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The scattering rate of free electrons due to polar interactions with LO phonons in two-

dimensional structures (e.g., semiconductor heterojunctions and quantum wells) is calculated as a
function of the electron energy, electron and lattice temperatures, the carrier density, and the layer
thickness. A many-body perturbative formalism is used with phonon-emission and -absorption
self-energy terms obtained explicitly. Effects of screening and degeneracy on the scattering rate are
critically discussed. Detailed numerical results for the experimentally well-studied modulation-

doped GaAs heterojunctions and quantum wells are given.

I. INTRODUCTION

Two-dimensionally confined electron systems in serni-
conductor heterojunctions and quantum wells have been
(and are being) intensively' studied both theoretically and
experimentally in the last few years. Our goal in this pa-
per is to provide a fairly detailed theoretical picture for
the electron —LO-phonon —interaction —induced polar
scattering of free carriers in these systems. Our numerical
results will concentrate on electron systems based on
GaAs-Al Ga& As structures; however, a rough quanti-
tative estimate for hole scattering can be obtained by a
simple scaling of the electron-phonon coupling constant.
Even though all numerical results presented in this paper
are for two-dirnensionally confined electrons in GaAs
structures (both heterojunctions and quantum wells),
trends and qualitative conclusions we make should be ap-
proximately valid in other similar polar two-dimensional
structures like Hg Te-CdTe, InAs-GaSb, Ga& In„As-InP,
and Ga& ~In~As-Al& ~In&As systems. Our reason for
concentrating on GaAs-Al„Ga& As structures is the
simple fact that it is by far the most extensively studied

system. This system also has the advantage of being sim-
ple in its electronic band structure where the model of iso-
tropic and parabolic two-dimensional dispersion of elec-
tron energy in each subband is an accurate approximation.

The motivation for our work is almost obvious. Many
of the electronic properties of heterojunctions and quan-
tum wells are expected to be modified by electron —LO-
phonon scattering via the Frohlich interaction. In fact,
there already exists a substantial body of literature dealing
with the electron —optical-phonon interaction in two-
dimensional structures including a number of our own
publications. Polaronic renorrnalization of carrier ef-
fective mass in two dimensions due to the electron-
phonon interaction has been considered in a number of re-
cent papers, both experimentally and theoretically. Of
more relevance to this work are a number of papers, '

notably by Price' and by Ridley, " that deal with the
scattering rate and transport contributions by the
electron —LO-phonon interaction in two-dimensional
structures. Where appropriate, our results reduce to these
results. There have also been a number of mobility calcu-
lations' '' in GaAs-A1~Ga& ~As and other related struc-
tures where the electron —LO-phonon scattering contribu-

tion (mostly from the absorption of phonons, which be-
comes important at higher temperatures, T& 100 K) is
implicitly included. Room-temperature mobility in
modulation-doped GaAs heterostructures is thought to be
mainly limited by LO-phonon scattering; however, it is
not easy to separate out contributions from various terms
(e.g. , charged-impurity scattering, scattering by remote
dopants, acoustic-phonon scattering, alloy scattering) to
the transport data, since Mathiessen's rule is not valid at
high temperatures.

One important category of experiments to which
electron —LO-phonon scattering considerations of this pa-
per are directly relevant is the hot-electron energy-loss
study. A number of experimental papers with somewhat
conflicting results have appeared on this subject in the re-
cent literature. ' ' Our belief is that a complete quanti-
tative theory for these experiments is difficult and, at the
present time, nonexistent. Results presented in this paper
enable one to make some semiquantitative conclusions
about the basic mechanism of electron-phonon interaction
underlying these hot-electron studies. Trends in our
electron-phonon scattering-rate results are consistent with
those observed in the experiment and any remaining
discrepancy should be attributed to physical mechanisms
explicitly excluded in our theory (e.g. , hot-phonon ef-
fect' ). But the fact that the experimental results from
different groups are in disagreement with each other
clearly precludes any definite conclusion on this subject
based on our calculations. Electron —LO-phonon interac-
tion in two-dimensional systems has also been studied in
the context of calculations of subband structure and opti-
cal properties by various authors. '

The model we employ for our calculation is that of a
two-dimensional electron gas of areal number density N,
confined to the lowest quantum subband of a semiconduc-
tor heterojunction or single quantum well interacting with
the dispersionless bulk LO phonons of the host sernicon-
ductor (e.g. , GaAs in the Al Ga& „As system) via the
continuum Fro h lich Hamiltonian. ' We assume the
two-dimensional energy dispersion of these electrons to be
parabolic and isotropic.

