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Sum rules for the nonlinear susceptibilities in the case of sum frequency generation
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Some sum rules are given for nonlinear susceptibilities in the case of sum frequency generation.
The derivation is based on the classical model of the anharmonic oscillator and the theory of several
complex variables is used.

INTRODUCTION

Sum rules for physical variables can be used for testing
the consistency between theory and experiment. Most ap-
plications of sum rules concern strongly interacting parti-
cles. The best known sum rule in optics is perhaps the f
sum rule of classical dispersion theory. A remarkable set
of sum rules for linear optical constants were given by Al-
tarelli et al. ' and also by Altarelli and Smith. Some of
them follow directly from various kinds of dispersion rela-
tions and some can be derived with the aid of the super-
convergence theorem. '

Besides the fact that the sum rules are useful for testing
the validity of experimental data, they also characterize in
a very simple way the nature of the optical constants.
The simplest sum rule of Altarelli et al. for insulators can
be given as follows:

f [n (co) —1]dco=0, (1)

where n (co) is the frequency-dependent real refractive in-
dex.

Sum rules similar to Eq. (1) can also be given for the
powers of the complex refractive index. In this paper we
will present some sum rules for the nonlinear susceptibili-
ties in the case of sum frequency generation.

I. SUM RULES

In the classical theory of nonlinear susceptibilities the
starting point is the equation of motion of a classical elec-
tron oscillator with an anharmonic force. In one dirnen-
sion the equation of motion is as follows:

x dx+ I +max +ax =F . (2)
dt

Here F is a driving force due to the incident light interact-
ing with the material. The parameter a describes the

anharmonicity. In the classical approximation the non-
linear susceptibilities based on Eq. (2) involve essentially
frequency dependences similar to those of the Lorentz os-
cillator, i.e., D(co;) =(coo—co; —il to;) '. Then, for in-
stance in the case of sum frequency generation, the
second-order nonlinear susceptibility is proportional to

X' (co =co)+to2) -D (co( )D (top)D (to) +cop) .

It is obvious that D( co)=O(co, ) as co;~oo for each co;.
This is a property essential to the following derivation of
the sum rules. Actually sum rules can be given even if
X'"'=O(co,. ) for large values of to; provided that only
sum frequency generation is considered. In the case of
difference frequency generation the nonlinear susceptibili-
ties based on the classical approximation may simultane-
ously have poles in the upper and lower half of the corn-
plex frequency plane. In such cases the procedure of this
paper will not be applicable for derivation of sum rules.

It is well known that the complex linear optical con-
stants of insulators are holomorphic functions in the
upper half of the complex frequency plane. Also the non-
linear susceptibilities are holomorphic functions in the
case of sum frequency generation. But now we have to
deal with nonlinear susceptibilities as holomorphic func-
tions of several complex independent angular frequency
variables co],co2, . . . , c3„. The domain where 7'"' is holo-
morphic is the "upper half plane" Imago

&
0 R, Im~z

&OR. . . 5, Imago„&0.
The derivation of the classical Kramers-Kronig disper-

sion relation for linear quantities is based on the use of the
Cauchy integral theorem and integral formula. The same
theorems hold also for a holomorphic function of several
complex variables. Then for instance the Cauchy in-
tegral formula reads for the nonlinear susceptibility in the
case of sum frequency generation as follows:

dc']dc02 dt's„

where 3 is the integration domain. In our physical application we are interested in the poles lying on the real axes—oo —R~& —+ oo, . . . , —oo & Reer„& + oo. We form the Cauchy principal value in a similar way as in the linear
case. The poles on the real axes are excluded by deforming the integration path by a semicircular detour of infinitesimal
radius. The integration and limiting processes involved are performed with respect to one variable at a time.

