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Voltage fluctuations in small conductors
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The mean-squared voltage fluctuations of an ensemble of disordered conductors, measured be-
tween probes less than an inelastic scattering length apart, are independent of the separation of
the probes. The mean-squared fluctuations of the conductance can exceed e /h by many orders of
magnitude. To obtain these results, it is essential to take into account that carriers can make
large excursions into the voltage leads without being scattered inelastically. Our results comple-
ment recent arguments and experimental findings by Benoit, Umbach, Laibowitz, and Webb (un-
published).

((~G) ') = (P/2) (e'/~) '(I/I. )', (2)

where P is a factor of order l. As the distance l, between
voltage probes is made small, Eq. (1) predicts conductance
fluctuations which can exceed e /h by many orders of
magnitude. This is astonishing in view of recent theoreti-
cal claims that conductance fluctuations are universal
and bounded by e /h. Experimentally we deal with a con-
ductor which is connected to voltage probes, and conduc-
tance is measured in a four-terminal setup. In contrast,
Refs. 4-7 assume a two-terminal measurement.

To derive Eqs. (1) and (2) we consider the three-ter-
minal conductor' shown in Fig. 1. The conductor is con-
nected to three reservoirs with chemical potentials pl, p2,
and p3. Consider the case pl )p2. This induces a net
current flow from reservoir 1 to reservoir 2. p3 is deter-
mined by the condition that no net current flows to reser-

In a recent paper, Benoit, Umbach, Laibowitz, and
Webb, ' have presented an intricate argument and experi-
mental results to show that the fluctuations of the voltage
drop along a section of a narrow wire in a magnetic field
are characterized by a mean-squared deviation.

((~V)') =(a/2)(e'/h)'W, 'V,', (1)

independent of the separation I, of the voltage probes as
long as I„ is smaller than the phase-breaking length I&. In
Eq. (1) the angle brackets denote an ensemble average and
AV is the deviation of the voltage away from the ensemble
average. We show that a is a constant of order 1. The size
of the fluctuations is determined by the average resistance
R& of a section of the conductor with a length equal to the
phase-breaking length and V& is the average voltage drop
over a phase-breaking length. In contrast, if the voltage
fluctuations are measured over a distance l, )) 1& each seg-
ment of length l& gives a contribution to hV of random sign
and magnitude given by Eq. (1) leading to voltage fluctua-
tions which increase linearly with l, . Voltage fluctuations
arise because current flow past impurities gives rise to lo-
cal field variations, and the voltage profile along the con-
ductor is linear only after ensemble averaging. However, I
will show that voltage probes, because they are themselves
disordered conductors, cannot measure these local poten-
tials with precision, but profoundly influence what is mea-
sured. The conductance fluctuations depend on the sepa-
ration of the voltage probes and are given by

voir 3. Lead 3, thus, is a voltage probe and allows one to
investigate the potential difI'erences p&

—p3 ol p3 p2.
Thus we can study the potential distribution along the con-
ductor by changing the position of lead 3, the voltage
probe, by taking p~ or p2 as a reference potential. The
conductor in Fig. 1 scatters only elastically. Inelastic
scattering events occur only in the reservoirs. The physical
situation is, of course, difI'erent; inelastic events occur
throughout the conductor. To make contact with a typical
experiment, we must make further assumptions: We take
the distance between the reservoirs 1 and 2 to be the
phase-breaking length l&=x+y. Further, since carriers in
the conductor can make excursions into the voltage probe
over a distance of order I& before being scattered inelasti-
cally, the length z of the voltage probe must also be of the
order of an inelastic scattering length. We take z =i/2.
A carrier in the conductor due to its wave nature "sees"
the whole conductor, including the portion of the voltage
probes within a distance I& of the main conductor.