The effective mass approximation -is assumed to be valid
uncritically and any subtle effect arising from the bulk
band structure of the system is completely ignored (this
clearly limits the quantitative validity of the theory when
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applied to hole systems which have complicated band
structure). The model we employ here has been extensive-
ly used ' in the study of two-dimensional electron systems
and, even though fairly simple, it is expected to be quite
accurate for electrons two dimensionally confined in the
conduction subbands of GaAs in GaAs-Al Ga& As het-
erostructures. More details on the theoretical model and
on our approximations are given in the next section of the
paper and in Ref. 2. In Sec. III we discuss the static
screening model and in Sec. IV we present and discuss our
numerical results for the polar scattering rate of electrons
in GaAs-Al Ga& „As heterojunctions and quantum wells
as functions of all the relevant physical parameters of the
system (e.g., temperature, electron density, well thickness)
and for a number of different approximation schemes as
explained in Secs. II and III ~ We conclude in Sec. V with
a summary of our results, a critique of the various ap-
proximations used in this work, and a critical discussion

I

of our view of the experimental and theoretical status of
the subject.

II. THEORY, MODEL, AND APPROXIMATIONS

The central quantity we calculate in this paper, under
various approximation schemes, is the leading-order elec-
tronic self-energy correction due to polar-electron —LO-
phonon interaction via the Frohlich Hamiltonian. Details
of the formalism are standard and have already been
given in Ref. 2. We omit the formal details, except to
state that our interest in this paper is to obtain the imagi-
nary part of the electronic self-energy which is related
directly to the single-particle broadening and scattering
rates, and indirectly to electronic mobility and hot-
electron relaxation rate. The imaginary part of the un-
screened self-energy can be written in the leading order in
a, the Frohlich coupling constant, as (4=1 throughout
this paper)

3/2
CXCi) LQ 2'

ImX(k, E)=—
2(2m)' ~ dq q dO n&+nF k —q 6 E+~LQ —Eo k —q0

+ [nz+ 1 —nF(k —q)]5(E —coLo Eo(k —q)) ],

where we have explicitly taken into account the two-
dimensional isotropy of the model, noting that the self-
energy depends only on the magnitude k =

~

k
~

of the
electron wave vector, and E is a general energy variable.
In Eq. (1) a, coLo, and m are, respectively, the bulk
Frohlich coupling constant for polar interaction (in
GaAs), LO-phonon frequency, and the electronic band ef-
fective mass. The two-dimensional wave vectors k and q
are, respectively, the electron and phonon wave vectors in
the plane of the layer, whereas 0 is the scattering angle in
the plane defined by

~

k —q ~

=(k +q 2kq cos0)'~'—

The quantity Eo(k) =k /2m is the bare electronic energy
with all band nonparabolicity effects neglected uncritical-
ly (this should be valid for GaAs systems at not overly
high electron densities). The functions nz and nF are
Bose and Fermi occupation factors defined by

ns =(e —1)~~LO

and

nF(k) =(e ' +1)

where p, the chemical potential, is determined from the
total electron density X, of the system, and P=(ksT)
Finally, f (q) is the electronic form factor associated with
the subband quantization in the z direction and its form
for both the heterojunction and the quantum-well situa-
tions are well known ' ' and are given in the Appendix for
the sake of completeness. The self-energy is an explicit
function of the independent variables k and E, and con-
tains more information than a scattering rate which is a
function of k only [or, equivalently, of Eo(k)]. For ex-
ample, the damping of an electronic state is given by IrnX,
and, as such, it is related to the tunneling rate and to the
quasiparticle lifetime. In this paper, however, we are in-
terested in the polar scattering rate I (k) for the quasipar-
ticle and, therefore, we calculate ImX(k, E) on the "mass
shell" by substituting E =k /2m—:Eo(k) in Eq. (1):

I (k) —= —ImX(k, E =k /Zm)
3/2

A&7 LQ OO 277f dqf(q) f do[ [n~+nF(k —q)]6(Eo(k)+~LQ Eo(k —q))

+ [n~+ 1 nF(k q)—]6(Eo(k)—c—o„o—Eo(k —q)) j .

Th«irst term in Eq. (2) denotes a LO-phonon absorption by the electron, whereas the second term denotes the emis-
sion of a LO phonon. It is customary to discuss free-carrier scattering by LO phonons in terms of absorption and emis-
sion processes and we divide the total damping rate of Eq. (2) into an absorption part I", and an emission part I, :

3/2

1,(k)=, f dq f (q) f d8[ns+nF(k —q)]5(EO(k)+~Lo —Eo(k —q)), (3)
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3/2
(XYLO 2mr, (k) =

2(2m )
f dq f (q) f d 8[n~ + 1 —nF(k —q) ]5(Ep(k) —tpLo —Ep(k —q) ) .

