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Erik C. Sowa and L. M. Falicov
Department of Physics, University of California, Berkeley, California 94720

and Materials and Molecular Research Dioision, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
(Received 6 October 1986)

An exact solution for a two-site crystal model, the smallest body-centered-cubic crystal, is present-

ed for iron. The model consists of five d-like orbitals per site per spin, with interatomic hopping
terms and an on-site Coulomb interaction of the fullest generality allowed by atomic symmetry. The
ground state, depending on the choice of one-electron parameters, is found in one case to be a fully

saturated ferromagnet, and in another to be an unsaturated ferromagnet with strong antiferromag-
netic fluctuations. The many-body energy-level spectrum, intracluster charge and spin fluctuations,
and photoemission and inverse photoemission densities of states for both cases are calculated and

compared with experiment.

I. INTRODUCTION

Electrons in the d shell are responsible for many of the
interesting properties of transition metals. In particular,
the magnetism of Fe, Co, and Ni derives from the
Coulomb interaction between electrons in an unfilled d
shell, or an unfilled d band in the case of a periodic solid.
In fact, the d-band width and the intra-atomic Coulomb
interaction are of comparable magnitude in these metals.

As a consequence of the competition between band-
structure effects (manifested in the d-band width) and the
Coulomb interaction, there are two different ways to
analyze electronic phenomena in these metals. An
itinerant or band description of the 3d electrons is useful
for the interpretation of de Haas —van Alphen effect,
magnetotransport, and photoemission experiments,
whereas a localized-moment picture is more compatible
with the Curie-type behavior of the susceptibility, with
the existence of spin waves above T„and with the mag-
netic form factors. Neither point of view is complete.
The success of both pictures serves to emphasize that the
determination of the electronic structure of these metals is
a full many-body problem, and that even delocalized d
electrons are strongly correlated.

The huge number of particles in a macroscopic crystal
makes the solution of the full many-body problem in such
a system intractable. The traditional way around this
dilemma takes the one-particle picture as basic and in-

cludes many-body effects only in the form of a suitably
averaged single-particle exchange-correlation potential.
This approach has been very successful in explaining
properties of both bulk crystals and clusters. ' One
can, however, find exceptions to this general pattern of
success. These exceptions typically involve many-body ef-
fects that cannot be taken into account by this sort of
averaging. Perhaps the most famous example of this is
the valence-band photoemission satellite approximately 6
eV below the Fermi level in fcc Ni. Much theoretical at-
tention' has been focused on this feature, as well as other
many-body corrections to the Ni density of emitted states;

one successful treatment by Victora and Falicov" uses a
recently developed finite-cluster method. '

The finite-cluster method is a full many-body approach
which reduces the size of the problem from a macroscopic
to a limited-size crystal, while maintaining periodic
boundary conditions in order to eliminate surface effects.
In this way, one can explicitly include band-structure ef-
fects and the Coulomb interaction in a model Hamiltoni-
an small enough that the many-body eigenstates and ener-
gies can be obtained by straightforward diagonalization.
The results are exact within the context of the model
Hamiltonian. Because of the small size of the crystal
(Victora and Falicov used a four-atom tetrahedral cluster
to model fcc Ni), one would not expect this method to
yield accurate long-range correlations or sharp phase tran-
sitions; however, uniform properties and short-range
correlations should be well represented. This accounts for
the method's success in treating the photoemission prob-
lem.

In this paper, this method is applied to bcc Fe. Iron is
an interesting case because it has more d holes per atom
than Ni, as well as a different crystal structure; it is also
the prototypical ferromagnet. It is found in this case that
the method models a "weak" ferromagnet in the sense
that a small change in one of the one-particle parameters
of the Hamiltonian causes the many-body ground state to
change from a saturated (fully spin-polarized) ferromag-
net to an unsaturated ferromagnet with strong antifer-
romagnetic fluctuations. Section II is a detailed descrip-
tion of the model. Section III contains our analysis of the
many-body eigenvalue spectrum, and Sec. IV shows the
one-particle densities of states that would be measured in
photoemission and inverse photoemission experiments.
The results are summarized in Sec. V.

