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Multipolar response of small metallic spheres: Nonlocal theory
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The multipolar response of a small metallic sphere is studied with use of a nonlocal dielectric
function. Results obtained with the hydrodynamic and Lindhard-Mermin models are presented and

compared to those given by the local Drude model. We find an enhancement of the imaginary part
of the multipole polarizabilities at low frequencies and pole order l &l„where l, is a cutoff order
that corresponds to excitations at the high-wave-vector edge of the electron-hole pair continuum.
The absorption coefficient for two very close spheres is calculated and the effect of nonlocality on

the number and position of the multipolar absorption peaks is discussed.

I. INTRODUCTION

The response of small metallic particles to electromag-
netic radiation has been the subject of much recent
work. ' Of special interest has been the anomalous ab-
sorption that composite samples containing these particles
exhibit in the far infrared and its dependence on particle
size, clustering and volume fraction. ' The most
straightforward theories treat spherical particles and as-
sume a local uniform dielectric function for the material.
Such spheres have a large absorption peak due to the exci-
tation of a surface plasmon of dipolar character, that ap-
pears at a frequency co~/u'3 if a Drude dielectric function
is adopted. More realistic dielectric functions including a
nonlocal character have also been used and give a much
richer absorption spectrum. ' '

When more than one particle is present proximity ef-
fects can have a strong influence in absorption. Detailed
studies of the two-sphere case show that the presence of a
second sphere shifts the dipolar mode to lower frequencies
and that new absorption peaks of quadrupolar, octupolar
or higher-pole character appear. These effects be-
come more apparent as the separation between the spheres
decreases and when they are close to touching, the local
theory predicts that the absorption peaks approach the
bulk static resonance at zero frequency. The multipolar
expansion diverges as touching is approached, a clearly
unphysical situation since the excitation of modes of very
high angular momentum or short wavelength is inhibited
by the fact that the electronic wave functions extend over
a spatial region of finite size. In this paper we show that
the use of a nonlocal dielectric function introduces a cut-
off angular momentum that corrects this deficiency in a
satisfactory way. In Sec. II we study the multipole polari-
zabilities of a single sphere in the frequency range
0 & co & 2coz using the Drude, hydrodynamic, and
Lindhard-Mermin dielectric functions. In Sec. III these
polarizabilities are used to obtain the absorption coeffi-
cient for a close and a touching pair of spheres. The full

multipolar effects are included since in a nonlocal theory
very high-order multipoles have a negligible effect. Still,
as we show, the multipolar couplings modify qualitatively
the response of a single sphere by introducing additional
peaks in the spectrum and broadening significantly the
resonance region.

II. RESPONSE OF A SINCJLE SPHERE
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where r=(r, B,Q) are spherical coordinates referred to an
origin at the particle center, Pt(B) is a Legendre polyno-
mial of order l, and CI is a constant. A unit charge
placed on the z axis outside the sphere would, for exam-
ple, produce potential components of the form (2). The

We consider the single metallic sphere of radius a,
whose response to an arbitrary electric field is character-
ized by polarizabilities o.~, where l is the pole order of the
exciting field component. In a local theory these quanti-
ties are given by

l(e —1)
l(a+1)+ 1

where e is the frequency-dependent dielectric function.
Within the Drude model both the real and imaginary
parts of a~ remain finite for arbitrarily large l. On physi-
cal grounds one expects a cutoff at large l since a metallic
particle is not polarized by an electric field which oscil-
lates with a wavelength much smaller than a Fermi wave-
length. We shall therefore derive an expression for the
polarizability of a single sphere that includes nonlocal ef-
fects through a general dielectric function of the form
e(k, co) and has the desired property of going to zero for
sufficiently large values of l.

