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The vibrational properties of strongly coupled one-dimensional electron-lattice systems are dis-
tinct from those of weakly coupled ones. While the weakly coupled systems have only four localized
modes around the soliton and there is overlap between acoustic and optical phonon branches, the
strongly coupled system can possess more localized modes, and no overlap exists. In terms of the
coupling constant A, the boundary between strong and weak coupling is A, =0.2119. The number of
localized modes depends on A, and each localized mode can only exist for a certain region of A.
Then the whole range [0,2/7] of A can be divided into seven regions, each of which has a charac-

teristic disposition of the localized modes.

The nonlinear excitations in one-dimensional (1D)
electron-lattice coupled systems, such as solitons and pola-
rons, greatly influence the dynamic processes. One im-
portant aspect is the localized modes around the soliton
and polaron. In recent years much attention has been
focused on this subject. Starting from the Takayama,
Lin-liu, and Maki (TLM) model,! which is the continuum
version of the Su, Schrieffer, and Heeger (SSH) model® in
the weak-coupling limit, Nakahara and Maki found two
localized modes around the soliton by using a variational
method,? i.e., the Goldstone mode g, and the amplitude
mode g,. Hicks and Blaisdell also got these two modes by
a Green’s-function technique.* Ito, Terai, Ono, and Wada
established an integral eigenequation to determine the vi-
brational modes around nonlinear excitations, and they
obtained one more localized mode g; around the soliton.’
Sun and his co-workers pointed out that the TLM model
might smear out some localized modes with rapidly vary-
ing configuration as a result of the continuum approxima-
tion, and, indeed, they found a new type of localized
mode—the staggered mode g, from the SSH model.®
Terai and Ono,’ Chao and Wang,8 and Gammel® verified
this mode independently. It should be noticed that all
these results came out from weakly coupled situations,
where the coupling constant A <0.2. However, the calcu-
lations made in Ref. 6 showed that another localized
mode could emerge in the case of larger A; the calcula-
tions indicate that the strongly coupled systems could pos-
sess some new vibrational modes, and the number of lo-
calized modes would depend on the coupling. Another
factor affected by the strong coupling is the mobility of
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the soliton. When the coupling is weak, the width of the
soliton is much larger than the lattice constant, the
discreteness of the lattice can be neglected, and the soliton
can slide freely. As the coupling gets stronger, the width
of the soliton will become comparable to the lattice con-
stant, and the mismatch between soliton and lattice will
cause a barrier for soliton hopping. This paper studies the
vibrational modes, especially the localized modes, around
the soliton over the whole range of coupling strength.
The criterion for a vibrational mode to be localized is to
have the following behavior in the shape of its amplitude
configuration: the wings of the configuration decay con-
cavely, and when the length of the chain increases, the
central part of the configuration does not expand and the
wings approach zero. It should be mentioned that the res-
onance with the degenerate extended mode may make the
wings of the localized modes go to a small finite oscilla-
tion.
The SSH Hamiltonian reads

H=—3[to—alu, 1 —u)lata, 1 +cc)
n,s
K M .
+72(un+1—un)2+—2—2u,2“ (1)
n n

all the notations have the conventional meaning. Intro-
ducing the dimensionless order parameter ¢,, the cou-
pling constant A, and the time 7 as

a 2a?
=(—1)"—u,, A= , T=wpot , (2)
Sn to " mtoK Q
4102 ©1987 The American Physical Society



35

BRIEF REPORTS

TABLE I. The regions and properties of localized modes.

Localized Frequency
mode Region of A Parity w/wg
21 0—2/m even 0
g2 0—2/m odd <0.66
g3 0.13—0.41 even 0.55—-0.71
84 0.22—0.43 odd 0.64—0.71
8s 0—-2/m even 0.63—0.70

g’ 0.276—0.284 odd 0.70
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TABLE II. The dispositions of localized modes in seven re-

where wg = (4K /M)'/? is the bare frequency, then (1) can
be rewritten as

H/to=— 3 [1+(— 1"y 41+ 64)]

X(a,fﬂ,sa,,,s +c.c.)

gions of A.

