For nearly magnetic
electron systems these spin waves might have interesting
consequences.

The whole discussion above depended essentially on the
wave character of the electrons and the interaction be-
tween two different electrons. Therefore it suggests some
generalization to laser experiments with high intensity. In
a nonlinear medium with scattering centers the laser light
forms a hologram as our electron ("). When the ampli-
tude of this hologram is sufficiently large then the local
dielectric constant is modulated according to the holo-
gram. This solidified hologram will now scatter the scat-
tered laser light as a phase correcting mirror and increase
(or decrease depending on the sign of the nonlinearity) the
amplitude of the original laser light. This has two conse-
quences: (i) For a plane wave entering the scattering
medium the extinction coefficient changes with laser in-
tensity since the mean free path is changed in exactly the
same manner as for the electron system. (ii) Under favor-
able conditions the laser light could select certain closed
loops and stabilize its propagation along such loops.

Besides the Hartree diagram in the particle-hole chan-
nel the theory yields also a Hartree diagram in the
particle-particle channel. For a single Coulomb scatter-
ing, as has first been discussed by Fukuyama, the physi-
cal interpretation is essentially given by Fig. 3. The only
difference is that the electron (") propagates on the closed
loop in opposite direction. This does not change the
charge hologram. However, the effect of a magnetic field
is no longer compensated on the two paths but adds up
and yields a magnetic phase shift which is 2e/fi times the
enclosed magnetic flux. This contribution will therefore
be destroyed by a magnetic field as in weak localization.

In Fig. 3 the two electrons (') and (") propagate togeth-
er from 0 to C where the electron (') is scattered by the
charge hologram of electron ("). This contradicts the
Pauli principle. However, we do not have to worry about
this fact because the Pauli principle is taken care of by
subtracting the Fock diagram. Therefore we want to
comment shortly on the Fock diagram. Since the Fock
diagram is caused by the same Coulomb interaction as is
the Hartree diagram, it describes essentially the same
physics. One has to treat the Coulomb interaction in the
correct two-particle wave function. In our description
this means that we have to include in particular the "Pauli
interference, " i.e., the fact that the two different electron
states can interfere because the two electrons are in both
states at the same time. In addition the charge hologram
oscillates with time and requires that the screening is cal-
culated dynamically. In the Fock diagram the two elec-
trons generally diffuse on a string, not on a closed loop
and the Coulomb interaction acts over large distances.

APPENDIX: COHERENT PROPAGATION
OF TWO PLANE WAVES

We consider the propagation of two plane waves
~

k )
and

~

k +q ). Both plane waves are scattered by the im-
purities according to the scattering sequences
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and

k k& k2 k3 '' k ' = Ik(&))

(A 1)

(ek+& —&k )&p=vkq&p ~

The amplitudes A' and A" in the new states
I

k& ) and

I
k&+q) are roughly given by Z 'i exp(i6&) where

k+q 1+q kz+q ' ' k +q ' ' =l(k+
At first sight the scattering of the state

I

k ) and

I k+q ) are independent and the first possible scattering
processes might be k~k' and k +q~k" +q. However,
the two matrix elements Vk k and Vk k- are only the same
if k'=k". Otherwise they are uncorrelated and destroy
the phase coherence between the two scattered states. In
the theory this is obtained by impurity averaging. There-
fore the statistical distribution of impurities introduces a
strict "conservation of momentum difference. " (In the
case of strong localization this conservation is no longer
fulfilled. Here the difference

I

k' —k" is not zero but is
smaller than the inverse localization length. )

The fact that the two states Pi ——
I

k ) and f2=
I

k +q )
preserve their phase coherence can be expressed by the
product of tbi1b2 ——I (r, t). At t =0 this product yields
exp(iqr).

The second plane wave
I k+q) is often obtained as a

satellite of the state
I
k) by means of a transition from

the state
I

k ) into the state
I

k +q ) in a potential with
wave number q. We assume that the amplitudes of the
two states are phase coherent at time t =0. At time ~o the
partial electron waves in the state k and the satellite k +q
are scattered. In this time interval the two states essen-
tially remain coherent. There is, however, a small reduc-
tion due to the development of a phase shift between the
state

I
k) and

I
k+q). They have a frequency differ-

ence of about vkq and therefore the phase of the satellite
is shifted during the time interval ~0 by

(A2)

exp(i5&)=i V&/ I Vg I, g =k —k& and Z is given by Eq.
(3.2b). A' and A" contain the same scattering matrix ele-
ment and remain coherent. The square of the amplitude

I

A
I

in the state k, is equal to 1/Z where Z is the
number of possible scattering states. In the states k& and
k&+q the electron propagates again essentially for the
time ~0 without losing phase coherence. The small phase
shift due to the different kinetic energy is this time

g] = v&qr p(U i
——'hk i /m ). Since we have to sum over k t

the phase differences essentially average to zero because
the angle between the Fermi velocity U

&
and the wave vec-

tor q takes all possible values and averaging yields only a
broadening of the phase by [(vtq)ro] =Dq ro, where
D =~DU /d is the diffusion constant. If we form the
product Pi P2 at the time t =2', then the summation
over the Z states

I
k| ) with occupation 1/Z yields just

one (often called conservation of particles), and we obtain
for the spatial part exp(iqr). As a function of time the
amplitude is reduced by exp( Dq ro) —in the time interval
To. The following scattering events preserve the momen-
tum difference in the same manner so that the spatial part
is always exp(iqr). After n scattering processes the phase
coherence between P, and $2, i.e., $*, $2 is reduced by
exp( —Dq neo)=exp( Dq t) —The F.ourier transforma-
tion in momentum and frequency yields

1I (q, co)=
Dq —in

This is the so-called diffusion pole in disordered electron
systems and describes, as we showed, the coherent propa-
gation of two plane waves with a small momentum differ-
ence.

In pure metals the phase difference of the two plane
waves reaches the value one after the time (vkq) '. In
some respects this means that the phase coherence in a
disordered metal is better maintained than in a pure met-
al. This conservation of coherence can be considered as
motional narrowing.
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