Smet and Smet have given a relation for the second-order nonlinear susceptibility based on Eq. (3) as follows:
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X (co~, cop)
(2)

(coi, co2) = — P f f dcoidcop,
'tr ( co

~
—co ~ ) ( co2

—co2 )
(4)

where P (Ref. 8) denotes the Cauchy principal value and the integral has simple poles co', and co2 on the real axes.
We proceed by observing that also the functions [X'"'(co&,co2, . . . , co„)] and [co&co2. . . co„]"[X'"'(co,, co&, . . . , co„]

where r & m, r = 1,2, . . . , m = 1,2, . . . , are holomorphic functions satisfying the Cauchy theorem and formula of
several complex variables. Thus we can write the "dispersion relations:"

oo oo oo [+ (coi co& con ) 1P dao)deep . . dm„ (5)
(i7r)" ~ (co~ —co~)(co2 —co2)( ' ' )(co„—co„')

and

~.')"P'"(~'i ~2, ~.')l = . P f(i ~)" Jco~Jcop ' Jco&
(co& —co~)( ' ' )(co„—co„)

(6)
By setting co', =coq ——. . . ——co„' =0 in Eq. (5) we obtain a similar kind of sum rule as in the linear case. The same pro-
cedure applied in Eq. (6) gives the sum rule:

f . . f (~,~, ~„)"[X'"'(co&,. . . , co„)] dao&deox' ' ' dion=0
(7)r=1,2, . . . , m=1, 2, . . . , r&m .

Actually it is enough that for some n =j co&
——0 to make

the left-hand side of Eq. (6) zero. Especially if we set
r =1, then

CO~, Q)2, ~ ~ ~
& ~n

Q Jco~dcop ' ' ' 860„=0 ~ (8)

(10)

Further,

Rem"' co,~ d~=o,

For n =1 Eqs. (7) and (8) yield the famous sum rules of
Altarelli and Smith for linear susceptibilities.

Let us examine a sum rule for the second-order non-
linear susceptibility in a case where r =m = 1. Then

Q) ~, 602 Jc0~86)2 . (9)

In the case of the generation of second harmonic we have
co&

——co& ——co. Then from Eq. (9) we obtain

f X (co,co)dco=0 .

where the symmetry relation X' '*(co,co) =7' '( —co, —co)
has been used.

II. DISCUSSION

We have presented some sum rules for nonlinear sus-
ceptibilities in the case of sum frequency generation. The
derivation was based on the simple classical model of
Lorentz oscillator. The conditions for the sum rules stat-
ed were that 7'"'-~; with respect to each angular fre-
quency co; as co;~~ and further that 7'"' is a holo-
morphic function. These conditions are not very strong.
In that sense one could expect that sum rules could also be
given for more realistic models than that of the present
paper. One could also expect further that derivation of
sum rules is possible for nonlinear reflection coefficients.

ACKNOWLEDGMENT

The author wishes to thank Professor P. Ketolainen for
reading the manuscript.

~M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y.
Smith, Phys. Rev. B 6, 4502 (1972).

2M. Altarelli and D. Y. Smith, Phys. Rev. B 9, 1290 (1974).
3K.-E. Peiponen, Lett. Nuovo Cimento 44, 445 (1985).

-4H. M. Nussenzveig, Causality and Dispersion Relations
(Academic, New York, 1972).

5L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu
ous Media (Addison-Wesley, Reading, Mass. , 1960).

6S. Ci. Krantz, Function Theory of Several Complex Variables

(Wiley, New York, 1982).
7F. Smet and P. Smet, Nuovo Cimento 20B, 273 (1974).
The definition of the Cauchy principal value, e.g. , in the case of

a function of three variables, is as follows. An integrable
function f which has three simple poles co~, coal, and cv3 exists
as a Cauchy principal value if the limit

P (co ), cop, co3)d

I I I

= lirn lim lim f(cv, ~ ~ )dgQ~OP~Oa~o 0 0

+ (e) l, co2, cu3)d
~l+$ cu2+P co3+a

exists.
We prefer here the notation g'"'(col, co2, . . . , co„) consistent with

the theory of several complex variables rather than the physi-
cally more relevant notation P "'(co=co&+~&+ . . +co„).


