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Magnetoplasma modes in thin films in the Faraday configuration
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We have undertaken a theoretical study of magnetoplasma waves in a thin, semiconducting film
bounded in general, by dissimilar dielectric or conducting media. The applied magnetic field and the
direction of propagation of the wave are parallel to the interfaces (Faraday geometry). The exact
dispersion relation has been derived on the basis of local theory. An analytic solution for the propa-
gation constant q, (co) has been found in the nonretarded limit, valid for co/c «q, « 1/d, where d is
the thickness of the film. There are two modes, the upper one having a negative group velocity
("backward wave"). These modes —magnetoplasma generalizations of the Fuchs-Kliewer modes—
approach the asymptotic frequencies given by [e„„(cu)e„(co)]'~'=—e;, where e;, (co) is an element of
the dielectric tensor of the semiconductor and e; is the dielectric constant of either one of the bound-

ing media. In the symmetric configuration (el ——e3), the two asymptotic frequencies coincide. We
have also applied to the general dispersion relation a thin-film approximation, q, d «1. This en-

ables us to find analytic solutions for q, (co) in two cases: (1) a very thin semiconducting overlayer on
a metallic substrate and (2) a very thin, unsupported, magnetoplasma film. In both cases a splitting
in the spectrum occurs in the vicinity of the hybrid cyclotron-plasmon frequency, with the creation
of a gap.

I. INTRODUCTION

An electromagnetic wave traveling through a polariz-
able medium is characteristically modified and coupled
with the polarization that it induces in the medium. This
coupled mode of excitation is now well known as a polari-
ton. Gradually interest has shifted from the bulk to sur-
face and/or interface polaritons. The latter modes are lo-
calized at the crystalline surface and/or interface and de-
cay exponentially away from it. Ever increasing interest
in investigations, both experimental and theoretical, of
surface or interface polaritons can be attributed to the fact
that they have proved to be sensitive probes of surface
and/or interface properties. '

Surface polaritons have been conveniently classified by
Burstein et al. and by Otto, as summarized by Halevi.
In addition to surfaces, the coupling of plasmons and/or
phonons across an interface has been also studied. The
effect of a magnetostatic field (Bo), which causes various
qualitative changes in the electromagnetic (EM) modes,
has been investigated in different geometries by Chiu and
Quinn, Wallis et al. , and Palik et al. The applied mag-
netic field is generally taken to be either perpendicular or
parallel to the surface. The most widely investigated con-
figurations belong to the latter case, in which the propaga-
tion is either along (Faraday configuration) or across
(Voigt configuration) the magnetic field.

Initially, the studies of polaritons at optical frequencies
were mostly confined to the determination of the disper-
sion characteristics of the bulk and surface EM waves.
Recently, considerable attention has been directed to the
propagation distance ' and the lifetime' of polaritons
in thin metallic films. The dispersion and lifetime of po-
laritons that propagate along supported (when the bound-

ing media are unidentical) and unsupported (when the
bounding media are identical) thin films have been dis-
cussed by Fukui et al. ' Their conclusion was that for an
unsupported film there is a mode that has a lifetime
which increases as the thickness of the film decreases,
whereas for the supported film such a mode does not ex-
ist. Subsequently, Sarid' investigated the propagation
length in a thin metallic film. He found that the two
Fuchs-Kliewer modes behave quite differently as the film
thickness is decreased: The propagation length of one
these modes decreases, while that of the other increases.
The latter mode is also associated with an enhancement of
the EM fields in the bounding media. Hence, it is of in-
terest to applications in nonlinear optics. '

In the case of magnetoplasma surface polaritons, semi-
conductors exhibit a particularly rich diversity of phe-
nomena. Since the free carrier concentration and hence
the plasma frequency can be varied over a wide range,
there is considerable flexibility in the choice of the spec-
tral range for propagation. The relatively small effective
mass of free carriers in many semiconductors, as com-
pared to metals, leads to larger effects of the magnetic
field on the surface-plasmon dispersion relation. The in-
vestigations of Wallis et al. and of Halevi for magneto-
plasma polaritons in the Faraday configuration, respec-
tively, for the semiconductor-vacuum and the
semiconductor-metal interfaces, reveal some interesting
behavior characteristics of the polaritons. For details, the
reader is referred to review articles by the cited au-
thors s, 2s

In this paper we have carried out a theoretical investi-
gation of magnetoplasma polaritons propagating along a
lossy, semiconducting thin film bounded by two unidenti-
cal dielectric media. We are concerned with the Faraday
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configuration, i.e., the direction of propagation is parallel
to the applied magnetic field. It should be noted that in
the absence of Bo all the three media are isotropic. It is
worthwhile mentioning that, although there are numerous
publications on magnetoplasma modes, we are not aware
of similar studies in a thin-film configuration.

There are several motivations behind the present inves-
tigation. (i) We wish to explore the possibility of low-

frequency modes or "thin-film helicons. " The existence
of such modes for a single interface has been disputed in
spite of experimental reports by Baibakov and Datsko.
These experimental observations also found theoretical
support for a semiconductor bounded by vacuum, by a
metallic screen, and by a ferrite (see references in Ref. 27).
However, the validity of these calculations was questioned
by Halevi and Quinn, Halevi (for propagation at an
angle to the applied field), and Boardman and Irving
(for the semiconductor-ferrite interface). Moreover, in an
experimental work, Laurinavichyus and Malakauskas
found no evidence of a surface-helicon wave. In view of
this, it is interesting to inquire if, possibly, a thin-film
structure does support low-frequency magnetoplasma
modes. (ii) We have previously noted the considerable in-
terest in long-range propagation in thin films related to
studies of nonlinear effects and surface roughness. The
effect of a magnetic field applied in the direction of prop-
agation is an open question. (iii) The understanding of the
behavior of magnetoplasma waves in thin films may lead
to device applications.

