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Quantum size effects in spherical semiconductor microcrystals
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The size dependence of the lowest electron-hole state in semiconductor microcrystals is calculated
using the variational principle with a three-parameter Hylleraas-type wave function. For very small
particles the Coulomb interaction may be treated as a perturbation. For larger particles the size
dependence of the energy is much sharper than that expected in previous work.

Wannier excitons in semiconductor rnicrocrystals pro-
vide an interesting spectroscopic system for the study of
size quantization effects. Recently, several groups'
have studied this phenomenon in colloidal spherical parti-
cles of CdS and spherical microcrystals of CuC1, CdS,
CdSe, and CdS Se& „, etc. , in a glass matrix. Brus' has
given a variational calculation for the size dependence of
the electron-hole pair state while Efros and Efros' have
calculated the spectra in some limiting cases. For a parti-
cle radius smaller than the Bohr radius ao of the exciton,
the size quantization of the electron and hole band states
dominates and the effect of the Coulomb attraction be-
tween the electron and hole can be treated as a perturba-
tion. For very large particles, Efros and Efros conclude
that the lowest energy of the electron-hole pair in the mi-
crocrystal is larger than that in the bulk due to size quant-
ization of the center-of-mass motion. The size depen-
dence of the measured energy levels can thus yield a good
estimate of the total mass I&+m2 of the electron-hole
pair. From a semiconductor-physics point of view this
would be especially interesting because the total mass is
sensitive to the heavier-particle mass, usually the hole,
while the reduced mass involved in the bulk exciton bind-
ing energy is sensitive to the lighter-particle mass, usually
the electron. Experimental results for CuCl particles give
a total mass much smaller than that generally accepted.
In this Brief Report we report an accurate variational cal-
culation for the lowest electron-hole pair state. The
dependence of the energy levels as well as the wave func-
tions on the particle size are critically evaluated. Our cal-
culations clearly indicate that the determination of the to-

tal mass by this method is not satisfactory.
In the effective-mass approximation the essential prob-

lem is to solve the Schrodinger equation for the envelope
function f:
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where m ~, mz and r&, r2 are the electron and hole masses
and position vectors, respectively, and r ~2
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The confining potential Vo is 0 inside the spherical crys-
tallite of radius R and infinite outside this sphere, with
the corresponding boundary condition

Q(rl, r2)=0 for r, or r2)R . (2)

For small particles the energy levels were calculated by
treating the Coulomb interaction between the electron and
hole as a perturbation. From single-particle wave func-
tions linear combinations corresponding to zero angular
momentum were formed. Using a finite set of these as
the basis set, the matrix representation for the Hamiltoni-
an in Eq. (1) was obtained and diagonalized. While the
unperturbed level spacings scale as 1/R, the Coulomb
term scales as 1/R. Thus as particle size increases the
perturbation theory requires a larger and larger matrix to
be diagonalized. Using a 20X20 matrix we obtained sa-
tisfactory convergence for R ( 1.5ao. For larger particles,
the lowest energy for the electron-hole pair states was ob-
tained by a variational calculation. We used a trial wave
function of the form

sin(nr~/R) ' sin(wrq/R)
cV exp( fear, z/R) for —r, , r, &R

g(r), rp) = . r)/R r, /R

0 outside,

where N is the normalization constant and a~, a2, and P
are the three variational parameters. This form of the tri-
al wave function was chosen to satisfy the boundary con-
dition (2) and other known limiting forms. For
a~ ——a2 ——1 and P=O we obtain the single-particle product
states expected for small particles. For large particles, the

expected ground-state wave function corresponding to the
size quantization of the center-of-mass motion is

sin(7rr, /R )
(4)

r, /R
where r, is the center-of-mass coordinate. Strictly, this
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function does not obey the boundary condition (2) and is
not acceptable. However, because of the exponential
dependence on r &2 the limiting form a

&
——a2 ———, and

P=R/ap corresponds quite closely to this limit. Similar-
ly the wave function corresponding to a free exciton at
rest can be obtained in the limit a& ——a2 ——0 and /3=R/ap
which, again, is not acceptable since it does not obey the
boundary condition.

Using Hylleraas coordinates r&, r2, and r&2, the addi-
tional angular variables needed to specify r& and r2 are
not required in the evaluation of the expectation value
(p

~

H
~

1/j)/(1t
~
f)/. Further, since all distances have

been scaled to the particle size R, the expectation values
of the kinetic energy term and the potential energy term
need to be evaluated for only one R for any given set of
parameters a&, a2, and /3. The kinetic energy term scales
like R and the potential energy term like R '. These
were evaluated for several discrete values of a&, a2, and /3.

For intermediate values an interpolation method was used.
The minimum energy was found by minimizing the ex-
pectation value successively with respect to a~, a2, and /3

till an absolute minimum was reached. It was verified to
be independent of the order of a&, a2, and /3. Figures 1

and 2 show the calculated energies for parameters
appropriate to CuC1 (m&/mo ——0.44, m2/mo ——3.60, E'

=5.4, and ap=7. 286 A) and CdS (m&/mp=0. 205,
m2/mp ——1.020, e = 8.46, and ap ——26.219 A) as a
function of (ap/R ) . The values of corresponding param-
eters a&, az, and P are shown in Table I for some represen-
tative cases. For CdS particles smaller than the exciton
radius, the calculated energies are very close to those ob-
tained by the perturbation calculation. However, even
here the effect of Coulomb interaction is significant. For

0

a CdS particle of radius R =20 A, the calculated energy is
0.387 eV from variational calculation, 0.395 eV from per-
turbation calculation, and 0.551 eV when the Coulomb in-
teraction is totally neglected. For CdS, even at R =2ao,
the lowest-energy eigenvalue is positive, i.e., above the
band gap in the bulk material. For CuC1, the exciton ra-
dius is comparable with the lattice constant, and thus it is
not physically meaningful to consider particle radii small-
er than ao.