0

The dependence of the absorption and emission rates in
Eqs. (3) and (4) on the electron energy Ep is easily ob-
tained by noting that k =(2IEp)'~ . We want to em-
phasize that I, is nonzero even when n~ ——0 (e.g., very
low temperatures). This is entirely due to the existence of
a Fermi surface in the problem (i.e., because nF &0) which
allows a "quasihole" inside the Fermi surface to decay by
the emission of a LO phonon, and the emission of a LO
phonon by a quasihole is equivalent to the absorption of a
LO phonon by the quasielectron. In fact, the absorption
term in Eq. (3) can be thought of as an emission process
for quasiholes and the equivalence between the terms in-
side the square brackets in Eqs. (3) and (4) becomes clear
when one notes that the Fermi occupancy factor for holes
(nH) is given by nH ——(1 nF). W—e shall not pursue this
discussion any further here, except to note that for a cou-

I

pled electron-phonon system, where a degenerate electron
gas is interacting with a phonon field, the conceptual dis-
tinction between absorption and emission of phonons be-
comes somewhat obscure because of the existence of both
electrons and holes as quantiparticles in the Fermi sea.
We point out that with the mass-shell approximation
E =Ep(k) in Eq. (1), the calculation now becomes
equivalent to Fermi's golden rule —type theory for the
scattering rate with quantum statistics effect explicitly re-
tained in Ea. (2).

The integrations over the scattering angle 8 in Eqs. (3)
and (4) are straightforward to carry out using the fact that

@Ep(k)+tpLo —Ep(k —q) )

=5(kq cos8/m —q /2m+cpLQ),
and we get

and

k +(k2+y2)1/2I, (k) =(aycoLo)[ns+nF(k +y')' ']f,„,dq f(q)[4k'q' (q' y')']- —
—k +(k2+&2)1/2

k +(k2 2)1/2

r, (k)=(aycpLo)H(k —y)[1+n~ —nF(k —y )' ] f dqf(q)[4k q (q +y ) —]
k —(k2 &2)1/2

(5)

(6)

where

y =2mcoLQ2

and

P(k2/P(k /2m+cuLo —Pl

with n~ ——(e —1) ' as usual. The chemical potential Iu, of the electrons is determined by the electron density 1V, and
the absolute temperature T:

p =P ' In(e —1),
where

EF—~N, /m (10)

is the Fermi energy [EF——p(T =0)] of the system. The Heaviside unit step function H(x) in Eq. (6) is simply 0 or 1,
depending on whether x & 1 or x & 1, respectively.

For a strictly two dimensional sys-tem the subband form factor f (q) is unity and the q integration in Eqs. (5) and (6)
can then be performed analytically. We get

I,' '(k)=(aytpLo)[n~+nF(k +y )'~ ](k +y )
'~ K(k/(k +y )'~ ),

(k)=(aytpLo)[no+-1 —nF(k'+y')' ']k 'H(k y)K((k' y'—/k' '), — (12)

where
m/2

K(x)= J dg(1 —x sin P)

is the complete elliptic integral of the first kind and the
superscript indicates that we are considering the purely
two-dimensional limit. In fact, we can get a fairly accu-
rate analytic approximation to the polar scattering rate in
the actual quasi-two-dimensional electron layer by noting
that the form factor f(q) is a rather slowly varying func-

r. (k) =r."D'(k)f (k'+ y') '"
r, (k)=r," '(k)f(k),

(13)

(14)

where I,', '(k) are the strictly two-dimensional scattering

tion of the wave vector q and can, therefore, be taken out
of the integral with its value being evaluated at the aver-
age wave vector. Thus we can evaluate the integrals in
Eqs. (5) and (6) approximately as
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2

For temperatures so low that plvLo » 1, we get

I, (k =) )=—acoLoe(2D) 7T

2

(15)

(16)

Thus the low-temperature phonon emission rate at the—PEFthreshold is suppressed by a factor of e due to the ef-
fect of degeneracy. For a typical N, =3)&10"cm and
T =50 K the suppression at threshold is by a factor of 10
for GaAs systems. Since the occupancy factor
(1+ns —nz) increases with the electron energy, the two-
dimensional emission rate at low temperatures is similar
to the three-dimensional result when degeneracy effects
are included.

One important effect of degeneracy is that the zero-

rates given by Eqs. (11) and (12). Using the fact that the
electron energy Eo is related to the wave vector k by the
relation Eo ——k /2m, one can obtain the dependence of
phonon emission and absorption rates on the electron en-

ergy (Ep) from Eqs. (11)—(14).
In the nondegenerate limit, where one has only one elec-

tron interacting with the LO phonons of the system, the
Fermi occupancy factor nz in the above equations be-
comes zero. It is easy to see from Eqs. (5)—(14) that the
phonon emission rate at the threshold, I,(k =y), then
has a discontinuity in two dimensions (unlike in three di-
mensions), reflecting the constant two-dimensional density
of states. In particular, the phonon emission rate at
threshold for the strictly two-dimensional system is given
by

I,' '(k =y) =mace Lo(1 +n s)/2 .