The present paper is organized as follows. In Sec. II we
derive the general dispersion relation for magnetoplasma
polaritons in the geometry depicted in Fig. 1. In Sec. III
we study the magnetoplasma modes in the nonretarded
limit (c~ co ). In Sec. IV we simplify our general disper-
sion relation by assuming that the film is very thin, and
investigate two cases of interest: (a) surface polaritons
modified by a magnetized overlayer, and (b) a magnetized
film bounded by two identical dielectric media. Some de-
tails and mathematical proofs have been relegated to the
A.ppendices.

The limiting cases studied in Secs. III and IV will en-
able us to plot dispersion relations for the magnetoplasma

polaritons in thin films, Figs. 2—5. These results are ex-
pected to be reasonably accurate in their respective regions
of applicability. However, it should be realized that addi-
tional polariton branches (in frequency —wave-vector re-
gions that are not covered by our present restrictions) may
arise. This possibility will have to await an exact numeri-
cal calculation, to be reported in the future.

II. GENERAL DISPERSION RELATION

We consider a semiconducting medium (II) of finite
thickness characterized by the dielectric tensor E which is
assumed to be independent of the wave vector. Two
media, I and III, characterized, respectively, by the dielec-
tric constants, E~ and E3, bound the medium II. The mag-
netostatic field Bo is assumed to be oriented parallel to the
interfaces which are perpendicular to the y axis. The
three media constitute the geometry shown in Fig. 1. The
direction of Bo (i.e., +z axis) is the direction of the wave
propagation, i.e., we are concerned with the Faraday con-
figuration.

We start with Maxwell's curl field equations. After el-
iminating the magnetic field variable (B), we obtain the
following wave equation for the macroscopic electric field
(E):

2 2 2
qoE —

qy
—q

2
qo Exy

0
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qoExy

2 2
qoE —q,

qy qz

qyqz Ey
2 2
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V X (|tX E)—qoe. E=O,
where qo (is equal to co/c, co being the angular wave fre-
quency and c the velocity of light in vacuum) is the vacu-
um wave vector. We assume that the spatial and temporal
dependence of the fields is of the form -e' ' " and

q =0, where q is the x component of the wave vector q.
In the present configuration (i.e., Bo

~

z) the dielectric ten-
sor (e) is simplified by the symmetry requirements that
E~ =Eyy, Ey~ = —Ezy p and E„,=E~ =Ey, =E~ =0. As such y

Eq. (1) may be rewritten as follows:

=Bo

Y I8 'AXXXXXXXXXXXX1YAXXM. 'A'AXXX

FIG. 1. Schematics of the configuration studied in the
present paper. The applied magnetic field Bo and the direction
of propagation of the waves considered are parallel to the two
interfaces of the film. We will refer to the cases el&e3 and
6l —63 as the asymmetric and symmetric configurations, respec-
tively.

The Cartesian elements of the dielectric tensor (e) are
given in Appendix A for a simple model. It is worthwhile
to point out that most of the (analytical) results in this pa-
per are independent of our particular model (A 1). For in-
stance, we could easily incorporate the frequency depen-
dence of the background dielectric constant which allows
for the coupling of magnetoplasmons to the phonons (see
Appendix A). Equation (2) is a set of three linear equa-
tions satisfied by the electric field in the dispersive, aniso-
tropic semiconducting medium II. The same set of three
equations also gives valid solutions of Maxwell's equa-
tions in the isotropic media I and III, if we just take
e„z ——0 and e =e =e; (i =—1,3 for media I and III,
respectively). The nontrivial solution of such a set of
three linear equations requires the vanishing of the deter-
minant of the coefficients. This gives two solutions for qy
given by
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in the semiconducting medium, and
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Aty=0:
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(10)

2 2 2 2—
qz =+i =qz —qo&I. i =1,3 (5) (12)

in the bounding media. In Eqs. (3) and (5), P+(=+iqy)
refers to the decay constants in medium II and a;( =+iq» )

to those in media I (i = 1) and III (i =3); see Eqs. (7)—(9)
below.

We write the spatial and temporal dependence of the
fields in the three media in the form (see Fig. 1)

E(r, t) =E(y)e

—a,E„"'= P+E—,„+P+E,„PE—,„+P E4„.
At y= —d:
a&d g P+d P+d P d P d

e 'E =e +E1 +e +E2x+e E3 +e E4

2—]qpexy ~]~E] —
p A p+~E

(13)

(14)

where E(y) for the regions I (y & —d), II ( —d &y &0),
and III (y & 0) are expressed as follows:

q,

XEq„—P A e E3„
P d

and

E]( ) E]] ~]y

E"(y)=E,e + +Epe + +E3e +E~e
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(9)

+P A e E~„,
2

'E,'=A +E A +Ez +e 1x+ + 2x
q, e a1

(15)

Analogous solutions can be written for the magnetic field
(B) in the three regions.