II. THE MODEL HAMILTONIAN

The smallest nontrivial bcc crystal contains two atoms.
With periodic boundary conditions, a calculation using
this crystal is equivalent to a restricted sampling of two
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TABLE I. Hamiltonian parameters (units of rydbergs).

Unsaturated ferromagnet Saturated ferromagnet

(ddo. ) i

(dd~),
(dd5))
(dd~),
(dd~)2
(ddt),

e3
e5

y3
$5
h3

hg

U
J

AJ

—0.056 69
0.037 38

—0.006 69
—0.033 67

0.01000
—0.000 75

0.747 75
0.768 99

0.8260
0.6990
0.4630
0.9160

0.3600
0.0514
0.0064

—0.056 69
0.037 38

—0.006 69
—0.033 67

0.01000
—0.000 75

0.789 99
0.768 99

0.8683
0.6990
0.5052
0.9160

0.3600
0.0514
0.0064

&Wj~pr v&o
ip,jvCipoCjvo+ ~ e&Cipocipo

i;p, v, k. , g;o, cr'
pvAQ &po tva' tea' sPo (2.1)

Here i,j (=1,2) label atoms, p, , v, A, , P label orbitals, and
o,o. ' label spins. The single-particle hopping terms t;& j
are parametrized according to the Slater-Koster tight-
binding scheme. ' Note that this scheme allows for only
nearest-neighbor hopping; in our restricted crystal the
second nearest neighbor of an atom is itself. Intra-atomic

points in the Brillouin zone. These two points, both of
which have full cubic symmetry, are I (the zone center)
and H (the point at the end of the cubic axes). There are
five d orbitals per atom per spin; in the presence of a cu-
bic field they split into the triplet t2~ and the doublet e~.

The model Hamiltonian contains both single-particle
and two-particle terms:

Coulomb interactions V„~~ are used; they include a
direct Coulomb integral U, an average exchange integral

J= , [J—(ex,ex )+J(t2s, t2x)],

and an exchange anisotropy

b.J= [J(eIt,ex) J(t—ztt, tax)] .

Following Victora and Falicov, " a value for U is chosen
and the other interaction parameters are set in the ratios
U:J:bJ=56:8:1. (The results are insensitive to the exact
values of these ratios. ) The next largest contribution is
the nearest-neighbor Coulomb term, which makes a con-
stant contribution and may be neglected.

Two different sets of Slater-Koster parameters are used.
The first set is chosen to reproduce, in the absence of any
interactions, the calculated paramagnetic local-density ap-
proximation (LDA) band structure of Moruzzi et al. '6 at
the I and H points. In order to accomplish this, it is
necessary to assign different values to the occupation en-
ergies e3 and e5 of the e~ and the tzz bands, respective-
ly. ' This relative shift is caused by hybridization be-
tween the d bands and the sp bands, as well as second-
neighbor hopping between the atoms. The second set
differs from the first only in the value of the shift; in the
set that reproduces the LDA result, the occupation ener-
gies satisfy e 5

—e3 ——0.29 eV, while in the other set
e5 —e3 ———0.29 eV. The value' for U, which is used
with both one-particle parameter sets, is 4.9 eV, consider-
ably larger than the Hartree-Fock value. ' Such a large
value is necessary because the screening of U is explicitly
included in this treatment. The parameters are summa-
rized in Table I.