To investigate the transport properties of the conductor
of Fig. 1, we invoke the approach put forward in Refs. 8
and 10. Reference 8 was concerned with the symmetries
inherent in a four-probe measurement. Connection of an
extra lead to a conductor was invoked in Ref. 10 to intro-
duce incoherence into a conductor in which scattering is
only elastic. The approach of Ref. 8 used here diAers from
that of Refs. 11-15. References 11-15make a number of
assumptions about what constitutes a voltage measure-
ment which are not realized in the present experiments.
They assume that the voltage probe is only weakly coupled
to the conductor, that phase coherence between the con-
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I IG. 1. Three-pole conductor with segments of length x,y, z.
Current flow is along the x and y segment and the z segment
serves as a voltage probe.
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ductor and the voltage probe can be neglected, and that
voltage probes measure carrier densities and are insensi-
tive to the direction of motion of the carriers. We treat the
voltage probe as part of the conductor and treat both on an
equal footing. Quantum transport in the conductor of Fig.
1 is determined by the probabilities T;j for a carrier in-
cident in lead j to traverse the sample into lead I, and the
reflection probabilities R;; for a carrier incident in lead i to
be reflected into lead i . To obtain a well-defined scattering
problem, a piece of perfect conductor is inserted between
the reservoir and the conductor. If the leads have a finite
cross section 4, the number of states at the Fermi energy
with positive velocity (from the reservoir toward the con-
ductor) is of the order N =2/kF. In the perfect lead, these
states can be characterized by their transverse eigen state
and are referred to as quantum channels. The scattering
problem is determined by the probabilities Tj ki for a car-
rier incident in lead j, in channel I, to traverse the sample
into channel k, of lead i, and by the reflection probabilities
R j ki If each reservoir feeds all channels up to the same
chemical potential p;, the resistance of the sample depends
only on the total probabilities TJ =gk

& TJ ki . and R;;
=gk I R;; ki. The current in lead l is determined by

I; =(e/h) '(N —R;;)p; —g T;,p,
'

j (~i )
(3)

For the purpose of this Rapid Communication, we consid-
er the fluctuations of the voltage and conductance from
sample to sample of an ensemble of macroscopically iden-
tical conductors. Fluctuations from sample to sample arise
due to the sample-specific microscopic disorder configura-
tion. In contrast, the experiment of Ref. 1 investigates
fluctuations of a given sample as a function of an applied
magnetic field. In the absence of a magnetic field, the case
of interest here, the transmission probabilities have the
symmetry T~ = TI;. Equation (3) can now be used to find
the chemical potential p 3 and the resistance of the x and y
segments. Current conservation requires I =I ~

= —I2.
The condition I3

=0 determines the chemical potential of
the voltage probe, '

Sb
p3 =pz+ (p —pz) .

Sb +Sf
(4)

Here we have used the unitary relation T ~ 3 + T23 +R 33=N and introduced the abbreviations Sb =T i 3
= T3 i and

Sf T23 T32. The chemical potential is thus determined
by the probability Sb of a carrier incident in the voltage
lead to be scattered against the direction of current flow
back into reservoir 1 and the probability Sf for a carrier
incident in lead 3 to be scattered in the direction of current
flow forward into reservoir 2. The resistance of the x seg-
ment (see Fig. I ) is

Sf
T, (Sf+Sb ) +SfSb

Here, T, = T ~ 2
= T2i is the probability of a carrier incident

in lead 1 to traverse the sample coherently, that is without
being scattered into lead 3. Similarly we find from Eq. (3)
the resistance of the y segment,

Ay (p3 pz)/I = (h/e ) jSb/[T, (Sf+Sb ) + SfSb ]j

The total resistance of the conductor is A = (p ~

—~2)/I
=%„+%~ . The resistance % describes a continuous tran-
sition ' from completely coherent transmission through
the sample (Sb =Sf=0) to completely incoherent
transmission (T, =0). For completely coherent transmis-
sion we find % = (h/e )T, '. For completely incoherent
transmission every carrier has to enter reservoir 3 where its
phase and energy are randomized and this yields
m=(h/e')(Sb '+SI ')