In order to determine the dispersion relation for the
magnetoplasma modes in the existing configuration, the
fields on the two sides of both interfaces (y =0 and

y = —d) have to be matched. The boundary conditions
are the continuity of the tangential components of the
electric and magnetic fields, that is, the field components
E, E„B,and B,. The use of Faraday's law and of Eq.
(2) enables one, after some algebra, to express the E„B„,
and B, components in region II in terms of the Ex com-
ponents in the same region. Similarly, the B and 8,
components in regions I and III are expressible, respec-
tively, in terms of E, and E . This greatly reduces the
number of unknowns involved; see Appendix B for
mathematical details of the conversion of the tangential
field components, as described above. The matching of
the fields at the two interfaces gives the following rela-
tions.

P d —P d
+A e E3 +A e E4x,

—P d
+/3 e E4„,

where A+ are defined as follows:

(17)

k —P+A+=
p+ +q p e~

Equations (10)—(17) are eight homogeneous equations in
terms of eight unknown amplitudes —Ex z~ x, E
E1, E2x, E3x, and E4 . The condition for the nontrivial
solution of such a set of equations (i.e., vanishing of the
determinant of the coefficients) gives the required disper-
sion relation for the magnetoplasma modes. After a con-
siderable amount of algebra we derive the following impli-
cit general disperion relation for q, (ey):

(16)
—a ld I P+d —P+d P d

a]e ' E„=—P+e + E, +P+e + E~ —P e E3„
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+A [(a a]3++p) T+ +(a ]+a ) 3p]+[(a a]3e+e]e3p )T +e (a3e]+a]e3)p ]

—A+A [[(a]a3e + pe])T +(a]e +a3e])p ][(a]a3e + 3pe)T+++(cx3C +(x]e3)p+]

+[(a]a3e +e3p )T +(a3e +a]e3)p ][(a]a3e +e]p+)T++(a]e +a3'E])p+]]

+2A+A a]cz3p+p (e~ —e])(E'~ —63)(1—T+ )' (1—T )' =0, (19)
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where the T+ are defined as

T+ ——tanh(P+d) . (20)

We are interested in the propagating-wave solutions of
Eq. (19), namely, modes such that q, is real when absorp-
tion is neglected. Then a& and a3, given by Eq. (5), are ei-
ther real or pure imaginary quantities. The latter case is
of certain interest in waveguide theory ("substrate modes"
and "air modes"). ' In the present work we will limit our
attention to solutions which decay exponentially away
from both interfaces of the film. Such solutions are
characterized by both 0.

&
and a3 being real and positive

quantities. The magnetoplasma modes with real q„a&,
and a3 may be classified according to the nature of /3+
and /3, given by Eq. (3). Depending on the spectral re-
gion the following possibilities may arise.

(i) P+ and /3 are both real and positive (we may al-
ways choose the positive root of /3+ if this quantity is pos-
itive). This corresponds to ordinary po/ariton modes de-

caying away from both interfaces inside the film, as well
as outside.

(ii) /3+ and f3 are both pure imaginary (one may
choose Im/3+ &0). These are ordinary waveguide (WG)
modes with an oscillatory field dependence inside the film.

(iii) /3+ is real and /3 is pure imaginary, or vice versa.
In the case of a surface this would correspond to the su-
perposition of two components: one that decays exponen-
tially in the semiconductor (the surface component) and
the other having an oscillatory character with constant
amplitude (the bulk component). In the case of a surface,
such modes are not well-behaved and are called "pseu-
dosurface waves. " On the other hand, in the case of a
thin film, both wave components are confined to the inte-

rior of the film and, as long as a& and 0:3 are both real,
these are bona fide, propagating waves which are hybrid
polariton-waveguide modes.

(iv) /3+ and /3 are complex conjugates of each other.
In the case of a surface both components decay into the
semiconductor in an oscillatory fashion; one corresponds
to a plane wave leaving the surface, the other to a plane
wave approaching it. As far as we are aware these "gen-
eralized surface waves" have not been detected experi-
mentally. In case of a thin film, again, such modes are
well-behaved. We will refer to them as complex modes.

This classification into polariton, waveguide, hybrid,
and complex modes is valid only if dissipation is neglected
(v=0). With allowance for absorption (v&0), q„ai, a3,
/3+, and /3 are, of course, all complex quantities. In this
paper we will assume that v=0, whence e and e are
real and e z is a pure imaginary quantity. Effects of ab-
sorption will be dealt with in a future publication.

It is worthwhile to point out that the dispersion rela-
tion, Eq. (19), has been checked by imposing various spa-
cial limits, viz. , d =0, d ~ oo, and Bo——0. It is found that
within these special limits our general dispersion relation
reproduces exactly the results previously reported for a
surface (BO~O) (Ref. 25) and for a thin film' '' '' in the
absence of an applied magnetic field (Bo=0).

III. NONRETARDED LIMIT

In the nonretarded (NR or electrostatic) limit we as-
sume that q, &&qo, mathematically, this is equivalent to
taking c~ oo. Then a, =a3—k =q„ /3+ ——q„and
/3 =(E /E )' q, . By definition a; & 0; therefore, we
limit propagation to q, &0. Consequently, the general
dispersion relation, Eq. (19), becomes

0.3
E&) E3

&zz2E'~ +Ei&3
&xx

tanh[(e /e„„)' q, d]

+BUZZ(Ei+E3)(Ezz/6„„)' ='0 . (21)
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FIG. 2. Normalized frequency co/co~ versus normalized
propagation constant q, d in the nonretarded limit for the asym-
metric configuration. The two branches (solid lines) are solu-
tions of Eq. (28), which rests on the assumption that ~/c
«q, « 1/d. The dotted lines indicate that our approximations
fail for very small and for very large values of q, ~ The asymp-
totic limits q, ~ m are indicated by dashed lines. These lines
coincide with the asymptotic solutions for the two decoupled in-
terfaces. The parameters are e I

——11.683, eq ——— 1, t L
——15.7,

co, /co~=0. 1, and v=0. This corresponds to an InSb film on a
Si substrate in the far infrared.

e„„(co)(0, e (co) (0 (q, ~ oo ) .