An accurate approximation to the quasi-two-dimensional
system is obtained by multiplying this result with f ( k).

At low temperatures, the degenerate case near threshold
is very different from the nondegenerate situation just dis-
cussed since there are very few empty electronic states
available for the electron to decay into, due to Pauli-
principle restrictions. The discontinuity in the phonon
emission rate at the threshold is considerably suppressed
by the Fermi-statistics effect and we get the low-
temperature result

temperature threshold energy for phonon emission is
shifted from Ep=ci)Lo to Ep —Ep+ci)Lo due to Pauli-
principle restrictions. This follows from a simple inspec-
tion of the occupancy factors in Eqs. (5)—(14). In particu-
lar, the LO-phonon emission rate at T =0 is given by

3/2

I,(Ep) -=,~, f (k)&([(Ep—coLo)/Ep]' ')
E1/2

XH (Ep —Ep —coLo ) (17)

where Ep ——k /2m and we have taken into account the
form-factor effect approximately. In Sec. IV we give de-
tailed numerical results without making any analytic ap-
proxirnation.

Most of the above conclusions remain qualitatively
valid in the presence of static screening by the free car-
riers, which we consider next.

III. STATIC SCREENING

e( q, 0)= 1 —vc(q)f (q) II(q, 0), (18)

where vc(q) =2m.e /Kq is the Coulomb interaction with K

as the average high-frequency background lattice dielec-
tric constant and 11(q,O) is the static finite-temperature
noninteracting polarizability given by

Inclusion of screening by free carriers in the above for-
malisrn is straightforward if one employs the static
random-phase approximation (RPA). Within the static
screening approximation, the only modification is that the
LO-phonon —mediated effective electron-electron interac-
tion is now screened by the static dielectric function e(q 0)
so that f(q) in Eq. (1) now changes to f(q)[e(q, O)]
There is also a small renormalization of the LO-phonon
frequency which we neglect. Screening is by the square of
the dielectric function since the effective electron-electron
interaction contains a product of two electron-phonon in-
teraction vertices, each of which is screened by the free-
carrier dielectric function. Equation (11) now changes
only by the fact that f (q) in the integrand is replaced by
f(q)[e(q 0)l '.

The dielectric function e(q, O) can be calculated in the
RPA, whence

m 1l4 1 —tanh[ ( T~ /2T)[(q /kz )z p IE~]]—
II(q, O) =- dz

(1—4z)'
(19)

where Tz (=E~/k~) and kJ: [=(2mE~)' ] are, respec-
tively, the Fermi temperature and the Fermi wave vector
of the system. Equation (19) for the two-dimensional po-
larizability reduces to the well-known zero-temperature
Thomas-Fermi form and the high-temperature Debye
form in the appropriate limits.

All our qualitative discussions for the unscreened situa-
tion remain valid in the statically screened case, except
that screening further reduces the electron-phonon
scattering rate by decreasing the basic electron-phonon in-

teraction strength. Like degeneracy, screening effects are
also most pronounced at lower temperatures and higher
electron densities. Many of our numerical results present-
ed in the next section are with static screening effects in-
cluded in the calculation.

One very important theoretical point in the discussion
of screening effects is the question of the validity of static
screening approximation in dealing with electron-phonon
interaction in two-dimensional structures. It has been ar-
gued, ' quite correctly, that static screening may be a
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poor approximation in dealing with electron —LO-phonon
scattering since LO phonons have comparatively high en-

ergies relative to typical electronic energy scales in the
system (e.g. , plasmon energy or Fermi energy). The prob-
lem is further compounded by the fact that the two-
dimensional plasma frequency vanishes in the long-
wavelength limit, making static screening a poorer ap-
proximation in two dimensions compared with the corre-
sponding three-dimensional case.

Our reason for employing a static screening approxima-
tion extensively in this paper is twofold: Firstly, it is a
well-defined, conceptually simple approximation which
has been used extensively in dealing with the
electron —LO-phonon interaction in three-dimensional,
doped semiconductor systems, and, secondly, static
screening in overestimating the importance of the screen-
ing effect on the electron —LO-phonon interaction gives
one an upper bound on how strong screening effects could
be (i.e., the actual interaction strength should lie some-
where between the unscreened result and the statically
screened result). It has been argued ' " that dynamical
screening could give rise to an "antiscreening" effect, pro-
ducing a greater scattering rate than the unscreened case.
We feel that even though antiscreening may be effective at
specific wave vectors (or, equivalently, electron energy),
any physical quantity (such as mobility and hot-electron
relaxation) involving integrals over energy will not show
an antiscreening effect. In fact, for high electron densities
(with consequently high plasma frequency) static screen-
ing results should be quite similar to dynamical screening
results, as has been shown recently. '