Since metallic Fe has a magnetic moment of 2.22'~ per
atom, and the method allows only an integral number of
particles in the cluster, the configuration chosen is four d
holes in the neutral state of the cluster. In this configura-
tion there is an average of two holes per atom; therefore
the maximum possible magnetic moment per atom is
2.00@&. Simple combinatorial arguments yield 4845
states for this number of holes. The photoemission pro-
cess adds a fifth hole, yielding 15 504 final states. Inverse

TABLE II. Two-atom bcc space-group character table (inversion omitted).

eg

P
t2g

eg

r,
I2
I3
I4
r,
H)
Hq
H3
H4
H5

3
C2

1
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I

1

2
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I
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0
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—I
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0
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I
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0
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8
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I

I
—I
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0
I
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—I

0
0

I

I
2
3
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—I
—I
—2
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I
I
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—I
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—I
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I
I

I
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I

—1

—I

1

0
—I

1

I
—I

0
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I
—1

1

0
I

—I

1

I
—I

0
0

—1

—I

1

0
0

'The symbol ~ stands for the operation that translates from one lattice site to the other.
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TABLE III. Sizes of blocks of the various representations.

Spin

3
2
1

2

5
2
3
2
1

2

6
16
29

9

37

71

4
22
16

5

39

67

4

15

11
37
40

11

76

141

9

20

11
67
44

14

117

202

7

21

15
59
56

16

115

208

Hi

2
20
18

9

37

71

H2

4
22
18

5

39

67

4

15

8
40
32

11

76

141

H4

9

20

14
64
50

14

117
202

7

21

12
62
50

16

115

208

photoemission removes a hole, leaving three in the cluster
for a total of 1140 final states.

Clearly, even the two-atom cluster model for Fe has a
very large Hamiltonian. The symmetries inherent in the
Hamiltonian (2.1) must be exploited to reduce further the
size of the matrices to be diagonalized.

The space group of the two-atom bcc lattice contains 96
operations including the inversion i. The point group is
O~ ——O)&i. Since only d orbitals are included, and they
are even under i, the inversion operation may be ignored.
A restricted set of 48 operations, with 10 irreducible rep-
resentations (5 each at I" and H), is sufficient. The repre-
sentations are shown in Table II, the character table of the
space group. With a complete set of matrices that
transform according to these irreducible representations, '

it is possible to project out sets of symmetrized basis
states. Since the representations cannot mix, this is
equivalent to a block diagonalization of the Hamiltonian.
In the case of 5 holes in the cluster the largest block is
339X 339, a considerable reduction from the original
15 504)& 15 504 matrix.

The symmetry of the Hamiltonian also requires that the
eigenstates have definite spin angular momentum. This
symmetry may also be exploited for further block diago-
nalization; the sizes of the reduced blocks for 3, 4, and 5
holes are shown in Table III ~ Of course, the solutions ob-
tained by diagonalizing these blocks are exact solutions of
the full Hamiltonian for the cluster.

III. EIGENVALUE SPECTRUM
AND THERMODYNAMICS

The neutral state contains N =4 holes in the cluster. It
admits spin singlets, triplets, and quintets. The quintets
represent saturated ferromagnetic solutions, the triplets
represent unsaturated ferromagnets (possibly though not
necessarily ferromagnetic states), and the singlets could be
paramagnets or antiferromagnets. Two states lie below all
others: one is of I 4 symmetry, the other is 'H3. With
the first set of Slater-Koster parameters, the unsaturated
ferromagnet I 4 is the ground state; with the second set,
the saturated ferromagnet H3 is lower. Both are spatially
degenerate representations. The unsaturated ferromagnet
is spatially uniform; the saturated ferromagnet changes