In order to excite the multiple of order l we assume the
particle is in an external potential with azimuthal symme-
try ( m =0):
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potential (2) excites the multipole ql of order 1 (m=0),
which in turn produces a potential outside the sphere of
the form

' 1/2

hibit:t: one in the low-frequency region (co &&co ), two in
the resonance region (co-0.4' —0.8 ) dan one in the

1g - requency (co&co&) region. A glance at Fi . 1 hea ig. s ows
a at a requencies the nonlocal sphere does not 1

ize si'gnificantly at angular momenta higher than a certain
cutoff value l, . Using a simple model in which this quan-

where the usual definition of q~ has been adopted. ' The
polarizability a~ is defined by
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The problem of finding o.~ reduces to solving Maxwell's
equations with appropriate boundary conditions at the

developed a semiclassical infinite-barrier (SCIB) theory
or the dipolar (1=1) case. We have extended their

method to arbitrary l in a straightforward manner whose
details we shall omit here. The result for the polarizabili-
ty of order l is
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where jl(x) is the spherical Bessel function of order 1. For
a k-independent dielectric function El ——e and one recov-
ers the local result (1). The quantity El thus acts like an
effective dielectric constant for the excitation of the mode
of angular momentum l. The simplest nonlocal response
function is given by the hydrodynamic model

e(k, co)=1— a/I[co(co+iy) Pk ], — (7)

where y is a damping parameter and p = 3U /5 U b
'

the Fermi velocity. Using this form of dielectric function
in (6), we obtain
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where u =a [cuz —co( ate+i )y]' /p, I and E are modi-
fied Bessel functions, and e denotes the value of the local
or Drude dielectric function, obtained from (7) h

&9= . he second term in the right-hand side of expres-
sion (8) is the nonlocal correction. We have u d (7)
wellwe as the Lindhard-Mermin dielectric function to
study the effect of nonlocality on the multipole polariza-
bilities (5). The latter is a better description for response
at large wave vector where excitation of electron-hole
pairs becomes important. We have used the bulk parame-
ters for tin, co&

——1.17&& 10' sec ', vz ——1.24& 10 cm/sec
and as a mean free path, the sphere radius.

Figure 1 shows the real and imaginary parts of the mul-

tipole polarizabilities of a sphere of radius a=30 A for
various frequencies. Results using the Drude (D, in Fig.

) hydrodynamic (H, in Fig. 1), and Lindhard-Mermin
(LM) dieleie ectric functions are shown. The frequency
dependence is well characterized by the four values we ex-
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FICx. 1. a R~ . ( ) Real and (b) imaginary parts of the multipole po-
larizability of a tin sphere of radius a =30 Aius a = at various frequen-
cies, in the Drude (dotted-dashed curve), Lindhard-Mermin
(solid curve) and hydrodynamic (dashed curve) models
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ELECTRON-HOLE PAIRS
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resonances for a 30-A sphere in the ( l, co) plane. Although
only integer values of I have physical meaning, curves are
drawn as if I were a continuous variable. This figure is
the spherical analog of the excitation structure of an in-
finite medium in the (k, co) plane. With a local (Drude)
dielectric function the only excitation is a Frohlich reso-
nance (labeled D), given by the condition Re(a~ ') =0 or
I =co /(co& —2' ). With a nonlocal (LM) model, the
Frolich resonance (labeled FR) moves to higher frequency
with increasing l, while a series of bulk plasmon reso-
nances in the range co&~&, ' and a broad electron-hole
excitation region also appears. The qualitative behavior
of the peaks in Fig. 1(b) can be understood from Fig. 2.

III. ABSORPTION BY A PAIR OF SPHERES

0
0 50 100

FIG. 2. Dispersion curves of multipolar resonances for a thin
0

sphere of radius a=30 A in the (co, l) plane. The curve labeled
FR is the nonlocal Frohlich resonance extended to all pole or-
ders. The local approximation for this Frohlich resonance is
also shown (curve D). The edges of the electron-hole excitation
region, marked by dotted lines, are not sharp. These edges are
somewhat arbitrarily taken as the 1 values (for fixed co) at which
Im( Er —1 )

' = [Im!Ei—1) ]max/80.

tity is the number of nodes in the waveform of an excita-
tion at the Fermi momentum covering the sphere cir-
cumference, we have l, -4~a/kF -70, which is a good
estimate at frequencies below the resonance region.
Another important result is an enhancement in the imagi-
nary part of the polarizabilities at low frequencies in the
LM model due to electron-hole excitation. This enhance-
ment amounts to a factor of 5—10 and gives a larger ab-
sorption coefficient for the single sphere by about the
same factor. It represents the only qualitatively signifi-
cant distinction between the hydrodynamic and LM
models. At low frequencies Re(a~) is proportional to the
frequency.

