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Quantum states of the image potential due to a corrugated metal surface and a coincident hard-
wall boundary are developed in perturbation theory through second order in the corrugation height
or profile function 4 (r)). It is shown how these wave functions can be useful in analyzing data
from inverse photoemission and two-photon photoemission. In addition, an analogous approximate
wave function for a soft-wall corrugated metal surface is derived and applied to scanning tunneling

microscopy.

In the past few years a number of investigators have re-
ported observations involving the image potential experi-
enced by an electron in the vicinity of a metal surface.! —?
These experiments, inverse photoemission,1 two-photon
photoemission,” and scanning tunneling microscopy,’ all
involve unoccupied surface and bulk states of the metal
and in particular involve electron quantum states of the
image potential. In the case of photoemission (PES) the
methods are spectroscopic in nature and hence the image
states are observed via binding energies, k;; dispersion, k;
line broadening, and photon polarization. The scanning
tunneling microscope (STM), on the other hand, directly
probes the surface electron density of states and its mani-
festations in the tunneling conductance.> The image po-
tential is apparently observed through its effect on the
tunneling electrons as they pass from probe to target
through the vacuum.

Our goal in the present report is to point out that the
electron image states are profoundly influenced by corru-
gations in the metal surface. Both the image plane and
the boundary plane exhibit corrugations and these in turn
effect the quantum states of the electrons. The correct
image potential due to a corrugated metal surface has
been worked out in detail in our previous work.* There
we also discussed how the quantum states are to be affect-
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ed if the boundary surface upon which the electron wave
functions vanish remained planar. In our most recent
work, we have carried out a detailed study of the quantum
states of a nonplanar image potential for both periodic
and aperiodic deformations of the conducting surface
with a coincident boundary surface.” Here we present a
preliminary report of our wave functions which we feel
might be useful to workers in the previously mentioned
fields.

In Fig. 1(a) we define the coordinate system and surface
profile function A (x,y). We consider a conducting sur-
face (image surface) defined by 4 (x,y), coincident with
the boundary surface upon which we require the electron
wave function to vanish. The present model should have
many of the features appropriate to a real metal, and it
has the distinct advantage of being analytically and nu-
merically tractable. Our problem now is to solve the
Schrodinger equation for an electron in the above
prescription.

In our first report*® on the nonplanar image potential,
it was shown how the electrostatic problem is modified
through first order in the surface deformation defined by
h(x,p). In a later report*® we presented more general ex-
pressions for the modified image potential formally valid
to all orders in A (x,y). There, we also presented the
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FIG. 1. (a) Coordinate system for the surface corrugation.

(b) Corrugated image potential vs z and x.

modified image potential in its Fourier representation, the
form of which will prove very useful in our present dis-
cussion. For example to first order in A (x,y) we found

1 1 dzk” ~ ikt 2
Vl(r||z)=-z—§fmh(k,|)e k2K, (ky,2)

(1)

where atomic units are used throughout and A (k) is the
Fourier transform of the surface profile function
h(r)=h(x,y) and K, is the modified Bessel function. If
h(r)) represents a periodic deformation (corrugation) then
Eq. (1) becomes a discrete Fourier series over the
reciprocal-lattice vectors of the two-dimensional net {k}.

In Ref. 4(b), Eq. (1) was also used in a short discussion
of nearly-free-electron theory of surface image corruga-
tion states with plane hard—wall boundary conditions. The
matrix element (k;,n | yiv |k;,n) was calculated be-
tween planar image states, (r| k”,n)_exp(tk” I )pn(z),
where ¢,(z) is an eigenstate of H© 3 +V2— +2. The
matrix elements were then used to dxscuss the poss1b111ty
of observing a gap

AE,=2|{k,n | V;"|k,n)|
=1 |hkkiL, (k)| , (2)
where I, (k)= fdz | 6n(2) | 2K, (k,z). We showed that if

a typical corrugation height for a sinusoidal A(r) is 0.2 A
then AE,~2.0 eV, which is a value that is easily within
the capabilities of inverse photoemission experiments. We
will return to this calculation later in this report using the
full image and boundary plane perturbations.
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We next turn to a discussion of perturbation theory
when both the potential and the boundary condition are
involved. In a quantum-mechanical problem where only
the boundary condition on the wave function changes it
was shown by Froelich® that boundary terms arise which
lead to a change in the energy of the form

_ * () (© . (O)*éjli
AE_fSOz/; Lan ds-—fsw 5. ds 3)

where 8/8n denotes the normal derivative and %' van-
ishes on the initial surface S, while 1 vanishes on the fi-
nal surface S. Equation (3) is exact, and a first-order re-
sult is obtained when 1 is replaced by ¥'*.

In the corrugated-metal-surface problem one must con-
sider the more general problem where both the image po-
tential and the boundary condition are changed from the
plane-metal surface. We have considered the simplest
case where the electron is subject to a hard-wall boundary
condition that is coincident with the corrugated image
plane [depicted in Fig. 1(b)]. This general class of prob-
lems can be treated elegantly using the Feshbach-Clogston
(FC) method of the boundary transformation operator.’
We thus discuss their method in the context of our prob-
lem as defined above.

Feshbach and Clogston show that the equations,

HY=EYy, ¢|s=0 @)
are equivalent to the transformed equations,

H¢=E¢, ¢|s5,=0, (5)
where

H=THT', ¢=Ty.