With this understanding, Eq. (21) becomes

(22)

This is the dispersion relation for the magnetoplasma po-
laritons in the NR limit for an arbitrary thickness of the
semiconducting film. Interestingly, the off-diagonal ele-
ment e ~ has dropped out of the calculation and is absent
in Eq. (21). This should mean that, in the nonretarded
limit, the transverse (Hall) field is negligible. Thus there
is no dynamical Hall effect and we do not expect helicon-
like modes for q, »qo. This however does not preclude
long-range propagation under suitable conditions. We
will analyze Eq. (21) in two cases.

The case q, ~ ao. First we consider the case q, &&1/d;
taken together with q, »qo, this implies that q, ~ao.
Because /3 must be positive, e„„(co)and e (cu) must have
the same algebraic sign, and the positive root (e /e„„)'i
must be taken. Then in the limit q, ~ ap the hyperbolic
tangent in Eq. (21) may be replaced by unity. Now, if e „
and e are both positive then, for e; & 0, both terms in Eq.
(21) are positive and this equation cannot be satisfied.
Clearly, the correct behavior is given by
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E E +(E E )' '(E, +E3)+E,E, =O (23)

and now the negative root of (E„„E )' must be taken.
Simple factorization enables one to rewrite Eq. (23) in the
form

that co & co~/(EL )', while from E„(co)& 0, it follows that,
in addition, cu &co, must hold. Therefore the asymptotic
solutions predicted by Eq. (25) must lie in the frequency
window

(E~Ezz) = —E;, I = 1,3 (24)
CO, & m & COp /( EL )

'
( q, ~ oo ) . (26)

In the case BO=O and hence E,„=E =Eq(co), say, Eq. (24)
reduces to Ez(co)= —E;, as it should be. Equation (24),
for E; = 1 (i = 1 or 3), gives the solutions for the asymptot-
ic modes at the semiconductor-vacuum interface as speci-
fied by Eqs. (28) and (46) in Ref. 25. The relation for
e; =1 was obtained by Pakhamov and Stepanov and by
Abdel-Shahid and Pakhomov.

It is then clear that, in the asymptotic limit, the wave-
fields at the two bounding interfaces of the film are
decoupled from each other and the limiting frequencies
are given by the solutions for the independent interfaces
II/I and II/III, i.e., by Eq. (24). For the magnetoplasma
model specified in Appendix A (with v=O), Eq. (24) may
be solved explicitly, namely,

2

2(Ec —E; )
2 2

2
COc

(EL, Ei ) 2 +2EL
COp

4

+ (EL —E;) 4 '+4E;
1/2

(25)

It can be proved that Eq. (25) is an exact analogue of Eq.
(29) in Ref. 25 and of Eq. (46) in Ref. 6.

Considering Eq. (22), the requirement E (co) &0 implies
I

E ( E'i +E3)'
q, = ——

d &xx&~+&]&3
(27)

Because the retardationless limit requires that qo «q,
this result holds only for very thin films, namely,
qod «1.

In what follows, two different cases regarding the
dispersion relation, Eq. (27), have been analyzed.

(i) E~ & E3 & 1. In this case, the substitution of E and
E with the neglect of the collision frequency in Eq. (Al)
and some algebra yield a biquadratic equation in the ra-
tionalized frequency (co/co& ):

The upper sign in Eq. (25) gives solutions which lie
beyond this window and, therefore, must be discarded. It
is the lower sign which gives the valid solutions. Interest-
ingly, Eq. (26) implies that, in the asymptotic limit, only
the case co, &co&/(EI )'~ yields well-behaved solutions.
[In the case cuz/(EL)' &co &co, we would have E (co) &0
and E' (co) & 0, and then Eq. (21) could not be satisfied. ]

In the special case co, =0 the lower sign in Eq. (25)
gives the solutions co = co& /(Ec +E; )', i =- 1,3. These also
follow from Eq. (24) if we replace (E„„E )

'
by

6 =EL —CO /CO
2 2

The case qo «q, « I/d Ass. uming that
~

E /
E„„~

'
q, d &&1, Eq. (21) leads to an explicit solution for

q, :

4
2 CO

[(EL +E&E3)q,d +EL (E, +E3 )]—
2 2 2

Cuc ~c
eL 2+el, +e]e3, qd

COp COp

+ (E~+ E3)

2 2
COc COc

1+@1 2
~ + 1+eL 2 q d =0.