Figure 2 shows the dispersion curves of the multipole

The simplest system that has its multipoles excited by
optical means in the long-wavelength limit k ~~a is a pair
of identical spheres. The nonuniform field that couples
to multipoles of order higher than one is provided at the
position of one of the spheres by the fields generated by
the charge distribution and currents in the other. We are
interested in the case of very small spheres where the
dominant absorption is by coupling to the electric field
and we shall ignore the magnetic contribution to absorp-
tion.

We consider two identical spheres of radius a separated
by a center-to-center distance D and placed in a uniform
external electric field E„,. The individual response is
characterized by the set of polarizabilities a~(co). Since
the particles are identical they acquire each a dipole mo-
ment that is the same in both magnitude and direction.
The pair is also capable of an excitation in which both di-
poles oppose each other but this mode is not excited in a
uniform external field. In the optically active mode the
dipole moment is given by

Cof(M I
—1)

(M Z)
1 cxt

where I is the unit matrix and M is a two-dimensional
matrix with components

Mk' l lm
(k +k')! ag(co)

v (k +m)!(k —m)!(k'+m)!(k' —m)! D&+& +' (10)

Here m =0 for an external field along the center to center
axis and m=1 for a polarization perpendicular to this
line. We see that the dipole excited in each sphere is pro-
portional to the external field, with a factor of propor-
tionality that acts as an effective polarizability

Cof(M I
—1)

a, (~) .
det M I)—(11)eff

For infinitely separated particles all matrix elements are
zero and a,~f just equals the single particle dipole polariza-
bility a~. At finite separation the local field one of the
sphere experiences includes the external field plus those
fields that arise from the presence of the other sphere.

These fields are highly nonuniform and are responsible
for the excitation of moments of order higher than the di-
pole in each particle. Such moments must be taken into
account when D (3a. ' In the dipole approximation
valid for larger D one assumes all matrix elements (10) to
be zero except for M

&
and the simple expression

a, !(I—MI) for the effective polarizability readily fol-
lows. At closer separation one must keep higher-order
matrix elements and in fact the dimension of the matrix
M that is required diverges as the spheres approach
touching if a local dielectric function is used. The cut-
off pole order introduced by nonlocality and described in
Sec. II provides convergence of the multipolar series at an
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order that can be handled computationally. We shall use
this fact to present fully converged absorption curves for
very near spheres. In our study we have preferred the LM
dielectric function as a nonlocal model in order to include
the electron-hole excitations. Thus, only the LM and D
model results are discussed in this section.

Figure 3 shows the absorption coefficient per particle
for axial excitation and two 30-A tin spheres (full curves)
at center-to-center distance D=61 A [Fig. 3(a)], and two
50-A spheres at D= 101 A [Fig. 3(b)]. In the former case
the cutoff pole order I, =80+20co/co~ was used, and for
the latter, we chose I, =130. The increase was necessary
due to the fact that this quantity scales approximately
linearly with the radius of the particles. The absorption
coefficient is characterized by a number of resonances
around m-0. 5coz and a smaller oscillatory structure in
the range ~-1.1~~ —1.6'~. The latter is already present
in the case of a single sphere, ' which is included in Fig.
2(b) for comparison. We note that for frequencies above
the resonance region the response of the pair does not
differ significantly from that of two isolated spheres, ex-
cept for a small decrease in the absorption coefficient in
the region co-cu&. The single-sphere resonance appears
slightly blue shifted away from the Frohlich local reso-
nance at coF ——co~/~3, a known consequence of nonlocali-
ty in the SCIB model. ' The main difference occurs in
the intermediate-frequency region where there is addition-
al structure and an important enhancement in the absorp-
tion by a pair that may reach up to two orders of magni-
tude. A small enhancement is also apparent in the low-
frequency region.