phase with the nearest-neighbor translation operation. In
both cases, the two states are very close to one another in
energy. The reason that the first set does not yield a
saturated ferromagnet can be understood from the follow-
ing rough argument, in which lower case letters are used
to denote the symmetry of the single-particle energy lev-
els. In both cases, the highest one-electron energy level
(the first to be "occupied" by holes) is h&. It can accom-
modate three holes of each spin. When the Coulomb in-
teraction is turned on, the spin states are split by approxi-
mately J. For the first set of parameters, the splitting is
not sufficient to bring the h5 majority-spin level below
the closest minority-spin level, which is of y3 symmetry.
Three holes are in the minority-spin h5 level, and the
fourth hole ends up in the majority-spin h& level. The
repulsive Coulomb interaction is not strong enough to
overcome the difference in occupation energies, and the
ground state is therefore not fully spin polarized. In the
second case, the extra shift pushes up the eg band so that
the y3 level is within J range of h5, and the fourth hole
can go into the minority-spin y3 level. All the holes are
therefore in the same spin state, and the cluster is fully
spin polarized. This is, of course, only an approximate
picture, since in the full many-body approach configura-
tion interaction mixes all one-particle levels. Neverthe-
less, it is a useful way to understand the result, and will
prove to be even more useful in the explanation of the
photoemission and inverse photoemission densities of
states of Sec. IV.

The density of many-body states (MB-DOS) is the best
way to show the spectrum of energy eigenvalues of the
Hamiltonian (2.1). At each eigenvalue, a peak of weight
equal to the degeneracy at that energy is plotted. In a fi-
nite system, this results in a discrete set of spikes. Spin-
resolved and total MB-DOS plots for both parameter sets
are shown in Figs. 1 and 2; in these figures, the spikes
have been artificially broadened into Cxaussians of 0.1 eV
halfwidth. It is worth noting that, despite the consider-
able difference in ground-state properties, the densities of
many-body states are remarkably similar.

The finite-cluster method can also produce the eigen-
states, allowing one to compute various correlation func-
tions. It is trivial to obtain the most obvious correlation,
namely the magnitude of S in the cluster. Two other
functions, which require knowledge of the eigenstates, can
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4.p help interpret the results. The first is

)p$ +n ]p$ n2p) +npp$
. P

(3.1)

g a.o

C)

.C 10
CL
CQ n]pt n]pj(nppfn2pj)

. P
(3.2)

Here nI& ——c;z c;z . The quantity An can be called the
intracluster charge fluctuation because it is simply the
average of the square of the difference between the occu-
pations of the two sites. It is a measure of the polarity of
the electronic charge in the cluster; a zero value indicates
a neutral cluster, while a large value indicates large
charge-density fluctuations. The second function is

C$

4.0

0.0
-42.0 -32.0 -22.0

energy (eV)
-12.0

FIG. 1. Total and spin-resolved eigenvalue spectra (densities
of many-body states) for the unsaturated ferrornagnet.

which is called the intracluster spin fluctuation. It is a
measure of the spin imbalance between the two sites of the
cluster. A zero value indicates a uniform spin distribu-
tion, while a large value indicates large spin-density fluc-
tuations, or equivalently antiferromagnetic correlations.

These correlations may be plotted as functions of tem-
perature by simply calculating them for each eigenstate,
multiplying by the appropriate Boltzmann factor, and
adding. The thermodynamic averages of total energy,
(5 ), b,n, and Acr are shown for both parameter sets in
Figs. 3 and 4. Most of the interesting behavior occurs at
fairly low temperatures, because the two low-lying states
are very close in energy compared to the rest of the states.
The result for Ao. is particularly interesting. Note that it
is much higher for the unsaturated ferromagnet. This im-
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FIG. 2. Total and spin-resolved eigenvalue spectra (densities

of many-body states) for the saturated ferromagnet.

FICx. 3. Thermodynamic averages of energy, S, intracluster
charge fluctuations, and intracluster spin fluctuations for the
unsaturated ferromagnet.
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FIG. 4. Thermodynamic averages of energy, S, intracluster
charge fluctuations, and intracluster spin fluctuations for the
saturated ferromagnet.

FIG. S. Total and spin- and angle-resolved inverse photo-
emission densities of states for the unsaturated ferromagnet. In
the spin-resolved plots, dashed and solid lines represent
majority-spin and minority-spin electrons, respectively.

plies that this state has strong antiferromagnetic fluctua-
tions, i.e., antiferromagnetic character.