COp COp

(28)

This equation predicts two branches co(q, ). For q, =O we
must have either E„(co)=0 or E (co)~ oo, as may be seen
from Eq. (27). This gives, respectively, for the higher and
lower branches

co=aH and ~~0 for q, =0,
where

(29)

CoH =(~~+~&/EL ) (30)

This is the well-known hybrid cyclotron-plasmon frequen-
cy at which E (co) vanishes. The asymptotic frequencies,
as predicted by Eq. (27), are given by E„(co)E (co)

+e]e3——0. This is clearly wrong: We know that the
asymptotic frequencies are correctly given by Eq. (24).
The discrepancy is hardly surprising since the present ap-
proximation is limited to q, «1/d. Similarly, Eq. (29)
does not give the true values of co(q, ~O) because we must
satisfy qo «q, . We have calculated the roots of Eq. (28)

I

by choosing the following parameters: e] ——11.683,
eL ——15.7, e3 ——1.0, and ~, /co~=0. 1. These values of the
dielectric constants specify our layered structure (Fig. 1)
as made up of a Si-glass substrate (region I), an InSb thin
film (region II), and air (region III). The results for the
dimensionless frequency (co/co& ) versus (q, d) are shown in

Fig. 2. The two curves, represented by the solid lines, are
the magnetoplasma analogues of the Fuchs-Kliewer
modes in the region qo «q, « 1/d. The dashed lines in-
dicate the asymptotic solutions corresponding to Eq. (25).
The lower branch starts at the origin; if our calculation
were valid for q, &&1/d then it would approach asymp-
totically the frequency given by [E„(co)E (co)]' '= —E, .
The upper branch starts at ~ =~0 and exhibits a practi-
cally constant and negative group velocity ("backward
wave"). Again, in an exact calculation this branch would
approach asymptotically the solution of
[E (co)E (co)]'i = —E3.

Now let us analyze briefly the behavior of the decay
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constants a], a3, /3+, and p corresponding to the two
modes in Fig. 2. In the retardationless limit, a], a2, and

P+ all have the value q„so they are real and positive.
However, p =(E /E )' q, is real (and positive) or pure
imaginary depending on whether E (cp)/E (cp) is positive
or negative. This quantity is positive for co,
& p3 &iz]&/(Ez )'; thus, above p], the lower branch corre-
sponds to ordinary polariton modes bound to the two in-
terfaces of the film. On the other hand, below ~, and
also for p]z/(Ez )' &co & p3H the decay constant p is
pure imaginary. Therefore the lowe part of the lower
branch (below cp, ) and the higher part of the higher
branch [above P]~ /(Ez )]' have a mixed Polariton-
waveguide mode character ("hybrid mode").

(ii) E]=E3=Ep, say. In this symmetric configuration
Eq. (28) assumes the form

4

[(Ez +'Ep)q, d +2Ez Ep]

0.3—

0.2—
I

0.1

I I

0.2 0.4 0-6 0.8 1.0

FIG. 3. As in Fig. 2 for the symmetric configuration,
E [ —63 —Eo ( = 1 ), that is an unsupported InSb film. Both disper-
sion curves now approach the same asymptotic limit. This is
also the asymptotic limit for the corresponding, decoupled sur-
faces.

2 2 2
cue 2 CO~

2+eL +&p 2 q, d
COP Cup

2
toe+ 2ep 1+ez
COp

(while observing our assumption that q, »qp) /3+ is real
while P is imaginary. These waves are interpreted to be
"hybrid" polariton —wavequide modes. Neglecting damp-
ing and using Eq. (27) our assumptions may be expressed
in the form

+ 1+Ez 2 q, d =0 . (31)
COp

The roots of Eq. (31) are calculated taking Ep= 1.0 (un-
supported film) and the rest of the parameters are the
same as stated in (i). The plotted curves for (po/co~ )

versus (q, d) are depicted in Fig. 3. The solid lines reveal
the dispersive polariton modes and the dashed (horizontal)
line is the asymptotic limit for E;=E„ in Eq. (25). Of
course, this line coincides with the line labeled E3( =1) in

Fig. 2. The other solution of Eq. (25) with E; =E„ lies out-
side the frequency region given by Eq. (26) and, as argued
before, must be discarded.

The most important difference between the cases e~&e3
and e] ——e3 lies in the fact that, in the latter case, the
upper and lower modes have a common asymptotic limit.
(The same statement is also true for the Fuchs-Kliewer
modes, Bp ——0.) We have also computed the dispersion
curve for ip, /cpz ——0.2 (not shown). The lower branches of
both Figs. 2 and 3 are remarkably independent of the
value of co, . On the other hand, by increasing co, the
upper branch is considerably shifted to higher frequencies,
roughly parallel to itself. The rest of the discussion relat-
ed to Fig. 2 is still valid. Thus for "small" values of q,

(E]+E3)
qpd ((

l
Exx Ezz + E ]E3

' 1/2
&xx

&(
&zz

(32)

IV. APPROXIMATE DISPERSION RELATIONS
FOR VERY THIN FILMS

We invoke a thin-film approximation (TFA),

T+ —tanh(P+d)=P+d . (33)

With this substitution the general dispersion relation, Eq.
(19), after a laborious algebra, assumes the form

The first inequality always fails for co-0 and cu-cuH.
This is to be expected, because for q, -0 the phase veloci-
ties for both branches are enormous, while the NR limit
requires that co/q, &(c. For other values of the frequency
the first inequality is satisfied for sufficiently thin films,
qpd «e;/ez. The second inequality, surprisingly, is sa-
tisfied for ]p =0, p3„]a~/(Ez )', and p]H.