First, we determine the variation of the potential and
the resistances in the limit that we can neglect quantum
interference eA ects. In the absence of interference eA'ects,
carriers move ballistically and are scattered elastically by
randomly distributed impurities in the sample. The trajec-
tory of a single carrier is purely deterministic but looks
like that of a particle undergoing random Brownian
motion with a diA'usion constant D-vFl„where vF is the
Fermi velocity. In this limit, we can determine the proba-
bility of carriers to traverse the sample by solving a classi-
cal diA usion problem. The details of such a calculation
will be presented elsewhere. ' Here, we only quote the re-
sults. The junction between the conductor and the voltage
probe is assumed to be isotropic; that is, a carrier incident
from one of the arms of the junction has a probability of
to traverse the junction into one of the other arms and is
scattered back with a probability —,

' . For a conductor with

a width JA = JNXF much smaller than the length xy, z
of the segments, we find

T, =Nl, z/q

Sb =Nl, y/q

Sf =Nl, x/q .

(6b)

(6c)

Through the shape function q =xy +xz +yz, the transmis-
sion probabilities depend in a nonlocal way on the geome-
try of the whole conductor. Using these results, and Eq.
(4), we find a linear variation of the potential p3,

P3 =P2+ eV~y
x +y

(7)

Here we have used (pi —p2) =eV& as the voltage drop over
a phase-breaking length. Furthermore, the resistance of
the x and y segment are given by %„=(h/e ) (x/Nl, ) and
%~ = (h/e ) (y/Nl, ). The resistances are given by the
classical Boltzmann expression. In the absence of interfer-
ence eA'ects coupling or decoupling a voltage probe to the
conductor has no eA'ect.

Next, let us discuss fluctuations away from the classical
behavior. Interference eAects produce small corrections
3,T„BSf,hSb to the classically determined probabilities
given above. In a two-port conductor, characterized by a
single reflection and transmission coefficient R and T, the
quantum corrections d R and 6T are universal and
satisfy & (AR ) ) = ((AT) ) —= I independent of the shape of
the conductor and the degree of elastic scattering as long
as the sample length is long compared to l, and short com-
pared to the localization length. In a two-port conductor
the universality of the fluctuations in the transmission and
reflection probabilities implies the universality of the con-
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((~T, )') =((~s )')=((~sb)') = -' (8b)

Interestingly, in a three-port conductor, the universality of
the fluctuations of the reflection and transmission proba-
bilities gives rise to the results of Eqs. (1) and (2) which
are not universal.

To arrive at Eqs. (8) we use an argument given in Ref.
15, respectively, a recent refinement of this argument by
Lee. As shown in Ref. 15, the fluctuations in the
transmission probabilities Tj'ki are of the same order as
the transmission probability itself. Reference 15 found
Tj. ki =t+ Sr, where r is the ensemble average and is posi-
tive, and Bt is the fluctuation and can be negative or posi-
tive but is of the order of t. Similarly, the reflection proba-
bilities obey R;; ki =r+6r, where r is the average and Br is
the fluctuation. r and Br are of the same order. Whereas
the transmission probabilities into different channels might
be correlated or only a number of them less than N
might effectively be nonzero, such correlations should be
absent in the reflection coefficients. We find (R;;)
=gk &(R;; ki) =Nr and ((—R;; —(R;;)) )=N (8r)2. The
average value of the reflection probabilities gives a contri-
bution to the total reflection probability which grows like
N, whereas the fluctuations, because of their random
sign, give a contribution which grows only like N. Since
carriers incident from the reservoirs are reflected back into
the reservoir with a probability which is almost one,
(R;;) =N, we have r =Br =O(1/N). Hence the fluctua-
tions of the reflection probabilities hR;; =Nor are of order
1 as stated in Eq. (8a). The total probabilities (average
plus fluctuations) are related because of current conserva-
tion. We have R~~+T, +Sb =N and R22+T, +Sf=N
and hence we obtain

