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A computer simu1ation of a dc superconducting quantum interference device (dc SQUID) in
the case P, 3, Pt. 6.28, and noise parameter I =0.01 is performed. The main difference with
respect to the case of noiseless behavior is the disappearing and/or mixing of some solutions of the
differential equations describing the time evolution of the system. Only by including the noise ef-
fect in the simulation is it possible to understand the working mechanism of some practical devices
characterized by high values of the critical current and inductance.

The relatively simple system made up of two Josephson
junctions connected in a superconducting loop, usually
called the dc superconducting quantum interference device
(dc SQUID), has been widely studied numerically. The
first attempt to solve the problem was made by neglecting
the junction capacitance. The inclusion of the capaci-
tance term showed that the optimum performances were
similar to those obtained in the first calculation. More re-
cently, it has been shown that when particular values of
the parameters controlling the dynamics of the system are
chosen the dc SQUID behavior becomes very complicated
and the solutions of the differential equations describing
the system become chaotic. In this case, the relevant
characteristics of the device dramatically degrade so much
as to prevent its use as a magnetometer.

In this Comment we investigate what happens to this
kind of solution when the dynamics of the system is per-
turbed by the noise related to the dissipative part of the dc
SQUID, numerically solving the two second-order dif-
ferential equations governing the system s time evolution.
We show that here the noise plays an important role and
can change the relevant characteristics of the SQUID a
lot, probably more than in the case usually considered in
the design of superconducting magnetometers.

The resistively-shunted-junction model of a Josephson
junction in the symmetrical case permits one to write

I; = (PpC/2tt)d 6;/d t + (Pp/2trR )db;/dt

+I,sin6;+I„; fori =1,2,

where 6; is the phase difference, C is the junction capaci-
tance, R is the shunt resistance, I, is the junction critical
current, I„;is the noise current, and po is the flux quantum.
Using f1ux quantization and following Ref. 3 the dimen-

sionless equations can be written

p, v+ v+ sin vcos8 =i /2 —(i„t+ i„2)/2, (2a)

S, =(4k T/R)(l/I, ) (2trI, R/Pp) =4I, (4)

where I"=2trktt T/I, pp is the noise parameter.
From Eq. (2) it is clear that the effect of noise is to

change randomly the working point of the dc SQUID de-
fined by i and 8,„t.Furthermore, as is well known, these
equations show that the problem of understanding the dc
SQUID behavior can be reduced to the more intuitive
study of the dynamics of a classical particle having mass
p„placed in the position defined by the coordinates v and
0, moving in a bidimensional potential given by

U(v, 8) = —cosvcos8+ 8 /PL, (5)

P, 8+ 8+ sin 8cos v+ 28/PL =8,„t/PL —(i„~—i„2)/2, (2b)

where p, =2trR CIc/toto pt =2trLIc/toto 8ext =2trpext/po fOext

is the external magnetic flux coupled to the dc SQUID,
i = (I~ +I2)/I„and i„;=I„;/I,. Furthermore, v = (b~
+ 82)/2 is the average phase difference and 8= (Bt —b'2)/2
is the internal phase difference. Dotted variables represent
derivatives with respect to the reduced time t'=t2ttI, R/

In this scheme the voltage V which appears at the ter-
minals of the dc SQUID is vRI, and the circulating
current J (in units of I, ) flowing inside the superconduct-
ing loop is related to the internal phase by

1 =(It 12)/2I, =2(8——8,„t/2)/pL, .

We assume that the noise currents i„~and i„2arise from
the Johnson noise generator in the shunt resistances, so
that in this low-frequency approximation each one has a
white spectral density St =4kttT/R where ktt is Boltz-
mann's constant. Applying the time transformation in re-
duced units we can write
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FIG. I. Isopotential contour plot in the (v, 8) plane in the case
PL 6.28. The trajectories labeled s and b represent two possible
solutions of Eq. (2) in the case P, 3, i 1.5, H,„t 0, and I 0.

and subject to a force of components in the v and 0 direc-
tions given by

i „=i/2 —(i„(+i„z)/2,
i e -H,„t/Pr, —(i.)

—i„z)/2,

(6a)

(6b)

respectively.
In Fig. 1 the isopotential contour plot in the case

pL, 6.28 is shown. In this figure two possible trajectories
of the particle in the case P, =3, i =1.5, H,„t=0, and I =0
are also indicated.

Assuming 8,„,=0 the possible solutions of Eq. (2) fall in
one of the following categories.

(1) They could fall into a zero-voltage state in which the
particle is confined in the proximity of one of the absolute
minima of the potential. In contrast to the other kind of
solutions this is a static solution (i.e., i =8=0).

(2) They might fall into a single-junction state (trajec-
tory s in Fig. 1) in which 8=0 and v&0. The potential
U(v, 0) is the same as in the case of the single Josephson
junction.