Therefore, this approximation works well provided that
we do not approach too closely one of the asymptotic fre-
quencies (drawn by dashed lines). In brief, for sufficiently
thin films we may expect that an exact (numerical) calcu-
lation will approximately reproduce those parts of the
dispersion curves of Figs. 2 and 3 that are drawn with
solid lines.

E„„[]X]E3+a3E]+a]]X3(E]+E3)]+d {]X]a3E [a](E +E3) +]X3(E„+E, ) ]
2 2

+ k [a]E3(E +]E) +3]X](EE+E3)]—(a3E3+(X3E])qpE ~ }

+ d [CX] ]X3E E+]X]]X3k '(E E' +E]E3 ) +E']E3k '+ qpE' 3, (q pE]E'3 —a]a3E )]=0'2 2 2 2 4 2 2 2 (34)
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In writing Eq. (34) we have omitted a prefactor (P) de-
fined as

(P+ —P )(k +qoc )

(p++qoe' )(p' +qoe )

2

(35)

A. Surface polaritons modified by magnetized overlayer

In this case we assume that medium III is air (e3 ——1.0)
and that medium I is surface-wave active (e, & 0). We use
an ansatz'

and treated it as nonvanishing in view of the following.
The vanishing of the first factor in the numerator of P
(i.e., p+ ——p ) was suggested by Rao and Uberoi to lead
to so-called "degenerate modes" at a surface. These
modes were supposed to account for low-frequency sur-
face helicons as reported by Baibakov and Datsko.
However, surface modes characterized by P+ ——P do not
have physical reality. The vanishing of the second fac-
tor (i.e. , k +qoe =0) has no dynamical consequence
pertaining to the dispersion of magnetoplasma polaritons
in the film configuration. In obtaining Eq. (34), we have
retained only the terms up to quadratic in d in the expan-
sion of Eq. (19). We will analyze Eq. (34) in two different
cases of interest.

0.565

D.56D

4)p r
///

/'
/r/

/

0.555 0.560
I I I I

0.565

C g /Cdp

FIG. 4. Normalized frequency co/co~ versus normalized
propagation constant cq, /co~ for surface-plasmon polaritons
modified by a semiconducting magnetoplasma overlayer. The
dispersion curve shown has been calculated using the thin-film
approximation, from Eq. (38) with e3 ——1, e3 ——1 cL)p ] /M

~p /cop I 10, co, /m~ =0.5, eL ——1 5.7, v=0, and d =2.04 pm.
This corresponds to an InSb film on a Na substrate. At the low
frequencies (~ &&~~1) considered, the curve follows closely the
light line, except very near to the hybrid cyclotron-plasmon fre-
quency co~. The magnetized overlayer creates a gap in the spec-
trum, of width -co~/(2@Leo~) just above co~.

2 2
q, =q.

'
+K,1+a)

(36)

for a film of small thickness d. In the limit d~0 K&
must vanish and we are left with a surface-
plasmon —polariton dispersion relation. For very small
but finite d, we expect that K& is proportional to some
power of d.

Using Eq. (5) and treating K& as a very small quantity,
we calculate a~ and a3 (see Appendix C). Substituting in
Eq. (34) and retaining only the terms linear in d gives an
expression for K~ [see Eq. (C6)]. Then Eq. (36) can be
rewritten as follows:

q =qo 1+g)

1 /2
1 1+@) K)

1/2

+
2 qo

(37)

=qo
E)

1+6)

1/2
i (qod)e,

e„„(1+@,) (1 —e, )

X [e,(1 —e ) —e„(1—e )] (38)

I/2

1 )1/2

qod e,
~

(~e~~+e'2) 1 Ez—
(

~

E~
~

—1)'(
( et (

+1) ez

(39)

Thus the propagation constant q, is linear in the film
thickness, to lowest order in d. Equation (38) is a good
approximation provided that qod « I.

First let us look into the case where there is no applied
field present, Bo——0. Then e =e =—ez(co) and Eq. (38)
reduces to

Since we are interested in the surface-polariton regime we
have assumed that e& is negative. This formula is an exact
analogue of Eq. (3) of L6pez-Rios if eo, the dielectric
constant of medium III in his notation, is equal to 1. This
is a justification of our thin-film approximation, Eq. (34).
Note that Eq. (39) predicts a splitting of the dispersion
curve for ez(co) =0, that is, at the plasma frequency of the
thin film (or transition layer). This, in fact, was observed
by Lopez-Rios. The splitting is associated with the polar-
iton mode at the interface between two semi-infinite con-
ductors corresponding to media I and II.

Next we put some numbers in Eq. (38), representing an
InSb semiconductor film on a Nb metal substrate. The
magnetoplasma model for the semiconductor has been
specified in Appendix A and the parameters are eL ——15.7,
co, /~z ——0.5, and d =2.04 pm. For the metallic sub-
strate, assuming the simple model e~ ——1 —co~&/co, we
take ~&~/~z ——10 . Because of this large factor and the
requirement that qod «1, the first term in Eq. (38), cor-
responding to the bare metallic surface, predominates over
most of the spectral range of interest. An exception
occurs at the hybrid cyclotron-plasmon frequency AH, de-
fined in Eq. (30). At this frequency e„„vanishes and, by
Eq. (38), q, ~ ao. While our perturbational approach
breaks down, it is clear that a splitting occurs in the
dispersion relation of the surface-plasmon polariton. This
is shown in Fig. 4 in a narrow range in the vicinity of co&.
When co&coH the dispersion curve closely follows the
light line co =cq„ this is because co «co& i. We have disre-
garded solutions with q, &~/e, the reason being that, by
Eq. (5), these would give an imaginary decay constant a3.
For co&& much greater than co& and m, the expression in
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the small square brackets of Eq. (38) vanishes at a fre-
quency approximately equal to