1=-((&Rii) ) =((&T,) )+((hsb) )+2(hT, ASb)

and
1=((dR2z) ) =((d, T, ) )+((dsf) )+2(hT, hsf)

Carriers emanating from diff'erent ports experience
different portions of the conductor with differing intensity,
and ensemble averaging can thus be expected to destroy
correlations between the probabilities for transmission into
different ports. This is in contrast to the correlations
which exist between the probabilities for transmission into
the same port into different quantum channels. Correla-
tions between transmission probabilities into the same port
arise because the Feynman paths contributing to these
transmission probabilities are identical over a large region
of the sample. On the other hand, if we consider
transmission probabilities of differing ports, say Sb =T(3
and Sf = T23, the Feynman paths traverse the same disor-
dered region only over the length of the z segment and ex-
plore the x and y segments with differing intensity. Clear-
ly paths from ports 3 to 1 which cross the junction more
than once are less likely the larger the excursions into the y

ductance fluctuations. Since G = (e /h) T we have

((gG ) 2) (e 2/Q ) 2((PT) 2) (e 2/1i ) 2

Below is an argument to show that the fluctuations of the
transmission and reflection probabilities of the three-port
conductor are also universal and obey

((dRii) )=((dR22) )=((AR33) )=1, (8a)

segment are. In the absence of correlations, we have
1=((~T,)')+((~Sf)') and 1=((~T,)')+((~S )'& and
hence the magnitude of the fluctuations in the transmis-
sion probabilities is given by Eq. (8b).

Let us now explore the consequences of Eq. (8) and dis-
cuss the resulting voltage and conductance fluctuations.
The voltage measured between reservoirs 1 and 3 is
ev=pi —p3. For the fluctuations AV=V —(V), we ob-
tain, using Eq. (4),

si(~sb'&+ sg(~sj) 9)
(Sf+Sb)

Using Eq. (6) and Eqs. (8) and taking into account that
W&=(h/e )(I&/Nl, ), yields for the voltage fluctuations Eq.
(1) with

a =q (xz+yz)/(x+y)41~~ . (10)
Equation (1), together with Eq. (10), is our key result.
The potential fluctuations given by Eqs. (1) and (10) are
basically independent of the position x =1, of the voltage
probe in agreement with Benoit et al. ' If the probe is lo-
cated symmetrically, i.e., for x =y =z =1/2, we find
a= 3'2. If the lead is only an elastic length away from the
reservoir 1, we have x=1„y=1&—l, =1&, and z =1&/2.
For this case, we find a = —,

' . Using %&= (h/e )(ling), Eq.
(1) becomes

((av)')/v, ' =(a/2)(lpg)'.
Here g=N1, is the "localization length. "' The potential
fluctuations are the larger the bigger the ratio ling. In a
conductor with 1&=—g, the potential fluctuations are of the
order of the average potential drop eV& =p~ —p2.

Because we have studied the case where the potentials
p~ and p2 are fixed, the potential fluctuations given by Eq.
(10) should approach zero as the voltage probe approaches
one of the reservoirs. Equation (10) cannot describe this
approach since the transmission probabilities given in Eq.
(6) are only valid for segments which are large compared
to 1,. That Eq. (10) remains length independent even as x
approaches zero is thus an indication that the correlation
length of the voltage fluctuations is short and comparable
to the elastic scattering length.

Next consider the fluctuations of the conductance
G„=(%„) '. We linearize Eq. (5) with respect to the
fluctuations of the transmission probabilities and deter-
mine the mean-squared average using Eq. (8). We find

((bG„) ) =
4 [Sj(si,+Sf) +Sj(T,+Sf) +T, sb1 .