When the particle size increases, the lowest excited-state
energy decreases first rapidly and then slowly as it ap-
proaches the value of the free exciton in bulk. At
R = 10ao, the calculated energy is within 2% of the limit-
ing value. However, it is in this region that one could ex-
pect the exciton to behave like a single particle and exhibit
the behavior depicted by the equation

f2 2

E(R ) =E( co )+
2MR

(5)

where M =m &+m2 is the total mass of the exciton. The
calculated energies in this region are only slightly above
those given by Eq. (5). Nevertheless, the difference is sig-
nificant in that the mass M obtained from the slope in
this region is 1.8mo and 0.75mo for CuC1 and CdS,
respectively compared to the actual values 4.04mo and
1.22mo. Even though a better variational trial function
may give lower energy expectation values, there are at
least two reasons to doubt the applicability of the idea of
the center-of-mass confinement in this size range. First,
we note that a& and az have not reached the expected lim-
iting value —, even for the largest particles in our calcula-
tion. In fact, for a& ——az ———,

' the expectation value of the
kinetic energy diverges for all finite R. Thus a& and u2
can tend to —, only as R —+ oo. More important, u2
remains much larger than —,

' for CdS and CuC1. This is
because when the electron and hole motion are strongly
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FICx. 1. Size dependence of the calculated lowest-energy
eigenvalue of the electron-hole system for CdS. The solid line
shows the results for a three-parameter variational calculation
and the dashed curve for a one-parameter calculation. The dot-
dashed line indicates the limiting slope. The inset gives the
same curve for smaller CdS particles.
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FIG. 2. Size dependence of the calculated lowest-energy
eigenvalue of the electron-hole system for CuCl. Notation is the
same as in Fig. 1.
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TABLE I. The variational parameters P, a, , and aq for some representative particle radii for CuCl

and CdS.

R (A)
CuC1 Cds

10
20
40
60

100
150
200
400

0.95
2.37
5.10
7.96

13.53
20.45
27.35

0.9
0.75
0.63
0.56
0.53
0.53
0.53

1.5
2. 1

2.1

1.9
1.7
1.6
1 ' 5

0.36
0.55
1.06
1.86
3.33
5.35
7.31

15.08

0.95
0.94
0.89
0.82
0.73
0.64
0.60
0.53

1.0
1.1
1.2
1.5
1.6
1.7
1.5
1.3
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correlated the heavier hole cannot approach the boundary
since it should remain closer to the center of mass.
Indeed, we found that a& and a2 can both approach closer
to the limiting value of —, if the electron and hole masses
are equal. Second, if we assume that the exciton is not a
point particle but a rigid particle of effective radius, say
1.5ao, we should expect the center-of-mass motion to be
confined to a sphere of radius (R —1.5ao). Plotting our
calculated energy values against (R —1.5ao) we find
that a linear relationship obtains over a larger energy in-
terval and the slope corresponds to a total exciton mass
2.9mo for CuC1, closer to the actual value. For CuC1 par-
ticles with R ) 25 A our calculated values are in satisfac-
tory agreement with the experimental data. Noticeable
discrepancy, however, exists for smaller particles. Since

0

for R ( 15 A the variational results are in good agreement
with those of the perturbation calculation, we conclude

that the discrepancy indicates an inadequacy of the
theoretical model. The most likely cause is that the po-
tential well is of finite depth Vo and this lowers the ener-

gy considerably ' when 2m Voa /A reduces to values
& 10.

Following Henry and Nassau the oscillator strength f
of a bound electron-hole pair is related to f,„, that of the
free Wannier exciton by

where coo and co,„are the lowest transition frequencies for
the bound and free excitons, g,„ is the free-exciton en-

velope function and V is the crystallite volume. The cal-
culated oscillator strengths for various particle sizes is
shown in Fig. 3. The small scatter of the calculated
values indicates the accuracy of our calculation. The os-
cillator strength is large for smaller particles and for
larger particles it decreases to -0.3f,„ instead of f,„
This may be a restriction imposed by the limiting func-
tional form. Since for larger particles the size quantiza-
tion plays a negligible role, the trial wave function could
include higher single-particle states too.

Since completion of this work a recent paper has ap-
peared where Kayanuma reports an independent varia-
tional calculation of energy in the restricted function
space described by cx~

——o,z ——1. Our own earlier results
were also obtained using such a trial wave function and
have been added in Figs. 1 and 2.

To summarize, we have calculated the lowest energy
level of an electron-hole pair in semiconductor particles.
For particles not larger than the exciton, the Coulomb in-
teraction may be treated in perturbation theory. For
much larger particles our calculated energy values show a
much sharper dependence on particle radius than expected
by Efros and Efros. The electron-hole interaction tends
to increase the confinement of the hole. The oscillator
strength for the lowest electron-hole excited state is ex-
pected to increase substantially as the particle size is de-
creased.

FICx. 3. Size dependence of the oscillator strength of the
lowest electron-hole pair state for CdS (8 ) and CuC1 (0).
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