1/2
COp

toe +
eL —1

(40)

We may conclude that, as a consequence of the thin film,
a gap opens up in the spectrum of the surface polariton.
For eL &~1 the width of the gap is

2
COp

NH=NH 2
2~L ~H

In the absence of a static magnetic field coH ——co /(eL )'
3/7and the gap becomes co&/2@2

(41)

B. Magnetized film bounded by identical media

Substituting e[ ——e3 ——ep and hence a] ——o.3 ——ap in the
dispersion relation reduced in TFA, Eq. {34),yields

4&pe ay+ 2apd[ape ( &+pe )+k ep(ep+e~ ) gpepe y]

+ d [ape e +apk (Ep+E'e)'+ k ep+q pe (ygpep —apE)] '= 0

In this case we use the following ansatz for q, :
2 2 2

q =qo~o+&2

(42)

(43)

for small thickness of the film. In the limit d~O, the film bounded by the identical media becomes a bulk dielectric
characterized by the complex dielectric constant ep. In this limit, the solution for q, should be (ep)' qp. For small but
finite d, we expect that q, will differ from (ep)'y qp by a small amount which is proportional to some power of d. This
is the basis of our ansatz, in Eq. (43). Since K2 is a very small correction we can write

2
1/2 1 +2

q =qo&o + (44)2 qo&o

Making use of Eq. (5), with e; =ep and a; =ap, we calculate K2 (see Appendix D). Terms quadratic in d, in Eq. (42), are
included in this case because they turn out to contribute to q, in the same order as the linear terms. Substituting Kz [Eq.
(D4)] in Eq. (44) gives

in I («d) z 2 2
Vz =Op ep + imp 2 ((e x+exy ep)+ I [(e x ep) +e y] 4epe y I32 gp

(45)

K2 = ( e ep )[(E+—ep ) + ( e —ep ))'
4g

(46)

where e—:e =e . Then K2, for the lower and upper
algebraic signs, respectively, assumes the form

eA ep—(ep —e) (47a)
2 E

and

qpd
K2+ ——— (ep —e) .

2
(47b)

The expression for K2, Eq. (47a), has been derived by
Boardman and Halevi for p-polarized polaritons in a
very thin film. A similar approach applied to s-polarized
modes (for Bp ——0) leads to Eq. (47b). Now, according to
Eq. (Dl) for very small d the decay constant ap is just K2,
so the right-hand sides of Eqs. (47) must be positive. We

Notice that, in the TFA, q, becomes independent of the
element e . The necessary requirement for the validity of
Eq. (45) is qpd «1. Because of the higher symmetry, the
correction in q, is proportional to d, unlike the linear-d
dependence in Eq. (38).

When K2, Eq. (D4), is subjected to the limit Bp ——0, it
may be written as

may discern three frequency regions, depending on the
value of e(tp) If e(tp.) &0 then K2 &0; however, Kz+ &0.
This is to say that polariton modes (bound to both sides of
both interfaces) may have only transverse-magnetic (TM)
polarization. Next, if 0&e(co) &E'p then Kq+ and Kq are
both negative and there is a frequency gap in the spectrum
of modes. On the other hand, if e& ep( &0) then Kz+, as
well as K2, are positive. This corresponds to transverse-
electrix (TE) and TM-polarized WG modes. The situation
e & ep may be achieved in a semiconductor
(e=eL —coy /cd ) provided that tp & toy /(EL —ep)' '. Equa-
tions (47a) and (47b), substituted in Eq. (44), give rise to
long-range propagation of the symmetric TM and TE
modes, respectively, in a very thin film (Bp=0).

We have computed the dispersion relation (q, versus py)

using Eq. (45) with Bp&0. The parameters used were
ep ——1, ~, /cuz ——1 and the rest of them, the same as were
cited in the preceding section. Theoretical results in the
dimensionless variables are plotted in Fig. 5. For each
value of co, we obtain two values of q, corresponding to
the two algebraic signs in Eq. (45). It is observed that one
of the branches effectively coincides with the light line
(co=cq, ). This leads us to infer that the correction term
[the second term of Eq. (44)] for this branch is negligibly
small. The second branch shows a considerable shift from
the light line over almost the whole frequency range.
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1.2

o.s

Cd& ( Cd + l V )
e~=eyy ——t L+ ~ 2

Cd[Cd, —(Cd+iv) ]
2

~p COc

&xy = —&yx = —
& 7

Cd[Cd& —(Cd+ EV) ]
2

COp

E~ =EL— )
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cq /ca)p
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where el is the background dielectric constant, v is the
free-carrier collision frequency, and cop and ~, are, respec-
tively, the unscreened plasma frequency and the electron
cyclotron frequency, defined as follows:

4m.ne
COp =

me

(A2)

FIG. 5. Normalized frequency cu/co~ versus normalized

propagation constant cq, /co~ for a very thin, unsupported semi-

conducting film. The calculation is based on Eq. (45) with
6'0= 1, eL ——15.7, co, /co~ = 1.0, v=0, and d =2.04 pm. These
are two branches and the strongest deviation from the light line
occurs in the vicinity of the hybrid cyclotron-plasmon frequency
NH.