(»)
Using Eq. (6) yields Eq. (2) with

P = [x2(x+y) 2+x z(y+z) 2+z 2y2]/(x+y) 4 . (12)

p is essentially length independent and of order 1. For
x y =z =1$2, we find P= «and for x=1„y=1&—1,—= 1&, z =i/2, we find p= 4. Thus the conductance fluc-
tuations, measured with voltage probes a distance apart
which is short compared to an inelastic scattering length,
are determined by Eq. (2). Note that even as x ap-
proaches l& the conductance fluctuations do not approach
(e /h) but a value smaller than that. We find —,

' (e /1i) .
Coupling or decoupling a lead to the conductor does effect
the size of the conductance fluctuations: The fluctuations
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of the total conductance G =(%„+Ay) ' are given by
((hG) &

=
—,', (e /h) if the voltage probe is in the center,

x y, and approach ((AG) ) =(e /h) only in the limit
that either x or y is small.

Let us now depart from the typical experimental situa-
tion discussed above and study the eff'ect of the length
dependence of the voltage probe. For this discussion we
take a voltage probe made out of a diferent material with
the same elastic properties as the conductor but with a
different inelastic scattering length. We consider the two
limits, where the carriers "see" a portion of the voltage
probe of length z =l„and z =(. Let us focus on the po-
tential fluctuations. In the limit that carriers entering the
voltage probe sufler an inelastic event after only an elastic
length, we find that a=x (I&

—x) //&. The voltage fluc-
tuations depend on the lead position. The maximum ex-
cursions of the voltage away from the average occur when
the probe is in the middle of the conductor. In the "physi-
cal" situation described by Eqs. (I) and (2), the forward
and backward scattering probabilities are of order Nl, /I&

independent of the lead position. In the presence of a short
lead, however, the probability Sb becomes of order N as x
becomes small and is of order Nl, //& only if the probe is
near the midpoint between the two reservoirs. The key
point is that in this case the relative magnitude of the fluc-
tuations ASb/St, is x dependent. That the voltage fluctua-
tions are length independent in the physical situation is
thus a consequence of large excursions of carriers into the
voltage lead. If the carriers in the voltage lead can travel a
distance g, that is, as far as a localization length before be-
ing scattered inelastically, we obtain a=( /I&. If this is
inserted into Eq. (I), we find that (AV )—= V&, i.e., the
voltage fluctuations are of the order of the average poten-
tial drop itself. In this case the fluctuations of Sb and Sf
are of order 1: that is, we have fluctuations for which ei-
ther Sb or Sf is zero. As can be seen by looking at Eq. (4),

this causes fluctuations of order (pt —pz) =eV&. Finally,
we can also consider the case where there is very little elas-
tic scattering in the conductor but the voltage probe
remains disordered. For x =y =1, we have T, —N, that is,
we have perfect transmission from reservoir l to reservoir
2. In this case ((hG„) ) is determined by the square of a
Sharvin contact conductance, ' ' (e /h) N The v. oltage
fluctuations are given by ((AV) ) —= (z /g ) V&. Thus even
a perfect conductor exhibits strong voltage fluctuations
when the probes are disordered conductors! This case
serves as a good illustration of the difference of the ap-
proach presented here and in Refs. 11-16. Using the po-
tentiometers invoked in these discussions, one finds for a
perfect conductor a potential p3 =(p~+ pz)/2 without any
fluctuations at all. In contrast, our approach yields this
potential only on the average and yields fluctuations in the
measured potential because the quantum channels in the
disordered lead couple randomly to those of the perfect
conductor. Only on the average is the coupling of the lead
symmetric with respect to right- and left-moving carriers
in the perfect lead. Admittedly, the cases considered in
this paragraph do not correspond to the present experi-
ments, but if leads and conductors can be made out of
diAerent materials they can be realized too. The present
experiments are characterized by the fact that the current
and voltage probes are of the same material and are inter-
changeable. Taking this into account, I was able to ac-
count for the experimentally observed conductance and
voltage fluctuations as well as the general symmetry prop-
erties of a four-probe resistance measurement.
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