IV. PHOTOEMISSION
AND INVERSE PHOTOEMISSION 4.0

The photoemission process adds a fifth hole to the sys-
tem. The one-electron density of (emitted) states (DOS) is
calculated by adding a hole to the ground state and pro-
jecting the result onto the eigenstates of the cluster with 5
holes. When holes of particular spatial symmetry and
spin orientation are added, one obtains spin- and angle-
resolved densities of states. These may be added together
to obtain the total d-band photoemission DOS. The in-
verse photoemission DOS is calculated in a similar
fashion, with the annihilation of a hole from the ground
state. Selected results for both sets of parameters are
shown in Figs. 5 and 6. In these figures, the sharp lines
characteristic of a finite system have been artificially
broadened with Gaussian peaks of 0.1-eV halfwidth.

The gross features of the inverse photoemission results
are easily understood with the same one-electron argu-
ments presented in Sec. III. An electron cannot be ab-
sorbed unless there is already a hole there. According to
the earlier argument, the unsaturated ground state should
consist of 3 holes in minority-spin levels and one in a
majority-spin level, all of h5 symmetry, and the Fermi
level should be at the majority-spin energy. Indeed, the
two largest peaks in the total DOS of Fig. 5 are mainly
h5, as can be seen in Fig. 5. The peak at the Fermi level

0.0

0.0

0.0

CO 4.0

2.0

0.0
-2.0 0.0 2.0 4.0

energy (eY)
6.0 8.0

FIG. 6. Total and spin- and angle-resolved inverse photo-
emission densities of states for the saturated ferromagnet. In
the spin-resolved plots, dashed and solid lines represent
majority-spin and minority-spin electrons, respectively.
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has all the majority-spin weight, with a significant
amount of the minority spin mixed in. Most of the
minority-spin weight is in the large peak just above the
Fermi energy. The other small features above these main
peaks are mostly of y5 symmetry. Note that y5 is nomi-
nally below the Fermi level; the presence of some hole
character there is strictly a result of the strong electron-
electron interaction. This admixture also implies that
states nominally above the Fermi level may be occupied
with non-negligible probability; this property could be
clearly seen in the photoemission results. The saturated
ground state should contain four holes in minority-spin
levels, of which three are of h5 symmetry. The fourth is

p3 which is at the Fermi level. Indeed, there are no
majority-spin lines in Fig. 6. The peak at the Fermi level
is all y3, and the large peak just above this as well as the
satellite just 2 eV above the Fermi energy can be identified
as h5. It should be clear that a spin-resolved inverse
photoemission experiment could unambiguously distin-
guish between the two types of ground states.

If the ground state of the cluster contains four holes, it
must also contain sixteen electrons. For this fundamental
reason, the photoemission spectra are more complicated.
Nevertheless, the gross features may still be understood
with the same one-electron argument, although the finer
details caused by the many-body interaction are more
complicated. For the unsaturated case (Fig. 7), there is no
weight coming from the minority-spin h5 level, and the
majority-spin peak of the same symmetry is at the Fermi
level. In the saturated case (Fig. 8), the peak at the Fermi
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0.0

FIG. 8. Total and spin- and angle-resolved photoemission
densities of states for the saturated ferromagnet. In the spin-
resolved plots, dashed and solid lines represent majority-spin
and minority-spin electrons, respectively.
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I
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I
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0.0

cd

0 40

0.0
-15.0 -10.0 -5.0

energy (ev}
0.0

FIG. 7. Total and spin- and angle-resolved photoemission
densities of states for the unsaturated ferromagnet. In the spin-
resolved plots, dashed and solid lines represent majority-spin
and minority-spin electrons, respectively.

level is of the expected minority-spin y3 symmetry, with
some majority-spin weight of the same symmetry mixed
in by the interaction. Direct comparison to a photoemis-
sion experiment is difficult because of the coarse k-space
mesh of the model. Nevertheless, qualitative agreement
with experiment is obtained, with the understanding that
I stands for the half of the Brillouin zone closest to the
zone center, and 0 stands for the other half.