T is the boundary transformation operator, T =exp(o)
and 0 =h(x,y)d/93z. One can thenuse T=1+0+ - -- to
generate a perturbation theory for the function ¢ from
which y=T"'¢=(1—0o+ - - ) can be calculated in any
given order in the profile function A (x,y) once ¢ is

known. Thus, for example, if H=H9 4y ... then
H=H94+H"Y 4 .- where
H(l) V(1)+[0' H 0)] (6)

and so on. The algorithm proceeds by first calculating ¢
using H=H®4+H"Y 4 --- in the usual perturbation
theory from which one then calculatés =T "'¢. For ex-
ample,

Yo=(1—0W,)+ 3

n'(s£n)

(n: \ V(l)—{—[O',H(O)] l”>
E(O)_E(Q)
n n

NG )

is the modified wave function through first order. Here
we note what may be not entirely obvious and is just
one example of what occurs when boundary surfaces
are  perturbed. Namely, (n’|[o, H(O’] n Y4 ( E(O)
—E{)(n'|o|n) in the usual way, since (o¢') and ¢
do not satisfy the same boundary conditions and therefore
the standard manipulations with Hermitian operators are
different. In particular the 3y’ /dz term does not vanish
on the original surface S, and therefore additional surface
terms arise. In the specific examples to follow this will be
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made more evident. We next present several applications
of the FC method.

1. Surface band gap. This calculation extends our ear-
lier discussion to include the boundary effects. We obtain
for the energy gap

AE,=2|(k,n | V;"+[c,H ]|k ,n) |
dV(O)
=2 (ky,n | V,‘“+h<rﬂ)d—; lkpn)| . ®

The reason the commulator simplifies so, is the fact that
the matrix element (n|d/dz|n)=0, and therefore,
terms involving [#,H'®] vanish. The terms in Eq. (8) are
easily calculated analogous to Eq. (2). For corrugation
heights of 0.6 and 1.0 a.u. for Cu(100), we calculated the
dispersion curves and gaps indicated in Fig. 2. The exper-
imental data has not as yet been extended as far as the
gap.

2. Surface binding energies. Here we carried out a
much more detailed calculation since second order pertur-
bation theory was required and the image potential had to
be calculated to the same order. The details will appear in
our elaborated report.’ Again we applied our results to
Cu, Au, and Ag (100) and (111) surface states recently re-
ported in inverse and two-photon photoemission experi-
ments."> We find that reasonable corrugation heights (0.3
to 0.15 A) allow the data to be interpreted in terms of a
raising of the n =1 level in agreement with the interpreta-
tion of Smith,® Wienert et al.,’ and Echenique and co-
workers.! We find for example, in atomic units:
Cu(100), E =h?/86.965; Ag(100), E=h?/125.87;
Au(100), E=h?2/118.73 for the binding-energy shifts.
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FIG. 2. Dispersion curves: (a) #™*=1.0 a.u.; (b) h™*=0.6
a.u.
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These values also lead to an interpretation that the effec-
tive mass deviates from unity by less than 1%.

3. Boundary perturbations of self-consistent jellium
wave functions: scanning tunneling microscopy. The im-
portance of image states in both scanning tunneling mi-
croscopy (STM) and spectroscopy (STS) has been recently
emphasized.!! Here we discuss an application of wave
functions closely related to the ones presented in the
preceding discussion of photoemission. Namely it in-
volves generating an approximate wave function ¥(r,z),
for a corrugated surface S, by replacing z with z —h(r))
in the wave function w(m(r”,z) for the planar surface S,
ie., l/;(r“,z)——*t,li(m(rﬂ,z~h(rH)). This wave function is just
the FC operator T~ !'=exp(—o) applied to ¢'°(r), name-
ly

U(r)=exp(—o)y'%r) , 9)

which differs from the usual FC result in that 7! is ap-
plied to eigenfunctions of H'?, rather than those of H.'?
We now proceed to establish the range of validity of the
preceding expression for ¥(r).

We begin by noting that in the STM problem, the
hard-wall boundary condition used in the photoemission
problem, ¥(r,,z=h(r;))=0, may not be appropriate, but
rather a finite potential barrier at the metal-vacuum inter-
face may be more suitable. For the soft-wall boundary
condition, ordinary perturbation theory is applicable.

We have shown*® that for a corrugated surface of
wavelength A and amplitude 4, the planar image poten-
tial V'%z) goes to V'9z—h(r)), for z/h <1 and
z/A—0. Assuming that the potential close to the metal
surface, and within the metal, also follows the corruga-
tion, i.e., V(z)=V'z—h(r))) for all z,"* it can be
shown'* by applying ordinary perturbation theory that in
the limit of z/A—0, the wave function can be approxi-
mated by w(r“,z)=w(0’(r“,z—h(ru)). In the following ap-
plication to STM, we will use the aforementioned approxi-
mation for the wave function.

Tersoff and Hamann'® have shown that the tunneling
conductance in STM is proportional to the local density
of unoccupied states (LDOS) of the target at the Fermi
level, Er, evaluated at the probe position R,

I ~prpos(R,Ep)=3 | (R) | *8(Ex —EF) . (10)
K

Substituting our wave function into (10), we obtain

pLoos(R.Ep)=2 | U(R|,Z —h) | *8(Ey —Ef) . (11)
k

For the case that w(O)(rH,z)zexp(ikH'rH)d)kz(z), we obtain
for the conductance

I~3 |6 (Z—h(R)|*S(Ex—Ef) . (12)
k

z

Equation (12) indicates that the contours of constant con-
ductance follow the surface corrugation function A(R),
i.e., the change in the probe position, AZ, is given by
AZ:h(RH).16
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In summary, we have determined wave functions for a
corrugated metal surface. We presented specific expres-
sions for the wave functions in terms of the corrugation
function A (x,y) and suggested how they might be useful
in several types of electron-surface experimental probes.
In particular all of these methods are capable of determin-
ing the theoretically significant function 4 (x,y).!”
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