(3) Or they could fall into a beating state (trajectory b
in Fig. 1) with 8%0 and v&0, whose characteristic fre-
quency is governed, as discussed in Ref. 4, by the LC cir-
cuit. The beating solution exists only for a limited range
of values PL and P, . This solution is characterized by low
average voltage and high rms values of the circulating
current.

The i-(v) characteristics of the dc SQUID without noise
in the case of Pr =6.28 and P, 3 are shown in Figs. 2(a),
2(b), and 2(c) for values of H,„tequal to 0, 0.7, and 1.57,
respectively. The zero-voltage and single-junction
branches were obtained starting from i =0 and initial con-
ditions vp =

Hp vp =
Hp =0 (i.e., a particle at rest in an ab-

solute minimum of Fig. 1), and computing (v) on the basis
of the numerically calculated solutions of Eq. (2). Next,
the current i is slightly increased and a new computation is
performed, taking as initial conditions for the four vari-
ables the last temporal values obtained in the previous cal-
culation. The average is always performed in the steady-
state condition. This procedure is repeated until a given
maximum value of the bias current i is reached; from this
point we go back decreasing the current i. The beating
branch, that in this case coexists with other ones, is
searched by always placing the particle at t =0 in the

FIG. 2. i -(v) characteristics in the case pL, -6.28, p, 3, and
1 0 in correspondence of (a) 8,„& 0, (b) 0.7, and (c) 1.57. La-
bels z, b, and s indentify the zero voltage branch, the beating
branch, and the single junction branch, respectively.

proximity of a secondary minimum of the potential and
giving it an initial velocity only in the 8 direction (i.e.,
vp =3.14, Hp =3, vp =0, and Hp = 1). All the solutions of
the second-order differential equations were numerically
calculated using the Milne's method. 5

The case studied in Fig. 2(a) is the same as in Ref. 3.
The agreement is quite good. [Note that the current nor-
malization is different. Here i =(I~+Iz)/I„ in Ref. 3
i =(I~+Iz)/2I, . ] Note the abrupt displacement of the
beating branch into the low-voltage region on moving from
Fig. 2(b) to Fig. 2(c). The names of the three branches,
defined in the case 8,„,=0 [Fig. 2(a)], are used to label
similar solutions in the other cases discussed (H,„t&0).

In order to gain more insight about the dc SQUID
features as a magnetometer in this parameter range, the
average voltage versus the external flux was computed in
the absence of noise in the case PL =6.28 and P, =3. In
Fig. 3 the curves at i =1.6 and i 1.8 are shown. The
agreement between the curve corresponding to i =1.6 and
Fig. 7(a) of Ref. 3 seems to be very good. At i =1.6,
8,„t=0.8 or 5.5, the solution of the SQUID equations is
chaotic. This solution is reached via a Feigenbaurn se-
quence. The almost flat flux dependence of &v) seems
to prevent the use of such a device as a magnetic field
detector.

Nevertheless there are in the literature experimental
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FIG. 3. (v)-8,„tcharacteristics corresponding to the current
i 1.6 and 1.8 in the case PL, 6.28, P, 3, and I 0.
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FIG. 4. i-(v& characteristics (solid line) corresponding to (a)
e,„t 0 and (b) 8,„t 1.57 computed in the case PL =6.28, P, =3,
and I 0.01 with an integration time step of 0.01 and total time
T 2621. To facilitate the comparison the dotted lines represent
the same characteristics as in Fig. 2 (I =0).

measurements on noise and sensitivity of planar gradiome-
ters with integrated dc SQUID's, s which are characterized
by values of pL and p, like those described here. In these
devices the SQUID inductance itself is the magnetic field
detector, the SQUID being designed in a second-order
gradiometer configuration consisting of four loops con-
nected in parallel. In this case, the sensitivity of such a de-
vice to the external magnetic field increases approximately
with the square of the loop side, while the total SQUID in-
ductance increases linearly with the side.

In the case of the single Josephson junction it has been
shown that the effect of noise is to cause occasional ran-
dom switching between the "zero-voltage state" and the
"voltage-different-from-zero state. " This random switch-
ing leads to a large increase of the low-frequency voltage
noise spectral density as well as the absence of hysteresis in
the current-versus-voltage curve.

The noisy i -(v) characteristics for the dc SQUID in the
case PL =6.28 and P, =3 corresponding to 8,„,=0 and
1.57 are shown in Fig. 4. Each characteristic is obtained
by using 200 different points. The curve is obtained with
the process described previously and I =0.01. The in-
tegration time step ht of Eq. (2) is 0.01 for a total time
T =2621. The noise currents i„~and i„2are simulated us-
ing a Gaussian-distributed random generator of
rr=(2I /At)'t to generate two independent sequences of
current pulses (the duration of each pulse is ht ). Note the
absence of hysteresis, the increasing-current branch being
almost completely superimposed on the decreasing-current
branch. In Fig. 5 v(t) and J(t) corresponding to the point
i =1.9697 and O,„t=0 of the above noisy i-(v) characteris-
tic are shown. Each point represented in Fig. 5 is the re-
sult of an average over 256 adjacent points. In this figure
transitions between the single junction state and the beat-
ing state are visible. The single junction state is character-
ized by a higher average voltage and low circulating
current pulses, whereas the beating state is characterized
by lower average voltage and high circulating current
pulses. It is evident that the noise causes occasional jumps

FIG. 5. v(t) and J(t) solutions corresponding at the point
i =1.9697 of the i-iv& characteristic shown in Fig. 4(a).