Static RPA screening calculations can be shown ' ' to
be exact in the high-temperature and/or high-electron-
density limit (when the plasma frequency is high). The
static approximation also works better ' for large wave-
vector transfers, since the plasmon is damped at large
values of the wave vector. In particular, if one takes the
typical wave-vector transfer in electron —LO-phonon
scattering to be equal to y =(2mcoLo)', then the plasma
frequency of the electron gas, co~(q =y), is comparable to
or larger than the LO-phonon frequency coLo, making
static screening a better approximation than one would
have thought otherwise. In particular, the two-
dimensional plasma frequency for wave vector y in the
GaAs system for X, =5)&10" cm is about 37 meV,
which is larger than the LO-phonon frequency (co„o—36
meV).

The best thing would have been to use a dynamical
screening approximation to obtain the electron —LO-
phonon scattering rates. Such a calculation of the
electron —LO-phonon self-energy in the presence of
dynamical screening by free carriers has recently been re-
ported ' for three- and two-dimensional systems. We
want to emphasize the fact that such a calculation cannot
be performed within the Fermi golden rule —type one-
electron —scattering-rate computations ' because
dynamical screening affects both the LO-phonon frequen-
cy (through the hybridized plasmon —LO-phonon modes)
and the interaction matrix element. Virtual and real pro-
cesses involving emission and absorption of coupled
plasm on-phonon modes via a dynamically screened

electron-phonon interaction can only be treated in a
many-body approach, ' as has been presented in this pa-
per.

IV. NUMERICAL RESULTS AND DISCUSSIONS
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FIC'r. 1. (a) I,(k) for zero well width, .V, =3&&10"cm ', (1)
T =300 K, (2) T =200 K, and (3) T =100 K; unscreened in-
teraction. (b) I,(k), same parameters as (a).

We will first present the numerical results for the
Al Ga& As-GaAs-Al Ga& As single-quantum-well
case. This case is physically simpler within our approxi-
mation scheme, where the electron-density effects on the
electronic wave function are completely neglected for the
quantum-well situation. Thus electron density enters the
theory only through the screening effect (and, also
through the Fermi occupancy factors) and not through the
wave-function effect. The main difficulty in depicting the
results is the overabundance of independent variables in
the problem: electron and lattice temperatures ( T, and
TL ), electron density (N, ), well width (a), and electron
energy (Eo ——k /2m). Thus, in principle, one is interested
in having numerical results for the LO-phonon emission
and absorption rates as a function of five independent
variables with and without screening effects (since static
screening is a drastically simple approximation whose va-
lidity in the electron-phonon interaction calculation
remains doubtful except at high temperatures). In Fig. I

we present our numerical results for the strictly two-
dimensional (zero well width) degenerate case without any
screening. In Figs. 2—7 we present our numerical results
for the LO-phonon emission and absorption rates in
quantum-well structures defined, respectively, as I", and
I, by Eqs. (2)—(4), both with and without a (static) free-
carrier screening effect. We give our results in units of
meV, which can be converted to an equivalent "scattering
time, " r =Pi/2I, by using the rule r=0. 33I (meV) ps.

Since the figures are self-explanatory and detailed, we
refrain from discussing them individually, but make some
general comments about our results.

(I) The electron energy is given as Eo Eo/toLo, ——with
(Ea)' =k/y, where y=(2mioLo)' is the "polaron wave
vector. " Note that the electron energy is measured from
the bottom of the two-dimensional subband.

(2) Because of the restrictive effects of Fermi statistics,
the phonon emission rate is reduced drastically in the en-
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FIG. 2. (a) I,(k) for a quantum well, a =100 A, T =100 K;
(1) N, = 1 && 10" cm, (2) N, = 3)& 10" cm, and (3)
N, = 5 &( 10" cm; unscreened interaction. (b) Same as (a) for
screened interaction.

FIG. 4. (a) I,(a) for a quantum well, T =100 K, k =1.05@;
(1) N, =1)&10" cm, (2) N, =3&(10" cm, and (3)
N, =5&10" cm; unscreened interaction. (b) Same as (a) for
screened interaction.

ergy region 1 & Eo & 1+p/coLo, particularly at low electron
temperatures and high electron densities (i.e., for small
T, /TF). Thus, using nondegenerate theory in the situa-
tion T, /TF «1 will give quantitatively incorrect results
for the LO-phonon emission rate.

(3) At low temperatures (and/or, high electron densi-
ties), the discontinuity in the phonon emission rate at the
threshold (Eo——1) is considerably suppressed by the degen-
eracy effect.