In the resonance region a few peaks appear distinct.
Counting from the left, the first resonance is the dipole
(Frolich) resonance which has been red shifted from its
isolated-sphere position. As the spheres move apart one
can observe this peak to move continuously towards coF.
The second resonance is entirely due to coupling between
the spheres and corresponds to a resonant quadrupolar ex-
citation; the third has octupolar character, and so on. The
resonances are fewer and always blue shifted compared to
the local response. This is apparent in Fig. 3(a) where the
absorption coefficient obtained using the Drude model has
been included for comparison (dashed line). As noted in
Sec. II this shift to larger frequencies is a nonlocal correc-
tion to the multipolar resonances of a single sphere and is
maintained as two particles approach each other. The
high-frequency oscillations in the region co & co& are absent
in the local case. In the low-frequency region the absorp-
tion coefficient is proportional to the square of the fre-
quency and shows a nonlocal enhancement by a small fac-
tor corresponding to the enhancement of the imaginary
part of the polarizability.

Figure 3(c) shows the absorption coefficient per particle
for two touching spheres, calculated with the LM dielec-
tric function and the same cutoff pole order I, that was
used in Figs. 3(a) and 3(b). For touching spheres, a local
calculation does not converge. The absorption is similar
to that found for almost-touching spheres [Figs. 3(a) and
3(b)] except for minor changes of the peaks in the reso-
nance region. The number and precise location of the
peaks may not be accurate because the SCIB model does
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FIG. 3. (a) Absorption coefficient for two equal spheres of
radius a =30 A and distance D=61 A between centers; (b) two
spheres of radius a =50 A and distance D= 101 A; (c) two
touching spheres of radius a=30 A and radius a=50 A. The
exciting field is along the line joining the sphere centers.
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not give a very good description of the surface response.
In fact, even an exact calculation of the multipolar reso-
nance of an isolated sphere would give inaccurate results
for touching spheres because of the effects of wave func-
tion overlap.

Figure 4 is for an external field perpendicular to the
line joining the sphere centers. In this case the dipole ex-
cited by the external field on each sphere produces a near-
ly uniform field at the other spheres, with space variations
that are mild compared to the case of axial excitation dis-
cussed above. As a consequence the effect of high-order
multipoles is much smaller. Figure 4(a) is for two 30-A
tin spheres 61 A apart in the nonlocal LM model (solid
line) and local Drude model (dashed line). The main ef-
fect of nonlocality is a low-frequency enhancement by a
small factor and the oscillations at the other end of the

spectrum already discussed. Figure 4(b) compares the ab-
sorption coefficient per particle of two 50-A spheres 10]
A apart, with that of a single sphere in the LM model.
Coupling between the spheres shifts the spectrum slightly
to larger frequencies and produces secondary peaks and a
shoulder above the main resonance that are a consequence
of multipolar excitations. We note that here the enhance-
ment is by about a full order of magnitude. Finally, just
as for axial excitation, the single-sphere oscillations for
co & co~ are essentially reproduced in spite of the presence
of another sphere.

IV. DISCUSSION AND CONCLUSIONS

Our results show that nonlocal effects are important in
the response of a small metallic particle when multipoles
of order higher than dipole are excited. This is because
the polarizabilities are very different in the local and non-
local models, a difference that is also strongly frequency
dependent. In numerical computations the existence of a
cutoff pole order is of principal importance since it allows
a fully converged treatment of multipolar excitation ef-
fects. We use this fact to obtain the absorption coefficient
of a very close and of a touching pair of tin spheres. We
find that nonlocality has an effect on position and number
of the multipolar resonances that occur at co&co~. For
larger frequencies the spheres respond as if isolated, show-
ing a sequence of small resonances entirely due to the non-
local form of the dielectric function. At low frequencies
we find an enhancement for an external field polarized
along the line joining the spheres centers.

Optical experiments done on small metallic particles
indeed show that proximity or aggregation broadens the
spectrum by way of shifting the low-frequency edge of the
surface resonance towards the infrared. The multipolar
structure does not appear well resolved, however. Data
have been taken using samples where the particl s are dis-
tributed at random. In disordered arrays one does not ex-
pect to find well-defined multipolar resonances since their
position is quite sensitive to interparticle separation or rel-
ative size between the spheres. ' Also, deforrnations
away from sphericity may introduce additional reso-
nances. We are therefore unable to compare our results in
detail with presently available experimental data. Recent
experimental techniques that allow a careful control of
both position and size when forming the metal spheres
make it possible that in the near future the multipolar res-
onances, their location and shape, will be resolved so that
the present theory may be tested.
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