The second branch exhibits a resonance at co

=1.0314cd~. Indeed, it follows from Eq. (45) that q, = oo

when e vanishes, that is, at the hybrid frequency co&,
Eq. (30). For ei =15.7 and cd, /cd& ——1.0 this equation
gives AH —1.0314cop, the above quoted value. However,
the result co=mH for the resonance frequency should be
viewed with reservation because our TFA breaks down
when the second term in Eq. (45) becomes comparable to
(or greater than) the first term. Above cdH, the the region
between 1.032cop and 1.063cop, K2 assumes negative values
for the lower sign in Eq. (D4). Such solutions must be
discarded because the decay constant ap(=Ez) should be
positive. Thus there is a gap in the second branch be-
tween AH and a higher frequency at which the correction
term in Eq. (45) vanishes.

Figures 5 and 3 both deal with the symmetric configu-
ration, e] ——e3 ——1; however, for different values of co, .
Figure 5 is valid for q, =co/c, near the light line. On the
other hand, Fig. 3 is applicable only for q, »co/c, far
away from the light line. It seems that the behavior of the
two branches is similar to that of the Fuchs-Kliewer
modes (for Bp=0); however, the exact solution in the re-
gion q, & co/c will have to await the numerical solution of
Eq. (19). The nature of the modes (polariton, WG, hy-
brid, or complex) will be determined from a computation
of P+ and P, Eq. (3).
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e [Bp/

m, c

Here e, rn„and n are, respectively, the electronic charge,
cyclotron mass, and free-carrier concentration in the semi-
conductor (region II in Fig. 1).

In Eqs. (A 1), if we also consider the effect of phonons,
which, in a way, embodies the coupling of the magneto-
plasma polaritons to the optical phonons, then the back-
ground dielectric constant eL has to be replaced by a
frequency-dependent expression,

2 2
COLQ —CO —i I CO

2 2
coTQ —co —l I co

(A3)

where e is the high-frequency dielectronic constant, I is
the optical-phonon damping frequency, and coLQ and ~ fp
are, respectively, the longitudinal and transverse optical
phonon frequencies at the zone center of the first Bril-
louin zone.

APPENDIX B

—~P+ q, (k —P+ )

Ei, 3x
qp(p+ +qep)e y

i P+ q, (k —P+ )

2 2 2 24x
qp(p+ +q pe )e„y

—q, (k —P+ )e
E],2x

qp(p++q pe )e„y

—q, (k —P )e
E3,4xq(p +q e )e„

E2,4

B],2x =

B3,4x =

(B1)

(B2)

B

The tangential field components E„B,and B, in
terms of E in region II are as follows:

APPENDIX A

The dielectric tensor components are
B2,4.=

qo

E +
E2,4x .

e'o

(B3)
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The tangential (magnetic) field components B„and B,
in terms of E, and E in regions I and III are as follows:

(er —1) i (1+or)'r (er —1)
a&+a3—iqp 1/2 K),(1+e)) 2qp&&

(C4)

,
«oet Er (IIII

x + z
CXJ

(B4)

BI (III)
( )

' /I (III)
X

qp
(B5)

The suffix i stands for 1 or 3 specifying the respective
quantities in regions I and III.

i (1+mr)' (E, —1)
a ~@3++3@&—0+ K), e3 ——1 .

2qp61
(C5)

Substitution of these expressions in Eq. (34), retaining
only the terms linear in d, and neglecting the terms pro-
portional to K& in the coefficient of d, yields

APPENDIX C

Analytical derivation of E& in Sec. IV A

Substituting Eq. (36) in Eq. (5) and treating Kr as a
very small quantity gives

K) — I
e (1+or) (1 —er)

X[er(1 e„—„)—e„„(1—e )] . (C6)

and

(1+er)
cx) = lqp K](1+er )

' 2qoer
(Cl)

It should be pointed out that the analytical expressions,
throughout this section, have been derived with the choice
that Im(l+er)'~ &0, corresponding to er & 0.

( 1+ )I/2

z3 ———iqp ized
+'

(1+mr ) 2qo
K).2 (C2) APPENDIX D

Analytical derivation of K2 in Sec. IV B
We have retained opposite signs for e& and a3 in view

of the fact that we have made a choice in writing our field
solutions, Eqs. (7) and (9), such that Rea I & 0 and
Rc(x3 & 0. The expressions of a

&
and a3 lead to the follow-

ing results:

Substitution of Eq. (43) in Eqs. (5) and (4) with e;=ep
and a; =ap gives us

up ——K2,
K =qp(ep e„„) +Kz.— (D2)

1 (1+er)
K

2 E']
a&a3—qp 1+a]

(C3)
Substituting the values of ap and K in Eq. (42) yields

4e Oe xxK 2 + 2K 2 d I K 2 exx ( e0 + ezz ) + [q o ( 'Eo Exx ) +K 2 ]e 0—( e0+ exx ) qo &0&x,I—
+d IK2e xezz+K2 [qo(eo —e x )+Kz ](eo+exxexx )+eo[qo(eo —e )+K2 ]'+qoex, (Eoqo —

Kzexx ) I
=0 (D3)

Neglecting the terms proportional to K2 and K2 in the coefficients of d and d and solving the resulting quadratic equa-
tion in Kz gives

2

Kp = ((Exx +Ex& —Ep)+ j (Exx +ex& —eo) —4Epexx[(E 'expx) +Ex&] ] )
4g

(D4)
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