(4) The maximum quantitative effect of screening (com-
pared with the unscreened result) is about a factor of 2
reduction of the scattering rate. As we argued above, stat-
ic screening is an overestimation of the screening effect
and, therefore, screening could, at most, change the calcu-
lated polar scattering rate by a factor of 2. Screening ef-
fects are particularly important at low temperatures, high
densities, and for narrow wells. For T, & 50 K and
a ~ 150 A, screening corrections are of the order of
10—30% for N, & 5)& 10" cm . We want to emphasize
the fact that at high temperatures a ( T&200 K) static
screening becomes a better approximation and our calcu-
lated screening corrections become small. This justifies
the use of the unscreened interaction in the calculation of
room-temperature mobility limited by polar-optical-

phonon scattering, as has been done in some recent publi-
cations.

(5) Quasi-two-dimensional wave-function effects are
found to be important in all situations and we believe that
any quantitative calculation of electron-phonon interac-
tion effects in semiconductor heterostructures must in-
clude the form factor arising from electron confinement.
We find this to be true at all temperatures (0& T & 300 K)
and electron densities (10"& X, & 7 && 10" cm ) that we
have investigated. Strictly two-dimensional calculations
[i.e., f ( q) = 1] overestimate the interaction strength,
whereas three-dimensional calculations may fortuitously
be accurate in some situations, but cannot be justified on
theoretical grounds since the system is dynamically two
dimensional in nature.

(6) Degeneracy has a substantial physical effect on the
energy dependence of the LO-phonon emission rate
I', (eo). For example, as one can see from a typical case
like Fig. 2 or 8, the LO-phonon emission rate peaks at a
value closer to Eo-cuLo+p than at coLO. Thus, even
though the discontinuity at the threshold is reduced by oc-
cupancy effects, the energy-averaged emission rate may
not change much from the nondegenerate situation.
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FIG. 3. (a) I,(k) for a quantum well, N, =3)&10" cm
T = 100 K; (1) a =50 A, (2) a =100 A, and (3) a =200 A; un-

screened interaction. (b) Same as (a) for screened interaction.

FIG. 5. (a) I,(a ) for a quantum well, N, = 3 X 10'

k = 1.05y, zero lattice temperature; (1) T, =300 K, (2) T, =2o0
K, and (3) T, =100 K; unscreened interaction. (b) Same as (a)

for screened interaction.
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tice temperature, T, =300 K; (1) a =50 A, (2) a =100 A, and
(3) a =200 A; unscreened interaction. (b) Same as (a) for
screened interaction.

FIG. 8. (a) I,(k) for a heterojunction, T = 100 K; (1)
N, =1&(10"cm, (2) N, =3 &10" cm, and (3) N, =5& 10"
cm; unscreened interaction. (b) Same as (a) for screened in-
teraction.

Eventually, for very high energies I, falls off again (rath-
er slowly) and degeneracy has a negligible effect in this
high-energy region (E & coLo+p). I, (Eo j is significantly
(and, qualitatively) affected by degeneracy; however, an
energy-averaged I, may not be. Since an energy-averaged
relaxation rate shows up in the hot-electron luminescence
experiments, degeneracy effects may average out there
and a calculation based on simple nondegenerate theory
may produce reasonable results for the hot-electron relax-
ation rate even when T, & TF. However, any measure-
ment (e.g. , tunneling experiments) that directly probes
ImX(EO) should observe significant departure from the
nondegenerate theory as our results indicate.

(7) We have used T, and TI to denote electron and lat-
tice temperatures, respectively, when these are unequal ~

Otherwise, T = T, = TL denotes the common temperature
for both. We want to point out that the phonon occupa-
tion factor nz even for TI ——100 K is only 0.01 and hence
our calculated results change by less than 10%%uo between
TL ——0 K and TI =100 K if all the other variables ( T„
N„tce.) are kept fixed. Thus all our numerical results for
T ~ 100 K could be considered to be hot-electron results
with Te = T and TL ——0.

(8) Since damping due to phonon emission at the

threshold is important in some experimental situations, we
depict its variation with N„T, and a in a number of fig-
ures. We define the threshold arbitrarily to be k = 1.05@.