Region of A Disposition of localized modes
0—0.13 3 (81,82,85)

0.13—0.22 4 (81,82,83,85)

022—0276 5 (gl)gZ)gsag39g4)

0.276—0.284 6 (£1,82,85,83,84,8")

0.284—0.41 5 (81,82,85,83,84)

0.41—0.43 4 (81,82,85,83)

0.43—2/1 3 (81,82,85)

will be reached when A =2/, so the range of A is [0,2/7].
It can also be shown, based on (3), that there is a critical
value A.=0.2119; when A > A, the optical phonon band
will no longer overlap with the acoustic phonon band, and
it is adequate to take A, as the boundary between the weak
and strong coupling.

Suppose 8¢, is a small deviation from the equilibrium
configuration ¢, of the soliton, then the total energy of

1 2 4 Ry
+—2( +é,) +T— 2 (d,)7, (3)
A ? ¢n+1 ¢n A ? ¢n
where ¢'=d¢/dr. Equation (3) shows that if energy is
measured in units of ¢y and frequency in units of wg, then o &
the properties of the system will only depend on A. R
From Eq. (3) we can see that when ¢, = 3, the electron - .
states on the chain are split into separated dimers, which = R ’
A=0.2 . - n
i Coges
. - . gZ
n B o
A=0.2 A=0.35 . n
g, g,
) ’ n A=0,45 : "
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FIG. 1. The evolution of the configuration of g, FIG. 2. The evolution of the -configuration of g,
O<A<2/m). O<A<2/m).
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FIG. 3. The evolution of the configuration of g;
(0.13 <A <0.41).

the system can be expanded as

E( {8¢n } ):E:+ 2 Am8¢m +% E an6¢m6¢n

+4 8y )2+ -+, (4)
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FIG. 5. The
O<A<2/m).

evolution of the configuration of g,

where E is the energy of the soliton, and
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FIG. 4. The evolution of the configuration of g,
(0.22 <A <0.43).
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FIG. 6. The
(0.276 < A <0.284).

evolution of the configuration of g’



35 BRIEF REPORTS 4105

Cr,=Z,Z, —Zm—1)
an:i(sm,nfl+28m,n +8m,n +1) i Hom om wm=l

+Zv,m(zu,m+1—zy,m_]) . (7)

cmen Here ¢, and Z,, ,, are the eigenenergy and eigenfunction

A=ty Yy (6)  of electrons in the static soliton; they are determined by

i v EuE the following self-consistent equations:'°
J

_[1+(_1)n(¢" +¢n+l)]Zu,n+]_[1+(_1)n~l(¢n—l+¢n)]Zy,n—]=EyZ/.¢,n ’ (8)
’ 1 7

bn +¢n+l:(-1)n)"7r 2 Zy,nzy,n+l_—1\72 Zy,nzy,n+1 . &)
7 np

Solving these equations by numerical iterations, we can
get the equilibrium configuration ¢, of the solitons, and
by substituting it into Eq. (6) and diagonalizing B,,,, all
the vibrational modes will be obtained, and the localized
ones can be picked out from these modes.

Our calculations, which were done in a ring consisting
of 101 atoms, demonstrate that in a strongly coupled sys-
tem there can appear six localized modes around the soli-
ton; they are g1, &2, 83, 84, &, and g’. g;, g3, and g
have even parity and they are infrared active; the other
three localized modes have odd parity. Among these six
localized modes, g, g,, and g, will always appear for any
A, but g3, g4, and g’ can only exist for some limited re-
gions of A; the existing regions and some other properties
of the localized modes are shown in Table I. When A in-
crease, the width of the soliton will shrink, and the con-
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figurations of localized modes will change. The evolu-
tions of the configuration for each localized mode are
shown in Figs. 1—6. Since the number of the localized
modes depends on A, the whole range [0,2/7] of A will be
divided into seven regions, each one with a characteristic
disposition of localized modes, which is shown in Table
II.
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