1.00

0.BO

0.60

(v)
0.40

0.20

0.00
0.00 2.00 4.00

ext

6.00

FIG. 6. (v)-0,„tcharacteristics corresponding to i =1.6 and
i 1.8 in the case PL 6.28, P, =3, and I 0.01 computed with
an integration time step of 0.01. The solid line is calculated us-

ing 200 points, each one averaged over a total time T =2621, the
filled squares represent averages over T =41943. To facilitate
the comparison the dotted lines represent the same characteris-
tics shown in Fig. 3 (I =0).

between the possible different branches. Here, the result
is the destruction of the multiplicity of the states and the
merging of the two branches into one average curve that,
for a certain range of the current i, passes near the beating
branch or near the single junction branch. It is interesting
to point out that this hopping mechanism surely produces
an increase of the low-frequency voltage noise level.

In Fig. 6 we show the voltage-versus-flux characteristics
for i =1.6 and i =1.8, in the cases pL =6.28, p, =3,
I =0.01, hl =0.01, and T =2621. Two curves of 100
points are computed for each current value: They are gen-
erated starting from different noise current sequences and
initial conditions. In order to be sure that the total time is
long enough we repeated the computation for a few (24)
points with a total time T =41943; the results are shown
as full squares in Fig. 6. Note, for i =1.6, the disappear-
ance of the curve portion corresponding approximately to
8,„t~0.8 and O,„t~5.5 and, at the same time, the appear-
ance of a portion of curve with responsivity a(')t'tie, „,
enough different from zero. It is possible to get this appre-
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S, =S'(Btt tlBV)' (7)

where Sy is the voltage spectral density of V. Transform-
ing into reduced units the right-hand side of Eq. (7) we get

St, (ypl2tr) (I Iktt TR )S„(Bv/BO,„,) (8)

For a temperature T =4.2 K the flux sensitivity &tv in po
units is

ytvlyo =6.89x10 6(1-lR )'tzS!t2 (B '/Bg,„,) (9)

The voltage noise spectral density is evaluated at the
point i =1.6, Oext 1.57 of Fig. 6 with I =0.01, applying
the fast-Fourier-transform algorithm to 2' points (each
point is the average over 256 contiguous points) of the
v(t), computed for a total time T =41943 and a time step
h, t =0.01. The voltage spectral density is flat for frequen-

ciable responsivity thanks to the hopping mechanism be-
tween the zero voltage branch and the beating branch.
Considering only half a flux quantum (i.e., e,„t(tr)and
looking at the solutions v(t), it is possible to state that for
O,„t~0.8 the system will be in zero voltage state. On the
other hand, for O,„t~2it will be in the beating state. For
intermediate O,„t,random switching occurs between these
two branches, and the total time during which the system
is in one state or in the other depends approximately
linearly on O,„t.At i =1.8 the random switching occurs
between the beating state and the single junction state re-
sulting in a less regular characteristic.

It is worthwhile to estimate the low-frequency flux sen-
sitivity of such a device. The low-frequency noise flux
spectral density is given by

cies less than 0.001 and we estimate here S„=4.5. The
calculated local responsivity around this working point is
0.15 and assuming R =150 we obtain &tv=2. 5x10
Hz ' . This number is not too different from that report-
ed in Ref. 6 of 8 x 10 po Hz 't considering that, in that
case, the dc SQUID was characterized by R =15Q,
P, =2.2, PL =8.1, and I =0.016.

We can conclude that considering only the effect of
noise in the simulation is possible to understand the work-
ing mechanism of SQUIDs with a high value of PL and P,
and relatively small value of the noise parameter I. The
simulated Johnson noise makes some solutions unstable
and the hopping mechanism between different branches
can eliminate the multiplicity of the characteristics and
can give a responsivity no longer flat. The computer simu-
lation agrees quite well with previously reported measure-
ments on a device suitable for applications, such as an ar-
ray of large size planar gradiometers, where very high
SQUID inductances and relatively high critical currents
are needed. A flux noise of the order of a few 10
Hz ', in a device without input coil, surely higher than
the noise of the best dc SQUIDs, can provide devices with
magnetic field sensitivity better than any other existing
gradiometer. The effect of the input coil usually spoils the
overall performances of the dc SQUID. The experimen-
tal measurements on real device are in progress.
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san for a critical reading of the manuscript, and thank
I. Modena, A. Paoletti, and G. L. Romani for their en-
couragement in writing this paper.
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