The above considerations also apply to our numerical
results for the Al Ga1 As-CxaAs heterojunction system,
which we present next in Figs. 8—12. The main differ-
ence between this and the quantum-well case is the depen-
dence of the electronic wave function on the electron den-
sity N, which makes the quantization width (a) a depen-
dent variable. As N; increases the effective wave function
shrinks, making the electron more two dimensional and
thus increasing the form factor which tends to enhance
the scattering rate. On the other hand, screening also in-
creases with N„which tends to decrease the scattering
rate. This competition between wave-function and screen-
ing effects makes the numerical results less transparent
for physical interpretation in the heterojunction situation.
At lower N, the wave-function effect is more important,
whereas at higher A, the screening effect is dominant, so
that the self-energy may show an extremum, as we have
discussed earlier. Since N, and a are dependent vari-
ables, we have fewer sets of results for the heterojunction
case compared with the quantum-well case. We should
remark that the occupancy factors also depend on N, and,
hence, the actual numerical results are quite rich in struc-
ture due to competing trends.
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unscreened interaction. (b) Same as (a) for screened interaction.
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cm; screened interaction.
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FIG. 9. (a) I,(k) for a heterojunction, N, =3&&10'' cm; (1)
T =300 K; (2) T =200 K, and (3) T =-100 K; unscreened in-
teraction. (b) Same as (a) for screened interaction.
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Finally, in Fig. 13 we show a comparative set of hot-
electron scattering-rate results for both the quantum-well
and heterojunction situations, screened and unscreened.
The lattice temperature, in this case, was set to zero and
the effective well width of the heterojunction is approxi-
mately equal to the quantum-well width. Comparing
these figures to previous results, we see that the low lattice
temperature has little quantitative effect for electron tem-
peratures below T, —150 K. We also see that the polar
scattering rate is lower in heterojunctions than quantum
wells of similar width.

Due to the very large number of variables involved in
the problem, it is not easy to develop a physical feel for
our numerical results. We have attempted to give a
comprehensive set of results within our approximation
scheme. The price one pays for such completeness is a
certain lack of precise quantitative statements since I de-
pends on many variables, all of which are important in
some situations or other. We believe that the figures we
give are by far the most complete of any that have been
published in the literature on this subject and are self-
explanatory. Fairly accurate approximate results can be
obtained for the unscreened case by using Eqs. (11)—(14)
as explained in Sec. II.

V. SUMMARY AND CONCLUSION
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In this paper we have provided a rather complete set of
numerical results for the electron —optical-phonon scatter-
ing in quasi-two-dimensional polar systems such as GaAs
quantum wells and heterojunctions. Using a many-body
formalism, we calculate the imaginary part of the elec-
tronic self-energy to the lowest order in polar coupling.
We give detailed numerical results for the LO-phonon

1.5 I I I I

(a)
1.5 t I I I

(b)

1.0
.&2j/

I
IQ

I
0.5 ~

0.8~
/

I
I

I
04' —i

I

1.0)
E 2

,r'r~ .r'
0.5— /

/
/' ./

/
/

/
0 I I I

50 100 150 200 250 300
T {K)

1.0

2.--
/

.r/ .r'
/

0 I I I

0.5—

50 100 150 200 250 300
T (K)

FICz. 11. (a) Same as Fig. 10(a) for zero lattice temperature.
(b) Same as Fig. 10(b) for zero lattice temperature.

(c)
0.2—

(ci)
0 I I I 0 I I I

1.00 1.25 1.50 1.75 2.00 1.00 1.25 1.50 1.75 2.00

FIG. 13. (a) I,(k) for a quantum well, N, =3&(10" cm
a =100 A, zero lattice temperature; (1) T =300 K, (2) T =200
K, and (3) T =100 K; unscreened interaction. (b) Same as (a)
for screened interaction. (c) Same as (a) for a heterojunction.
(d) Same as (b) for a heterojunction.



3898 B. A. MASON AND S. DAS SARMA 35

emission and absorption rates as a function of the electron
energy, electron and lattice temperatures, the electron den-
sity, and the width of the electron layer.

We give results both for the unscreened case and for the
static RPA screening situation. Degeneracy and confin-
ing wave-function effects are included in the calculation.
Degeneracy effects are important for lower electron tem-
peratures and higher electron densities, whereas wave-
function effects are always important.

Our approximation of using the leading-order perturba-
tion theory should be quite good for the weakly polar
(a &0.5) semiconductor materials we are interested in. In
fact, for GaAs (a=0.07) the leading-order result is essen-
tially exact. Our use of analytic approximations for the
confining electronic wave functions is perhaps less justifi-
able; however, the quantitative error introduced by these
approximations should not be more than 10'Fo. The
single-subband approximation is adequate only at low N,
and T when the upper subbands are not appreciably popu-
lated. Neglect of intersubband scattering for high values
of electron energy is also not justifiable. However, the er-
ror arising from these approximations to the calculated
polar scattering rates for the parameter values that we ac-
tually use in this paper is not thought to be more than
20%%uo, even in the worst situation. In any case, it is
straightforward to relax the single-subband approximation
and to include numerically the intersubband scattering in
the calculation. We believe that our approximation of in-
cluding electronic coupling only to the bulk GaAs LO-
phonon modes is quite valid since the lattice properties of
GaAs and Al Ga& As are very similar.