For purposes of comparison, we have also computed
the same densities of (photoemission and inverse photo-
emission) states within a single-particle (crystal-
symmetry-conserving) Hartree-Fock approach. The same
Hamiltonian parameters are used, with the exception that
the relatively small exchange anisotropy AJ is ignored.
The peak positions and weights for the unsaturated fer-
romagnet are shown in Table IV, and the positions and
weights for the saturated ferromagnet are shown in Table
V. One can see that the bandwidths and exchange split-
tings are, in general, reduced from the single-particle
values when the full many-body theory is used, and that
some of the features in Figs. 5—8 are definitely many-
body satellites. In particular, the inverse photoemission
density of states for the unsaturated ferromagnet (Fig. 5)
has weak satellites of y5 symmetry (both spin orienta-
tions), while that for the saturated ferromagnet (Fig. 6)
has weak satellites of minority-spin y5 symmetry. In the
photoemission densities of states (Figs. 7 and 8), the satel-
lite peaks are somewhat more prominent than in inverse
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TABLE IV. Photoemission and inverse photoemission peaks
in (crystal-symmetry-conserving) Hartree-Fock (unsaturated fer-
romagnet) ~

TABLE V. Photoemission and inverse photoemission peaks
in (crystal-symmetry-conserving) Hartree-Fock (saturated fer-
romagnet).

Symmetry

(min)

h5 (min)
h5 (maj)

y3 (min)

y5 (min)

h3 (min)

y3 (maj)

y5 (maj)
h3 (maj)
h5 (maj)

Peak energy (eV)

Inverse photoemission
0.70
1.40
0.00

Photoemission
0.00

—1.73
—4.94
—0.70
—2.43
—5.64
—0.18

Peak weight Symmetry

y3 (min)
h5 (min)

y3 (min)

y5 (min)
h3 (min)

y3 (maj)

y3 (maj)

y& (maj)
h3 (maj)
h5 (maj)

Peak energy (eV)

Inverse photoemission
0.00
0.65

Photoemission
0.00

—2.30
4 94

—2. 10
—1.40
—3.70
—6.34
—1.45

Peak weight

photoemission; majority-spin y5 electrons are responsible
for much of the strength in the satellite peaks.

V. CONCLUSIONS

A many-body finite-cluster model of the 3d electrons in
bcc Fe has been studied in detail. No perturbation theory
was employed. This model is undoubtedly too simple to
reproduce all of the rich electronic behavior of this impor-
tant metal; however, it gives accurate and detailed infor-
rnation about some properties, and it is of general interest
as an exactly soluble model which incorporates both
band-structure and interaction effects on an equal footing.
One fact in particular bears repeating: the competition
between the two lowest-lying states (one a saturated fer-
romagnet, the other unsaturated with antiferromagnetic
correlations) is dominated by the one-particle terms in the
Hamiltonian, not by the Coulomb interaction. These
one-particle terms depend strongly on the lattice spacing,
and a recent calculation has shown that fcc Fe can un-

dergo a ferromagnetic to antiferromagnetic transition as a
function of lattice spacing. Another point that cannot be
addressed by effective one-particle theories such as LDA

is that a strong interaction can force electrons out of
states below the Fermi level and into states above it, as
well as mix levels of different spin orientation.

Improvements to the model could obviously be achieved
by expanding the size of the cluster. This is impractical
for two reasons. The number of possible states (i.e., the
size of the Hamiltonian) increases to approximately 10
when the cluster size is merely doubled. The increase
with further expansion of the cluster is exponential. This
model is only practical for very small clusters, but very
useful to predict general trends. The two-atom cluster as
used here can be straightforwardly applied to the ordered
Fe-Co alloy.
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