The most drastic (and, in many ways, the least justifi-
able) approximation made in this paper is the static
screening approximation to calculate the screened polar
interaction. This is particularly true at low electron tem-
peratures when dynamical effects of screening should be
important. There are two positive statements we can
make about the static screening approximation. Firstly, at
high electron temperatures the static RPA can be shown
to be essentially exact (and a comparison between our stat-
ically screened and unscreened polar scattering rates at
high T, shows only about 10% difference, implying weak
screening effects at high temperatures anyway). Secondly,
our unscreened and statically screened numerical results
for the polar scattering rate provide two extreme bounds
for the magnitude of the scattering rate since static
screening is an overestimation of the actual magnitude of
screening corrections. Dynamically screened polar-
scattering-rate results fall ' somewhere in between the un-
screened and statically screened results presented in this
paper (of course, it is possible for the dynamically
screened result to show additional structures due to
plasmon-phonon coupling which are missing in the
current work). Results involving dynamical screening will
be published elsewhere. '

To the best of our knowledge, only very preliminary re-
sults for the dynamical screening calculation have yet
been reported ' ' in the literature. A number of three-
dimensional calculations employing static screening ex-
ist ' (and they are claimed to be in fair agreement with
experiment). The usual justification for using static

is usually larger than coLo. In two dimensions,
co&(q~0) ~ v q and, hence, is smaller than coLo. We be-
lieve, however, that the correct plasma frequency to com-
pare is not to&(q =0), but co~(q =y), which could be larger
than coLO in the high-density two-dimensional systems,
providing some weak justification for our static RPA
screening approximation. Finally, often in situations
when an integral over a wave-vector transfer is being
evaluated, the important quantity to compare is not the
frequency (or the phase uelocity) of different modes, but
the group velocity (i.e., Bco/Bq). Since the plasmon group
velocity at small q is very large (varying as q '~, provid-
ed retardation effects can be neglected) and the LO-
phonon group velocity is essentially zero, static screening
may be much more justifiable ' for the calculation of the
polar scattering than it appears at first sight.

Experimental information about the polar scattering in
two-dimensional structures comes from a number of dif-
ferent measurements, such as mobility measurements at
high temperatures, hot-electron studies, and magnetopho-
non experiments. Unfortunately, each experiment needs
its own special theory and the polar scattering rate enters
each measurement nontrivially and quite differently. A
complete transport theory for a coupled electron —LO-
phonon system starting from the Kubo formula does not
exist, and the usual approximations for the mobility cal-
culations involve a single-electron approximation and the
neglect of screening, in which case the relaxation time de-
fined by

(2r, ) '=(I, +I, ) (20)

gives the mobility from the simple formula p =er, /m (of
course, one must average over energy using the Fermi dis-
tribution function in the usual way). Mobility determined
in this way accounts for about 80% of the observed resis-
tance of GaAs heterostructures at room temperature and
is very close to the corresponding bulk value. Since
Mathiessen's rule is not valid at room temperatures, one
cannot separate the observed resistivity into contributions
from different scattering terms. The relaxation time asso-
ciated with the hot-electron energy-loss measurements is
given by (if phonon absorption effects are completely
neglected)

(2r, ) '=I, (21)

and, again, one must average over energy using the Fermi
distribution function to obtain a constant-energy relaxa-
tion time. It is unclear to us whether such a comparison
with experimental results on hot-electron energy loss is
meaningful at all, particularly since experimental re-
sults' ' disagree with each other. An ideal experiment
with which to obtain ImX(Eo) directly will be tunneling
measurements of the type performed by Tsui for the
bulk situation. Experiments like tunneling —which are
capable of measuring the LO-phonon —induced broaden-

I

screening in three-dimensional calculations is that in high-
ly degenerate semiconductors the long-wavelength three-
dimensional plasma frequency

co (q =0)=[47rne /(~/m)' ]
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ing of the electronic state—can be compared directly with
our theoretical results. Unfortunately, such experimental
results for two-dimensional systems are not available at
the present time. Our extensive results given in this paper
serve as a generalization of the theoretical results given by
Conwe11 to degenerate two-dimensional systems. Our
results complement earlier studies by Ridley" and by
Price' in the sense that we give more complete numerical
results with less restrictive approximations (inclusion of
degeneracy effects, for example).

—,(1+qa/3) (8+3qa + —,q a ), (A 1)

band wave functions. For the heterojunction, we use the
standard Fang-Howard-Stern variational ' wave func-
tions, whereas for quantum wells we use the infinite
square-well trigonometric wave function. The ground-
state form factor f ( q) is then given by
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APPENDIX

We calculate the form factor f (q) entering Eq. (1) by
using analytic approximations ' ' to the confining sub-

(A2)

where Eqs. (A 1) and (A2) refer to the heterojunction and
the quantum-well situations, respectively. In Eqs. (Al)
and (A2), a is the average thickness of the layer which,
for the quantum-well case, is its physical thickness, and,
for a heterojunction, is given by a =(167rme N/9tr)
where N =(Nd, ~~+ —,", N, ) is the effective charge density
( Nd, ~~ being the depletion charge density).
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